
.

.

Fundamentals of Programming 2
Doubly Linked Linear List

Arkadiusz Chrobot

Department of Computer Science

April 6, 2020

1 / 55

.

Outline

Introduction

Implementation
Base Type and List Pointer
Creating the List
Adding an Element to the List
Removing an Element From the List
Printing the Content of the List
Removing the List

Summary

2 / 55

.

Introduction

The doubly linked linear list is another example of a linear list. The singly
linked linear list and the doubly linked linear list are quite similar. From the
user point of view the main difference between those two lists is that the doubly
linked list may be easily traversed forward and backward. In this lecture the
implementation of the doubly linked linear list in a form of a dynamically
allocated data structure is presented.

3 / 55

.

Implementation

Just like the singly linked list, the doubly linked list is presented with the use
of an example program, that uses it to store natural numbers in the ascending
order. In other words, it is a sorted list. Similarly as in the case of singly
linked list, first the base type is defined and the list pointer is declared. Next,
the five basic operation for the list are implemented: creating the list, adding
a single element to the list, removing a single element from the list, printing
the content of the list on the screen and removing the list.

4 / 55

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Base Type and List Pointer

1 #include<stdio.h>
2 #include<stdlib.h>
3

4 struct list_node
5 {
6 int data;
7 struct list_node *previous, *next;
8 } *list_pointer;

5 / 55

.

Base Type

The base type of the doubly linked linear list, that is presented in the previous
slide, differs from the base types of previously introduced data structures by
having an additional pointer field. The field, which is called previous in
the example base type is used for storing an address of a list element that
precedes a given element. In the doubly linked linear list there can be only
one element that stores the null value in that field. It is the first element in
the list. There is a kind of the doubly linked linear list that has the same base
data type as the singly linked linear list. It is called an xor linked list. In the
single pointer field is stored not a single address but a result of the bitwise xor
operation performed on addresses of preceding and succeeding elements of a
given element. The xor list is more memory-effective than classical doubly
linked linear list, but operations on the list are more time-consuming and
complicated. The former list won’t be described any more in the lecture. The
presented base type can be modified or expanded provided that both pointer
fields used for building the list are preserved.

6 / 55

.

List pointer

The list pointer (the list_pointer variable) is declared in the same slide
where the base type is defined. Unlike in the case of the singly linked linear
list it doesn’t have to always point to the first element of the double linked
linear list, indeed it may point to any element in the list. However, it is
convenient if every operation on the list leaves the pointer pointing to the
beginning of the list. This approach is applied in the demonstrated program.
In the slide that contains the definition of the base type and the declara-
tion of the list pointer also the statements that include header files with the
declarations of functions used in the program are presented.

7 / 55

.

Creating the List

Just like in the case of the singly linked linear list the operation of creating
the list is equivalent to the operation of creating its first element and storing
the address of the element in the list pointer. The operation is performed by
the create_list() function, which definition is presented in the next slide.

8 / 55

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Crating the List

1 struct list_node *create_list(int number)
2 {
3 struct list_node *first_node = (struct list_node *)
4 malloc(sizeof(struct list_node));
5 if(first_node) {
6 first_node->data = number;
7 first_node->previous = first_node->next = NULL;
8 }
9 return first_node;

10 }

9 / 55

.

Creating the List

The create_list() function definition for the doubly linked linear list is very
similar to its counterpart for the singly linked linear list. Thus only the most
important differences are described here. In the 7th line of the function’s
source code the null value is assigned not only to the next pointer field but
also to the previous pointer field of the first element. The element is the first
and in the same moment the last element of the list. The address returned
by the function has to be stored in the list pointer.

10 / 55

.

Adding an Element to the List

Just like in the case of the singly linked linear list the operation of adding
a single element to the doubly linked linear list has to be performed on a
nonempty list. Let’s assume that the list pointer should point to the first
element of the list, after the operation is finished. If the operation fails the
list should be in the same state as it was before it begun.

11 / 55

.

Adding an Element to the List

There are three cases that should be considered when implementing the op-
eration of adding a single element to the doubly linked linear list:

1. the element is added at the front on the list and becomes its first
element,

2. the element is added inside the list,
3. the element is added at the end of the list and becomes its last element.

The three cases are handled by separated helper function which are invoked
by a single function responsible for the whole operation. First, the definitions
of the helper functions are described.

12 / 55

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Adding an Element to the List
Adding an Element to the List

1 struct list_node *add_at_front(struct list_node *list_pointer,
2 struct list_node *new_node)
3 {
4 new_node->next = list_pointer;
5 list_pointer->previous = new_node;
6 return new_node;
7 }

13 / 55

.

Adding an Element to the List
Adding an Element to the List

The add_at_front() function, unlike its counterpart for the singly linked
linear list, has to take into consideration the previous pointer field in the
currently first element of the list. Hence, in the 5th line the address of the
new element is assigned to the aforementioned field of the currently first
element of the list. The rest of the function is the same as in the case of the
singly linked linear list.

14 / 55

.

Adding an Element to the List
Finding a spot

Handling of the two remaining cases requires traversing the list in search of
a suitable spot. An address of the element after which a new one should be
added to the list is an expected result of the operation. To locate such an
element the same find_spot() function can be used as for the singly linked
linear list. Its definition is presented in the next slide. Only one modification
has been made to the function. The name of its second parameter is changed.

15 / 55

.

Adding an Element to the List
Finding a Spot

1 struct list_node *find_spot(struct list_node *list_pointer,
2 int number)
3 {
4 struct list_node *previous = NULL;
5 while(list_pointer&&list_pointer->data<number) {
6 previous = list_pointer;
7 list_pointer = list_pointer->next;
8 }
9 return previous;

10 }

16 / 55

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Adding an Element to the List
Adding Inside the List

1 void add_in_middle(struct list_node *node,
2 struct list_node *new_node)
3 {
4 new_node->previous = node;
5 new_node->next = node->next;
6 node->next->previous = new_node;
7 node->next = new_node;
8 }

17 / 55

.

Adding an Element to the List
Adding Inside the List

Adding a new element inside the doubly linked linear list is a little more com-
plicated operation than adding a new element to the singly linked linear list,
because of the additional pointer field. In the 4th line of the function pre-
sented in the previous slide, the address of the element that should precede in
the list the new element is assigned to the previous field of the new element.
The address of the element that should succeed the new element in the list is
assigned to the next field of the new element in the 5th line. In the 6th line
the address of the new element is assigned to the previous pointer field of
succeeding element. The left side of the assignment statement is quite com-
plex, but it means that the function uses the next field of the element that
is pointed by the node parameter, to get to the element that should succeed
the new one in the list and to modify its previous pointer field. In the result
the new element is partially added to the list.

18 / 55

.

Adding an Element to the List
Adding Inside the List

In the 7th line of the add_in_middle() function, the address of the new
element is assigned to the next pointer field of the element that should precede
the new on the list. Please observe, that the lines no. 6 and 7 cannot switch
their places. The next slides illustrate the behaviour of the add_in_middle()
function. The fields that values are copied from are denoted by the yellow
colour and the ones that the values are copied to are denoted by the violet
colour.

19 / 55

.

Adding an Element to the List
Adding Inside the List

..

node

. next.

previous

.

null

.

null

.

new_node

. next.

previous

Before performing the 4th line

20 / 55

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Adding an Element to the List
Adding Inside the List

..

node

. next.

previous

.

null

.

previous

.

new_node

. next.

previous

After performing the 4th line

20 / 55

.

Adding an Element to the List
Adding Inside the List

..

node

. next.

previous

.

next

.

previous

.

new_node

. next.

previous

After performing the 5th line

20 / 55

.

Adding an Element to the List
Adding Inside the List

..

node

. next.

previous

.

next

.

previous

.

new_node

. next.

previous

After performing the 6th line

20 / 55

.

Adding an Element to the List
Adding Inside the List

..

node

. next.

previous

.

next

.

previous

.

new_node

. next.

previous

After performing the 7th line

20 / 55

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Adding an Element to the List
Adding at the End of the List

1 void add_at_back(struct list_node *last_node,
2 struct list_node *new_node)
3 {
4 last_node->next = new_node;
5 new_node->previous = last_node;
6 }

21 / 55

.

Adding an Element to the List
Adding at the End of the List

The add_at_back() function takes two pointers as arguments. The first one
points to the currently last element of the list and the second one points to
the new element that should be added at the end of the list. In the 4th line
the address of the new element is assigned to the next field of the currently
last element of the list. In the result the new element is partially linked to
the list. In the 5th line the address of the element pointed by the last_node
parameter is assigned to the previous field of the new element. After the
assignment is completed, the new element becomes an integral part of the
list, i.e. the last element of the list.

22 / 55

.

The add_node() Function

1 struct list_node *add_node(struct list_node *list_pointer, int number)
2 {
3 if(list_pointer) {
4 struct list_node *new_node = (struct list_node *)
5 malloc(sizeof(struct list_node));
6 if(new_node) {
7 new_node->data = number;
8 new_node->previous = new_node->next = NULL;
9 if(list_pointer->data>=number)

10 return add_at_front(list_pointer,new_node);
11 else {
12 struct list_node *node = find_spot(list_pointer, number);
13 if(node->next)
14 add_in_middle(node, new_node);
15 else
16 add_at_back(node, new_node);
17 }
18 }
19 }
20 return list_pointer;
21 }

23 / 55

.

The add_node() Function

The definition of the add_node() function is little more complicated then its
counterpart for the singly linked linear list. The meaning of the parameters
and returned value is however the same. The add_node() function for the
doubly linked linear list first checks if the list pointer is valid (3th line), i.e.
the list is not empty. If it is the function performs the statement in the 20th
line and exits — the list stays empty. Otherwise the function tries to allocate
memory for the new element (4th and 5th lines) and checks if the allocation is
successful (6th line). If so, it initializes the fields of the new element (7th and
8th line) and recognizes which of the three cases of adding the new element
to the list should be handled. Otherwise the function performs the statement
in the 20th line and this time the list also stays unchanged. In the 9th line the
function checks if it should add the new element at the beginning of the list.
If so, it calls the add_at_front() helper function. When the latter finishes
its job, the add_node() function exits.

24 / 55

.

Notes

.

Notes

.

Notes

.

Notes

.

.

The add_node() Function

If the new element should be added inside or at the back of the list, the
add_node() function locates the element after which the new one should be
added with the help of the find_spot() function. In the 13th line the former
checks if the element found by the find_spot() function is the last in the
list. If so, it calls the add_at_back() function and then exits. Otherwise it
calls the add_in_middle() function and then also exits.

25 / 55

.

Removing and Element From the List

The operation of removing a single element from the doubly linked linear list
is also performed differently than in the case of the singly linked linear list.
Despite the similarities, the differences are so great that the implementation
of the operation is more complicated. Just like in the case of the previously
discussed list, it is required that if the operation is performed for a list with
a single element then after it is completed the list should be empty. If the
operation is performed for an empty list then the list should stay empty. If
the operation is performed for a list with more than one element, then the
list should be shorter by one element, provided that the list contains at least
one element that should be removed. Finally, if the list doesn’t contain any
element to remove, it should stay unchanged.

26 / 55

.

Removing an Element From the List

Just like in the case of the singly linked linear list there are four cases that
should be considered when implementing removing the element from the list:

1. removing the first element of the list,
2. removing an element from the inside of the list,
3. removing the last element of the list,
4. the list doesn’t contain an element that should be removed.

The first three cases are handled by helper functions that are invoked by the
delete_node() function. The helper functions are described in the next
slides, before the latter function. The forth case doesn’t require a separate
subroutine to be defined.

27 / 55

.

Removing From the Front of the List

1 struct list_node *delete_at_front(struct list_node *list_pointer)
2 {
3 struct list_node *next = list_pointer->next;
4 if(next)
5 next->previous = NULL;
6 free(list_pointer);
7 return next;
8 }

28 / 55

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Removing From the Front of the List

The delete_at_front() function unlike its counterpart for the singly linked
linear list has to take into account the previous pointer field of the second
element of the list. The element becomes the first element of the list as a
result of the removal operation. In the 4th line the function checks if the next
(i.e. second) element exists. If not, then the element to be removed is the
first and only element of the list and the function performs the statement in
the 6th line. Otherwise the null value is assigned to the previous field of
the second element of the list (5th line), because this element will become
the first element of the list. Only after the assignments are completed the
memory for the formerly first element of the list is deallocated (6th line). The
function returns the value of the local pointer named node and exits.

29 / 55

.

Searching for an Element

1 struct list_node *find_node(struct list_node *list_pointer,
2 int number)
3 {
4 while(list_pointer&&list_pointer->data!=number)
5 list_pointer = list_pointer->next;
6 return list_pointer;
7 }

30 / 55

.

Searching for an Element

The find_node() function returns an address of an element of the list that
stores in its data field the number passed to the function by the number
parameter. The list pointer is passed to the function by its first parameter. In
the while loop (4th and 5th lines) the function checks each element of the
list if it contains the same number as the number parameter. The loop stops
when the element is found or the list contains no more elements for verifying.
The result of the search (the address of the element or the null value) is
stored in the list_pointer parameter. The value of this pointer is returned
by the function.

31 / 55

.

Removing From the Inside of the List

1 void delete_in_middle(struct list_node *node)
2 {
3 node->next->previous = node->previous;
4 node->previous->next = node->next;
5 free(node);
6 }

32 / 55

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Removing From the Inside of the List

The presented in the previous slide function removes from the inside of the
list the element which address is passed by the function’s parameter. To this
end it unlinks the element from the list in the 3rd and 4th lines and then it
deallocates the memory for the element in the 5th line. In the 3rd line the
function uses the node pointer, that points to the element to be removed,
to assign to the previous field of the succeeding element the address of the
preceding element. In the 4th line a similar work is performed, i.e. the function
uses the same pointer to assign to the next field of the preceding element the
address of the succeeding element. The next slides illustrates the behaviour
of the described function. The meaning of the colours is the same as in the
previous illustrations.

33 / 55

.

Removing From the Inside of the List

..

next

.

previous

.

node

.

next

.

previous

.

next

.

previous

Before performing the 3rd line

34 / 55

.

Removing From the Inside of the List

..

next

.

previous

.

node

.

next

.

previous

.

next

.

previous

After performing the 3rd line

34 / 55

.

Removing From the Inside of the List

..

next

.

previous

.

node

.

next

.

previous

.

next

.

previous

Before performing the 4th line

34 / 55

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Removing From the Inside of the List

..

next

.

previous

.

node

.

next

.

previous

.

next

.

previous

After performing the 4th line

34 / 55

.

Removing From the Inside of the List

..

next

.

previous

.

node

.

next

.

previous

.

next

.

previous

After performing the 5th line

34 / 55

.

Removing From the End of the List

1 void delete_at_back(struct list_node *last_node)
2 {
3 last_node->previous->next = NULL;
4 free(last_node);
5 }

35 / 55

.

Removing From the End of the List

The delete_at_back() function is responsible for removing the last element
of the list. The address of the element is passed to the function by its param-
eter. In the 3rd line the function uses the pointer to the last element to assign
the null value to the next pointer field of the preceding element. After that,
the latter becomes the last element of the list. In the 4th line the function
deallocates the memory allocated for the element pointed by the last_node
pointer.

36 / 55

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Removing From the List
1 struct list_node *delete_node(struct list_node *list_pointer,
2 int number)
3 {
4 if(list_pointer) {
5 if(list_pointer->data==number)
6 return delete_at_front(list_pointer);
7 else {
8 struct list_node *node = find_node(list_pointer,
9 number);

10 if(node) {
11 if(node->next)
12 delete_in_middle(node);
13 else
14 delete_at_back(node);
15 }
16 }
17 }
18 return list_pointer;
19 }

37 / 55

.

Removing From the List

The delete_node() function just like add_node() function is more com-
plicated than its counterpart for the singly linked linear list. The meaning
of the parameters and the return value is however the same. In the 4th
line the function checks if the list is not empty. If it is then it returns the
null value stored in the list_pointer parameter. Otherwise the function
checks if the first element of the list should be removed. If so, it invokes the
delete_at_front() function, returns the value returned by the function and
exits. If not, it tries to find the address of the element that should be removed
from the list, by using the find_node() function. If the latter returns the
null value, what is verified in the 10th line of the delete_node() function,
it means that there is no element to remove in the whole list and the function
performs the statement in the 18th line and exits.

38 / 55

.

Removing From the List

If however, the address returned by the find_node() function is not null
then the delete_node() function checks in the 11th line if the element to be
removed is in the inside of the list. If so, it calls the delete_in_middle()
function. If not, then it means that the last element of the list should
be removed and in the 14th line the delete_at_back() function is in-
voked. Regardless of which of the two helper functions has been called, after
its job is completed, the delete_node() function returns the value of the
list_pointer parameter and exits.

39 / 55

.

Printing the Content of the List
Printing Forwards and Backwards

1 void print_list_in_both_directions(struct list_node
2 *list_pointer)
3 {
4 struct list_node *backward_pointer = NULL;
5 while(list_pointer) {
6 backward_pointer = list_pointer;
7 printf("%d ",list_pointer->data);
8 list_pointer = list_pointer->next;
9 }

10 puts("");
11 while(backward_pointer) {
12 printf("%d ",backward_pointer->data);
13 backward_pointer = backward_pointer->previous;
14 }
15 puts("");
16 }

40 / 55

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Printing the Content of the List

The function defined in the previous slide prints the content of the list’s el-
ements forwards and backwards, i.e. starting from the first element of the
list and starting from the last element of the list. The first case is performed
in the first while loop (lines 5–9). In the loop the backward_pointer is
used that, aside from the first and last iteration, points the element preceding
the element pointed by the list_pointer parameter. After the first while
loop stops the backward_pointer points the last element of the list. In the
second while loop this pointer is used for traversing the list backwards. Its
value in each of the iterations is replaced by the value stored in the previous
field of the element currently pointed by this pointer itself.

41 / 55

.

Removing the List

1 void remove_list(struct list_node **list_pointer)
2 {
3 while(*list_pointer) {
4 struct list_node *next = (*list_pointer)->next;
5 free(*list_pointer);
6 *list_pointer = next;
7 }
8 }

42 / 55

.

Removing the List

The function that removes the list from the computer memory is the same as
the function that removes the singly linked linear list.

43 / 55

.

The main() Function
First Part

1 int main(void)
2 {
3 list_pointer = create_list(1);
4 int i;
5 for(i=2; i<5; i++)
6 list_pointer = add_node(list_pointer,i);
7 for(i=6; i<10; i++)
8 list_pointer = add_node(list_pointer,i);
9 print_list_in_both_directions(list_pointer);

44 / 55

.

Notes

.

Notes

.

Notes

.

Notes

.

.

The main() Function
First Part

Just like in the case of the singly linked linear list, the double linked linear
list is created by adding a single element that stores the number 1. Then the
elements storing the numbers ranging from 2 to 4 and from 6 to 9 are added
to the list. Next, the content of the list is displayed on the screen forwards
and backwards (9th line).

45 / 55

.

The main() Function
Second Part

1 list_pointer = add_node(list_pointer,0);
2 print_list_in_both_directions(list_pointer);
3 list_pointer = add_node(list_pointer,5);
4 print_list_in_both_directions(list_pointer);
5 list_pointer = add_node(list_pointer,7);
6 print_list_in_both_directions(list_pointer);
7 list_pointer = add_node(list_pointer,10);
8 print_list_in_both_directions(list_pointer);

46 / 55

.

The main() Function
Second Part

To test the add_node() function, in the main() function of the program
elements are added to the list, that store the following numbers: 0 (added at
the front of the list), 5 (added inside the list), 7 (added inside the list, before
an element that stores the same value) and 10 (added at the end of the list).
After each of the operations is finished the content of the list is displayed
forwards and backwards on the screen.

47 / 55

.

The main() Function
Third Part

1 list_pointer = delete_node(list_pointer,0);
2 print_list_in_both_directions(list_pointer);
3 list_pointer = delete_node(list_pointer,1);
4 print_list_in_both_directions(list_pointer);
5 list_pointer = delete_node(list_pointer,1);
6 print_list_in_both_directions(list_pointer);
7 list_pointer = delete_node(list_pointer,5);
8 print_list_in_both_directions(list_pointer);
9 list_pointer = delete_node(list_pointer,7);

10 print_list_in_both_directions(list_pointer);
11 list_pointer = delete_node(list_pointer,10);
12 print_list_in_both_directions(list_pointer);
13 remove_list(&list_pointer);
14 return 0;
15 }

48 / 55

.

Notes

.

Notes

.

Notes

.

Notes

.

.

The main() Function
Third Part

Just like in the case of the add_node() function, to verify the behaviour of
the delete_node() function, from the doubly linked linear list are removed
elements of the following values: 0 (removed from the front of the list), 1 (once
again removed from the front of the list), 1 (not removed, it doesn’t exist now),
5 (removed from the inside of the list), 7 (the first element that stores such
a number is removed) and 10 (removed at the end of the list). After each
of the operations is completed, the content of the list is displayed forwards
and backwards on the screen. Eventually the main() function removes the
list from the computer memory (13th line) and exits.

49 / 55

.

Summary

The presented implementation of the doubly linked linear list is not the only
one that can be created. The list can be implemented with the use of a linear
or multidimensional array, just like the singly linked linear list. There are also
doubly linked linear lists with sentinels. The doubly linked linear list can be
applied for building a stack or a queue. In some applications the doubly linked
lists have an advantage over the singly linked ones — it is the double link
between each of their elements. It is, for example, important in file systems
where the lists represent files. In that case they are usually created not in the
ram of the computer but in an external storage, like a hard drive.

50 / 55

.

Summary

In the presented functions, like in the delete_in_middle() function or the
delete_at_back() function, a complex expressions created with the use of
the pointers are applied. The next slide shows even more complicated expres-
sions of this kind. Those are related to the list in the upper part of the slide.
The node pointer which is present at the beginning of every such an expression
is also shown in the figure. Please try to evaluate each of the expressions.

51 / 55

.

Summary

.. next.

null

.

5

. next.

previous

.

4

. next.

previous

.

9

. next.

previous

.

1

. next.

previous

.

3

. null.

previous

.

2

.

node

Expression no. 1
node->next->next->data

52 / 55

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Summary

.. next.

null

.

5

. next.

previous

.

4

. next.

previous

.

9

. next.

previous

.

1

. next.

previous

.

3

. null.

previous

.

2

.

node

Expression no. 1
node->next->next->data

Answer no. 1
2

52 / 55

.

Summary

.. next.

null

.

5

. next.

previous

.

4

. next.

previous

.

9

. next.

previous

.

1

. next.

previous

.

3

. null.

previous

.

2

.

node

Expression no. 2
node->previous->previous->previous->data

52 / 55

.

Summary

.. next.

null

.

5

. next.

previous

.

4

. next.

previous

.

9

. next.

previous

.

1

. next.

previous

.

3

. null.

previous

.

2

.

node

Expression no. 2
node->previous->previous->previous->data

Answer no. 2
5

52 / 55

.

Summary

.. next.

null

.

5

. next.

previous

.

4

. next.

previous

.

9

. next.

previous

.

1

. next.

previous

.

3

. null.

previous

.

2

.

node

Expression no. 3
node->next->next->previous->previous->previous->previous->data

52 / 55

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Summary

.. next.

null

.

5

. next.

previous

.

4

. next.

previous

.

9

. next.

previous

.

1

. next.

previous

.

3

. null.

previous

.

2

.

node

Expression no. 3
node->next->next->previous->previous->previous->previous->data

Answer no. 3
4

52 / 55

.

Summary

The rule for reading such expressions is quite simple — follow the pointers. It
is worth to take a closer look at the last expression, where the previous and
next pointers are used together. Those pointers “cancel out” each other, so
the expression can be abbreviated to the node->previous->previous->data
form.
The conclusion from studding such complex pointer expressions is as follows:
Every programmer should know how to read such expressions and what they
mean, but she or he should avoid using them in programs ©.

53 / 55

.

Questions

?

54 / 55

.

The End

Thank You For Your Attention!

55 / 55

.

Notes

.

Notes

.

Notes

.

Notes

	Introduction
	Implementation
	Base Type and List Pointer
	Creating the List
	Adding an Element to the List
	Removing an Element From the List
	Printing the Content of the List
	Removing the List

	Summary

