
.

.

Fundamentals of Programming 2
Singly Linked Linear List

Arkadiusz Chrobot

Department of Computer Science

March 23, 2020

1 / 57

.

Outline

Singly Linked Linear List

Implementation
Base Type and List Pointer
Creating a List
Operation of Adding an Element to the List

Adding a New Element at the Front of the List
Adding a New Element Inside and at the Back of the List

Operation of Removing an Element from the List
Removing from the Beginning of the List
Removing From the Middle and at the End of the List

Operation of Displaying the Content of the List
Operation of Removing the List

Applications

Summary

2 / 57

.

Singly Linked Linear List

A singly linked linear list is an abstract data structure that can store sorted
or unsorted data. Unlike an array, the list provides only a sequential access
to its elements, but a new element can be added in any spot of the list. The
operation of removing an element from the list has the same property. There
are several kinds of lists. Stacks and queues are special cases of such data
structures. The singly linked linear list distinguishes itself from other lists in
that it posses a beginning and ending (the first and the last element) and in
that it allows traversing its elements only in one direction, at least by default.

3 / 57

.

Singly Linked Linear List
Singly Linked Linear List

The singly linked linear list can be implemented in the form of a dynamically
allocated data structure. This implementation of the list is the main subject
of the lecture. It is also possible to implement such a list with the use of
an array. However, this possibility is only shortly discussed at the end of the
lecture. Just like in the case of other abstract data structures, to implement
the list in the form of a dynamically allocated data structure, the definition
of the base data type and operations for the data structure are required. In
an example program only five basic operation on the singly linked linear list
are implemented: creating a list, adding a new element, removing an element,
printing the content of the list and removing the whole list. Also an operation
of searching for an element in the list that stores certain value is implemented
in some form.

4 / 57

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Implementation

A program that stores natural numbers in the list is used as an example for
explaining the details of the singly linked linear list implementation, although
the list can also store integer numbers. The list is also sorted, i.e. the values
stored in the list are sorted in an ascending order.

5 / 57

.

Base Type and List Pointer

1 #include<stdio.h>
2 #include<stdlib.h>
3

4 struct list_node {
5 int data;
6 struct list_node *next;
7 } *list_pointer;

6 / 57

.

Base Type and List Pointer

In the program are included the same header files as in the programs from
the previous lecture. Also the base type of the list is the same as for queues
and stacks with the exception of the name. Just like in the case of the other
data structures the base type can be adjusted to the current needs of the
programmer by adding fields for storing data. Also a new pointer fields can be
added to the data base, but always at least one pointer field has to exist that
allows connecting elements of the list. The pointer filed in the last element
of the list has always the null value. In the presented program the base type
has one field of the int type that is used for storing a number and another
field which is a pointer to the next element. The definition of the type is
merged with the definition of the list pointer (line no. 7). The pointer is a
global variable and it should hold the address of the first element of the list
or be an empty pointer is the list is also empty.

7 / 57

.

Creating a List

The operation of creating a list, or in other words adding its first element, can
be implemented in many ways. In the presented program it is delegated to a
separate function, which source code is presented in the next slide.

8 / 57

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Creating a List
The create_list() Function

1 struct list_node *create_list(int data)
2 {
3 struct list_node *first =
4 (struct list_node *)malloc(sizeof(struct list_node));
5 if(first) {
6 first->data = data;
7 first->next = NULL;
8 }
9 return first;

10 }

9 / 57

.

Creating a List
The create_list() Function

The function creates the first element of the list. It takes as an argument the
number that should be stored in the element and returns the address of the
element, if the operation of creating it is successful. Otherwise the function
returns null. The memory for the new element is allocated in the lines no. 3
and no. 4. If the allocation is successful, the function initializes fields of the
element and returns its address. If the operations fails the function returns
the null value stored in the first pointer. Please observe, that the next
filed of the first element is initialized with null value, because this is the first
and at the same time the last element of the list. The value returned by the
create_list() function should be assigned to the list pointer.

10 / 57

.

Operation of Adding an Element to the List

It is assumed that the operation of adding a new element to the list is always
performed for an existing (i.e. nonempty) list. Additionally, it is required that
the list pointer should point to the first element of the list before and after
the new element is added and that the numbers in the list should be sorted in
an ascending order. If creating the new element fails the list should stay the
same as it was before.

11 / 57

.

Operation of Adding an Element to the List
Implementation

If the list is to store numbers in an ascending order then the following three
cases of adding a new element to the list should be carefully considered:

1. the element is added at the beginning of the list; it becomes the first
element of the list,

2. the element is added inside the list,
3. the element is added at the end of the list; it becomes the last element

of the list.
Adding of an element to the list is performed by a single function, however with
the help of supporting functions that take care of each of the described cased.
Attention! To make it easier to understand the implementation of the
operation of adding a new element to the list, all those functions are
presented and described in reverse order to the order they are defined
in the program. The source code of the program is available on the course
website.

12 / 57

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Operation of Adding an Element to the List
The add_node() Function

1 struct list_node *add_node(struct list_node *list_pointer, int data)
2 {
3 struct list_node *new_node = (struct list_node *)
4 malloc(sizeof(struct list_node));
5 if(list_pointer && new_node) {
6 new_node->data = data;
7 if(list_pointer->data>=data) {
8 return add_at_front(list_pointer, new_node);
9 } else {

10 struct list_node *node= find_spot(list_pointer,data);
11 add_in_middle_or_at_back(node,new_node);
12 }
13 }
14 return list_pointer;
15 }

13 / 57

.

Operation of Adding an Element to the List
The add_node() Function

The add_node() function is the aforementioned function that adds a new
element to the list. It takes two arguments. The first one is the list pointer
and the second one is the number that should be stored in the new element.
The function returns the address of the first element of the list. It is useful
when the new element is added at the beginning of the list. In other cases
the function returns the same address as it gets through the list_pointer
parameter. The result of the function should be assigned to the list pointer.
The add_node() function allocates memory for the new element and then it
verifies if the operation has been successful and if the list exists (line no. 5).
Please note, that a memory leak would be possible if the element was created
and the list was empty. In that case the function would return the null value,
but it wouldn’t add the element to the list, so its address would be lost.

14 / 57

.

Operation of Adding an Element to the List
The add_node() Function

In the presented program such a situation won’t happen, because the function
is always called after the created_list() function. However, if the function
is to be used in other program, a care should be taken to pass the pointer to
a nonempty list to it. If the list and the new element exist then the function
initializes the data field of the new element (line no. 6). The initialization of
the next field is not necessary, because the appropriate value is assigned to it
by the other functions. After the new element is initialized the add_node()
function has to recognize which of the three cases it should handle. The list to
which the element is added is sorted in an ascending order, so if the number
stored in the new element is less than or equal to the number stored in the
current first element of the list, then the element should be added at the front
of the list. This condition is tested in the 7th line. If it is satisfied then the
add_at_front() function is called and the add_node() function returns the
address returned by the former function and exits.

15 / 57

.

Operation of Adding an Element to the List
The add_node() Function

If the condition in the 7th line is not satisfied then there has to be one of
the two remaining cases: either the new element should be added inside the
list or at its back. It occurs, that both those cases can be handled in the
same way. First, the element has to be located behind which the new element
ought to be added in the list. This task is handled by the find_spot()
function, which returns the address of such an element. The address is then
stored in the node pointer. The existence of the list has been already checked
before the find_spot() function is called, so the function always finds the
appropriate element of the list, and the node pointer is never an empty pointer.
After the element in the list is located the add_node() function calls the
add_in_the_middle_or_at_back() function which eventually adds the new
element to the list.

16 / 57

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Adding a New Element at the Front of the List
The add_at_front() Function

1 struct list_node *add_at_front(struct list_node *list_pointer,
2 struct list_node *new_node)
3 {
4 new_node->next = list_pointer;
5 return new_node;
6 }

17 / 57

.

Adding a New Element at the Front of the List
The add_at_front() Function

The add_at_front() function is similar to the push() function defined for
the stack. The former takes two arguments: the address of the first element
of the list (the list pointer in other words) and the pointer to the new element.
Because the existence of the list and the new element is conformed by the
add_node() function, the add_at_front() function doesn’t have to verify it
again. However, the latter function shouldn’t be used outside the add_node()
function without checking the value of the pointers that are passed to it. In
the 4th line of the function the address of the current first element of the list
is assigned to the next field of the new element, and then, in the 5th line the
function returns the address of the new element (it is now the first element of
the list) and exits.

18 / 57

.

Adding a New Element Inside and at the Back of the List
The find_spot() Function

1 struct list_node *find_spot(struct list_node *list_pointer,
2 int data)
3 {
4 struct list_node *previous = NULL;
5 while(list_pointer && list_pointer->data<data) {
6 previous = list_pointer;
7 list_pointer = list_pointer->next;
8 }
9 return previous;

10 }

19 / 57

.

Adding a New Element Inside and at the Back of the List
The find_spot() Function

The find_spot() function is responsible for locating an element of the list
after which a new element has to be added and for returning its address. Just
like in the case of the add_at_front() function, checking the pointer list
value is not needed since it has been confirmed by the add_node() function.
The number stored in the new element is also passed to the find_spot()
function. The elements of the list are traversed in the while loop with the
use of the list pointer that is passed to the function by a value. Also the
previous pointer declared in the 4th line is used in the loop. It points the
element of the list preceding the element pointed by the list pointer. If the
value of the list pointer becomes null, the previous pointer will point to
the last element of the list.

20 / 57

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Adding a New Element Inside and at the Back of the List
The find_spot() Function

According to the condition from the line no. 5 the loop stops when the list
pointer points to an element of the list that stores a number which is equal or
greater than the number stored in the new element or when the value of the
list pointer is null. In the latter case the new element should be added at the
end of the list, because it stores the biggest number in the list. Summarizing:
after the while loop stops, the list_pointer variable points to an element
of the list before which the new element should be added or it has the value
of null. The previous pointer points to the element of the list after which
the new element should be added and its value is returned by the function.

21 / 57

.

Adding a New Element Inside and at the Back of the List
The add_in_middle_or_at_back() Function

1 void add_in_middle_or_at_back(struct list_node *node,
2 struct list_node *new_node)
3 {
4 new_node->next = node->next;
5 node->next = new_node;
6 }

22 / 57

.

Adding a New Element Inside and at the Back of the List
The add_in_middle_or_at_back() Function

The add_in_middle_or_at_back() function job is to add a new element at
the end or inside the list. After it exits the list should be consistent, i.e. the
list should have a new element and all the elements should be linked together.
By the first parameter is passed the address of the element after which the
new one should be added. The address of the new element is passed by the
second parameter. Because the function is called by the add_node() function
there is no need for verifying those pointers. In the 4th line of the function the
address of the element of the list which succeeds the one pointed by the node
parameter is assigned to the next field of the new element. In the 5th line
the address of the new element is stored in the next field of the list’s element
pointed by the node parameter. After the assignments are preformed the new
element becomes a part of the list. The lines no. 4 and no. 5 cannot switch
places. The next slide contains an animation that illustrates the described
activities.

23 / 57

.

Adding a New Element Inside and at the Back of the List
The add_in_middle_or_at_back() Function

.. next. next.

node

.

new_node

.

null

Before the line no. 4 of the add_in_middle_or_at_back() function is performed.

24 / 57

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Adding a New Element Inside and at the Back of the List
The add_in_middle_or_at_back() Function

.. next. next.

node

.

new_node

.

next

After the line no. 4 of the add_in_middle_or_at_back() function is performed.

24 / 57

.

Adding a New Element Inside and at the Back of the List
The add_in_middle_or_at_back() Function

.. next. next.

node

.

new_node

.

next

After the line no. 5 of the add_in_middle_or_at_back() function is performed.

24 / 57

.

Adding a New Element Inside and at the Back of the List
The add_in_middle_or_at_back() Function

Let’s consider the behaviour of the add_in_middle_or_at_back() when the
element pointed by the node pointer is the last element of the list. In that
case, in 4th line of the function, the null value is assigned to the next filed
of the new element, because that value is stored in the next field of the
current last element of the list, which is pointed by the node variable. In the
5th line the address of the element which is added to the list is stored in the
next filed of the element of the list pointed by the node pointer. Thus, the
new element becomes the last element of the list and it satisfies the most
important condition for such an element — its next field has the null value.

25 / 57

.

Adding an Element to the List — Summary

The add_node() function could be written without splitting its source coded
into smaller functions, but its definition would be probably longer and less
readable. If increasing the efficiency of the function was required the helper
functions would be defined with the use of static inline keywords. In
that case the compiler would likely handle them in similar fashion as the
preprocessor handles macros. The operation of adding an element to the list
can be implemented in a different way than presented. For example the list
pointer could be passed to the add_node() function with the use of pointer
to a pointer.

26 / 57

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Operation of Removing an Element from the List

The operation of removing a single element from a singly linked linear list,
similarly to the operation of adding an element to the list, has to be performed
on a list that has at least one element. An element will be removed if it
contains a specified number. If there is more than one element on the list
that stores the number then the first which will be found will be removed.
After the operation is performed the list should have one element less, but it
still should be consistent or be empty.

27 / 57

.

Operation of Removing an Element from the List
Implementation

When implementing the operation of removing a single element from the list,
the following four cases should be considered:

1. the element to be removed is the first element of the list,
2. the element to be removed is inside the list,
3. the element to be removed is the last element of the list,
4. there is no element in the list that should be removed; the list should

stay the same as it was.
Like in the case of adding, removing of an element is performed by a single
function which uses several helper functions. The functions are presented
and described in reversed order to the order they are defined in the
program.

28 / 57

.

Operation of Removing an Element from the List
The delete_node() Function

1 struct list_node *delete_node(struct list_node *list_pointer,
2 int data)
3 {
4 if(list_pointer) {
5 if(list_pointer->data==data)
6 return delete_at_front(list_pointer);
7 else {
8 struct list_node *previous =
9 find_previous_node(list_pointer,data);

10 delete_middle_or_last_node(previous);
11 }
12 }
13 return list_pointer;
14 }

29 / 57

.

Operation of Removing an Element from the List
The delete_node() Function

The delete_node() function is responsible for removing a single element
from a list. It takes the list pointer and the number that should be stored in
the removed element as arguments. The function returns the address of the
first element of the list, which should be assigned to the list pointer. If the
function removes the first element of the list it will return the address of an
element that becomes the new first element in the list, otherwise it will return
the value passed to it by its first parameter. In the 4th line the function checks
if the list exists. If so, it tries to locate the element that should be removed
and if it is found, the function removes it. In the 5th line the function tests
if the first element of the list should be removed. To this end it compares
the number passed to the function by its second parameter with the number
stored in the data field of the element.

30 / 57

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Operation of Removing an Element from the List
The delete_node() Function

If the condition is satisfied, the delete_node() function invokes the delete_at_front()
function, which performs the operation of removing the first element of the
list and returns the address of the new first element of the list which in turn
is returned by the delete_node() function which also exits. Otherwise, the
latter function has to find the element, which should be removed from the
list, and so it calls the find_previous_node() function which returns the
address of the element preceding the element that should be removed. It
can however happen, that there is no element to be removed in the list. In
that case the find_previous_node() function returns the address of the
last element of the list. All other cases of removing an element from the
list are handled by the delete_middle_or_last_node() function, which is
described in the next slides.

31 / 57

.

Removing from the Beginning of the List
The delete_at_front() Function

1 struct list_node *delete_at_front(struct list_node *list_pointer)
2 {
3 struct list_node *next = list_pointer->next;
4 free(list_pointer);
5 return next;
6 }

32 / 57

.

Removing From the Beginning of the List
The delete_at_front() Function

The first element of the list is removed by the delete_at_front() function.
The function takes as arguments the address of the first element of the list
and it returns the address of the element that was second in the list, before
the function was invoked. The latter element becomes the first one in the
list after the function exits. The result of the function is returned to the
delete_node() function and eventually assigned to the list pointer. The
behaviour of the delete_at_front() function is similar to the behaviour
of the pop() function defined for a stack. Because the former function in
invoked by the delete_node() function, no verification of the list pointer is
required. In the 3rd line the function stores the address of the second element
in the list in a local pointer named next. Then it frees memory allocated for
the first element of the list (line no. 4) and returns the address of the new
first element of the list (line no. 5).

33 / 57

.

Removing From the Middle and at the End of the List
The find_previous_node() Function

1 struct list_node *find_previous_node
2 (struct list_node *list_pointer, int data)
3 {
4 struct list_node *previous = NULL;
5 while(list_pointer && list_pointer->data!=data) {
6 previous=list_pointer;
7 list_pointer=list_pointer->next;
8 }
9 return previous;

10 }

34 / 57

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Removing From the Middle and at the End of the List
The find_previous_node() Function

The find_previous_node() function is responsible for locating an element
in the list that precedes the element that has to be removed. If there is
no element in the list to be removed, the function returns the address of
the last element of the list. Please note the similarity of the definition of
the function to the definition of the find_spot() function. The element
is located inside the while loop. Two pointers are used for traversing the
list: the list_pointer and the previous, which plays the same role as its
counterpart in the find_spot() function. The loop stops (refer to the line no.
5) when the list pointer value is null or it points an element that, because of
the value of its data field, has to be removed. However, the function returns
the address of the element that precedes the one to be removed. Please
observe that the expressions in the condition in the 5th line cannot change
their places. Otherwise the function would reference the data field of an
element before checking if the element exists. It could cause the program to
fail.

35 / 57

.

Removing From the Middle and at the End of the List
The delete_middle_or_last_node() Function

1 void delete_middle_or_last_node(struct list_node *previous)
2 {
3 struct list_node *node = previous->next;
4 if(node) {
5 previous->next = node->next;
6 free(node);
7 }
8 }

36 / 57

.

Removing From the Middle and at the End of the List
The delete_middle_or_last_node() Function

The delete_middle_or_last_node() function, contrary to what its name
suggests, also handles the last possible case of removing an element from a list
— when there is no element to be removed. In that case the function takes
no action and the list stays the same as it was. The function takes the address
of the element preceding the element to be removed from the list as an argu-
ment. Similarly as in the case of previously described helper functions, there is
no need for verifying the pointer, because the find_previous_node() func-
tion never returns null. In the 3rd line the function stores the address of
the element pointed by the previous parameter in the locally defined node
pointer. If the pointer in not empty, which is verified in the 4th line, it means
that an element exists that should be removed from the list. It can be the
last element of the list or an element inside the list. It occurs that both cases
can be handled by the same statements.

37 / 57

.

Removing From the Middle and at the End of the List
The delete_middle_or_last_node() Function

In the 5th line the address from the next field of the element pointed by
the node pointer is assigned to the next field of the element pointed by the
previous pointer. If the former field is empty then the element to be removed
is the last element of the list and after it is removed the element pointed by the
previous pointer becomes the last one in the list. Thanks to the assignment
in the 5th line the next field gets the null value, which is required for the
last element of the list. If however, the element pointed by the node pointer
is not the last one in the list, then performing the statement from the 5th line
will unlink it from the rest of the list. In the 6th line, the memory allocated for
the element pointed by the node pointer is freed and the function exits. The
next slide contains an animation that illustrates the operation of removing an
element from the inside of the list.

38 / 57

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Removing From the Middle and at the End of the List
The delete_middle_or_last_node() Function

..

previous

.

node

.

next

.

next

.

next

Before performing the 5th line of the delete_middle_or_last_node() function.

39 / 57

.

Removing From the Middle and at the End of the List
The delete_middle_or_last_node() Function

..

previous

.

node

.

next

.

next

.

next

After performing the 5th line of the delete_middle_or_last_node() function.

39 / 57

.

Removing From the Middle and at the End of the List
The delete_middle_or_last_node() Function

..

previous

.

node

.

next

.

next

.

next

After performing the 6th line of the delete_middle_or_last_node() function.

39 / 57

.

Removing an Element From the List — Summary

Like the add_node() function, the delete_node() function can be imple-
mented without defining the helper functions, but it is also likely that its
definition would be less legible. The effectiveness of the function can be im-
proved by defining all helper functions with the use of the static inline
keywords. Also it is possible to implement the function in a different way than
it is presented in the lecture.

40 / 57

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Operation of Displaying the Content of the List

Printing of all numbers stored in the elements of the list is implemented in the
same way as in the case of the fifo queue, hence the print_list() function
is not described in details.

41 / 57

.

Operation of Displaying the Content of the List
The print_list() Function

1 void print_list(struct list_node *list_pointer)
2 {
3 while(list_pointer) {
4 printf("%d ",list_pointer->data);
5 list_pointer=list_pointer->next;
6 }
7 puts("");
8 }

42 / 57

.

Operation of Removing the List

Removing the list consists of freeing the memory allocated for each of its
elements, starting from the first one. After the operation is completed the
list pointer should have the null value. The operation is implemented in the
remove_list() function.

43 / 57

.

Operation of Removing the List
The remove_list() Function

1 void remove_list(struct list_node **list_pointer)
2 {
3 while(*list_pointer) {
4 struct list_node *next = (*list_pointer)->next;
5 free(*list_pointer);
6 *list_pointer = next;
7 }
8 }

44 / 57

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Operation of Removing the List
The remove_list() Function

The remove_list() function takes the address of the list pointer as its argu-
ment. In the while loop all the elements of the list are successively removed
until the list is empty and the list pointer has the null value. Please note, that
the 4th, 5th and 6th lines of the function are very similar to the statements
in the pop() function that was introduced in the lecture on the stack. The
elements of the list are destroyed starting from the first one and finishing with
the last one. Please notice the assignment in the 4th line. The parentheses on
the right side of the operator are necessary to force the correct precedence of
the operators — the dereference of the list pointer has to take place before the
next field of the element pointed by this pointer can be accessed. Without
the parentheses the operators could be performed in the wrong order, which
is signaled as an error by the compiler.

45 / 57

.

The main() Function

In the main() function all the functions that implement the basic operations
on the list are invoked. To verify the correctness of their behaviour such
numbers are passed to the functions that all of the following cases are checked:

▶ adding an element at the beginning of the list,
▶ adding an element inside the list,
▶ adding an element at the end of the list,
▶ removing an element from the beginning of the list,
▶ removing an element from the middle of the list,
▶ removing an element from the end of the list,
▶ removing a nonexistent element from the list.

46 / 57

.

The main() Function
First Part

1 int main(void)
2 {
3 list_pointer = create_list(1);
4 int i;
5 for(i=2; i<5; i++)
6 list_pointer=add_node(list_pointer,i);
7 for(i=6; i<10; i++)
8 list_pointer=add_node(list_pointer,i);
9 print_list(list_pointer);

47 / 57

.

The main() Function
First Part

In the first part of the main() function the list is created. It initially consists
of a single element which stores the 1 number. Next, the elements of the
values from 2 to 4 and from 6 to 9 are added to the list. After the elements
are added, the list is printed on the screen.

48 / 57

.

Notes

.

Notes

.

Notes

.

Notes

.

.

The main() Function
Second Part

1 list_pointer=add_node(list_pointer,0);
2 print_list(list_pointer);
3 list_pointer=add_node(list_pointer,5);
4 print_list(list_pointer);
5 list_pointer=add_node(list_pointer,7);
6 print_list(list_pointer);
7 list_pointer=add_node(list_pointer,10);
8 print_list(list_pointer);

49 / 57

.

The main() Function
Second Part

In the second part of the main() function the elements of the values 0, 5, 7
and 10 are added to the list. The first one is added at the beginning of the
list, the second one inside the list, the third one also inside the list, before
an element of the same value and the last one at the end of the list. After
each addition the content of the list is displayed on the screen, so the user
can make sure that the operations are performed correctly.

50 / 57

.

The main() Function
Third Part

1 list_pointer=delete_node(list_pointer,0);
2 print_list(list_pointer);
3 list_pointer=delete_node(list_pointer,1);
4 print_list(list_pointer);
5 list_pointer=delete_node(list_pointer,1);
6 print_list(list_pointer);
7 list_pointer=delete_node(list_pointer,5);
8 print_list(list_pointer);
9 list_pointer=delete_node(list_pointer,10);

10 print_list(list_pointer);
11 remove_list(&list_pointer);
12 return 0;
13 }

51 / 57

.

The main() Function
Third Part

In the third part of the main() function the elements that store values 0 (at
the beginning of the list), 1 (at the new beginning of the list), 1 (doesn’t exist
any more in the list), 5 (inside the list) and 10 (at the end of the list) are
successively removed from the list. After each such an operation is performed
the content of the list is displayed on the screen. Finally, the list is removed
with the use of the remove_list() function and the main() function exits.

52 / 57

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Applications

Lists implemented as singly liked or doubly linked lists, which will be discussed
in the future lectures, have many applications. Typically they are used in the
operating systems. The Linux kernel applies them frequently and the Linux
programmers have provided a default implementation of a list that is used in
many parts of the kernel. The majority of the contemporary programming
languages provides predefined implementations of such data structures. In
some of them lists are implemented as a part of the language standard library
(for example: Java) or as an integral part of the language (for example:
Python).

53 / 57

.

Summary

Singly linked linear lists can be implemented with the use of sentinels, just
like the queues. In that case, when the program starts, one or two such
elements are created. Thanks to them the functions that implement the
operations of adding and removing elements of the list don’t have to check
some of the conditions. The lists can also be implemented with the use of
multidimensional arrays. The first row of the array stores the values of the
elements of the list and the second one stores the values of the indices which
correspond to the addresses of the next elements of the list. Unfortunately,
the capacity of the list is limited and the operation of adding a new element
is hard to implement, because it requires coping some of the elements of the
array. Such an activity may also be required by the operation of removing an
element from the list. Both operations, however, can be implemented in a
different way, but it requires specifying, that a special value of the index in
the second row of the array indicates a removed element of the list.

54 / 57

.

Summary

The removed elements can be latter used for inserting new elements to the list.
There has to be also specified a value of the index that would be the counter-
part of the null value. The singly linked linear list can also be implemented
with the use of a linear array. All elements with the even indices would be the
counterparts of the next pointer fields. Both implementations get intricate
if the list should store the values of more complex data types. However, this
form of implementing the list is only necessary in case of older programming
languages that do not support dynamical allocation and deallocation of the
memory or in case where the program is developed for a computer system with
limited memory.

55 / 57

.

Questions

?

56 / 57

.

Notes

.

Notes

.

Notes

.

Notes

.

.

The End

Thank You For Your Attention!

57 / 57

.

.

.

.

Notes

.

Notes

.

Notes

.

Notes

	Singly Linked Linear List
	Implementation
	Base Type and List Pointer
	Creating a List
	Operation of Adding an Element to the List
	Operation of Removing an Element from the List
	Operation of Displaying the Content of the List
	Operation of Removing the List

	Applications
	Summary

