
.

.

Fundamentals of Programming 2
Queues and Their Applications

Arkadiusz Chrobot

Department of Computer Science

March 16, 2020

1 / 60

.

Outline

Queues and Their Classification

The fifo Queue
Implementing As Dynamically Allocated Data Structure
Implementing With the Use of Arrays

Testing some of the operations on Dynamically Allocated Data Structures

Summary

2 / 60

.

Queues and Their Classification
The fifo Queue

Queues, just like the stack, are abstract data structures consisting of linked
together elements that store data. However, the elements are managed dif-
ferently than in the stack. The term queue usually is interpreted as a fifo
queue and so it is going to be used for the most part of the lecture. The
fifo stands for First In First Out. The rule implies that elements are added
to the queue at one of its ends and removed on the other. The end where the
elements are removed is called the head or front of the queue, and the end
where the elements are added is called a tail or rear of the queue.

3 / 60

.

Queues and Their Classification
Double-ended Queue

Aside from the fifo queues there also exist double-ended queues or deques
for which the operations of adding and removing of an element are defined for
both ends. Among them the following types are distinguished:

▶ an input-restricted deque — the elements can be removed at both ends,
but added only at one,

▶ an output-restricted deque — the elements can be added at both ends,
but removed only at one.

4 / 60

.

Notes

.

Notes

.

Notes

.

Notes

.

.

The fifo Queue

The rest of the lecture is about fifo queues. Those queues can be imple-
mented as dynamically allocated data structures or with the use of an array.
Both possibilities are presented in the lecture. In the last part of the lecture
a simple way of testing functions that perform some of the operations on dy-
namically allocated data structures is introduced. Implementations of queues
are described starting with the dynamically allocated data structures. All of
them store only int numbers.

5 / 60

.

The fifo Queue

Like in the case of the stack or any other abstract data structure, the def-
initions of the base type and functions that implement the basic operations
are necessary for implementing a queue. At least two operations need to be
implemented: adding an element to the queue and removing an element from
the queue. They are called enqueue and dequeue respectively. To simplify
their implementation two special pointers are used. One points to the current
first element of the queue and it is called a head and the second one points
to the current last element of the queue and it is called a tail. The first one
is used when an element is added to a queue and the second one when an
element is removed from the queue. Some programmers call them a front
and a rear respectively.

6 / 60

.

Implementing As Dynamically Allocated Data Structure

The program that presents the implementation of the fifo queue uses func-
tions that manage the heap and display messages on the screen. That’s why
it includes the stdio.h and stdlib.h header files.

7 / 60

.

Implementing As Dynamically Allocated Data Structure
Header Files

1 #include<stdio.h>
2 #include<stdlib.h>

8 / 60

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Implementing As Dynamically Allocated Data Structure
The Base Data Type of The fifo Queue

The base data type for the fifo queue is based on a structure and its definition
is the same as the definition of the stack base type, with the exception of name.
It can be modified to suite the needs of a programmer, but it has to contain at
least one pointer that allows for liking an element of the queue with another
such an element. The definition of the queue base type is presented in the
next slide.

9 / 60

.

Implementing As Dynamically Allocated Data Structure
The Base Type of fifo Queue

1 struct fifo_node
2 {
3 int data;
4 struct fifo_node *next;
5 };

10 / 60

.

Implementing As Dynamically Allocated Data Structure
The head and tail Pointers

As it has been mentioned before, to make the implementation of a queue
effective, two pointers are needed. One of them should point to the current
first element of the queue and the second one to the current last element of
the queue. Those pointers can be declared as either global or local variables.
However, in the presented program they are declared as fields of a separated
structure. The next slide contains a definition of a type of the structure and a
declaration of a global variable of this type. The pointers are global therefore
they default value is zero (null) and thus the queue is initially empty.

11 / 60

.

Implementing As Dynamically Allocated Data Structure
The Structure With Pointers

1 struct fifo_pointers
2 {
3 struct fifo_node *head, *tail;
4 } fifo;

12 / 60

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Implementing As Dynamically Allocated Data Structure
The Enqueue Operation

Now, that the structure with pointers and the base type of fifo queue is
defined, the functions that perform operations on the queue can be also de-
fined, starting with the one that enqueues a new element. It has to satisfy the
following assertions:

▶ If the queue exists (has at least one element), the function adds a new
element at the back of it, and if the queue doesn’t exist (is empty), the
function creates and adds its first element.

▶ If the function fails to create a new element, then the queue stays the
same as it was.

▶ If the operation of adding a new element is successful then the queue
grows by one element or if it was not existing, it is created.

The next slide contains a definition of a function that implements the enqueue
operation.

13 / 60

.

Implementing As Dynamically Allocated Data Structure
The enqueue() Function

1 void enqueue(struct fifo_pointers *fifo, int data)
2 {
3 struct fifo_node *new_node =
4 (struct fifo_node *)malloc(sizeof(struct fifo_node));
5 if(new_node) {
6 new_node->data = data;
7 new_node->next = NULL;
8 if(fifo->head==NULL)
9 fifo->head = fifo->tail = new_node;

10 else {
11 fifo->tail->next=new_node;
12 fifo->tail=new_node;
13 }
14 } else
15 fprintf(stderr,"No new element has been created!\n");
16 }

14 / 60

.

Implementing As Dynamically Allocated Data Structure
The enqueue() Function

The enqueue operation is implemented in the program in a form of a function
of the same name. The function doesn’t return any value. If it fails to
create and add a new element to the queue it only prints a message on the
screen. The state of the queue stays the same. If the queue stays empty the
behaviour of other functions that perform operations on it is unaffected. They
all check if the queue is not empty before they perform any operation on it.
The structure with the head and tail pointers is passed to the enqueue()
function by a pointer parameter. The values of those pointers can be modified
by the function and the modifications have to be preserved when the function
terminates, thus the use of the pointer parameter is necessary. The second
parameter of the function is used for passing the value which is to be stored
in the new element of the queue.

15 / 60

.

Implementing As Dynamically Allocated Data Structure
The enqueue() Function

In the lines of the function no. 3 and no. 4, a memory area is allocated for
the queue new element. After the function makes sure that the allocation was
successful (line no. 5) it initializes the fields of the element. The null value
is assigned to the next field of the element, to indicate that the element will
be the last one in the queue. There are two cases that have to be taken into
consideration when implementing the part of the enqueue() function that
adds a new element to the tail of the queue:

1. the element is added at the end of an existing queue,
2. the element is added to an empty (nonexistent) queue.

They are distinguished in the line no. 8 of the function. If both queue pointers
have the value of null then the second case applies and both pointers are
assigned the address of a new element, which becomes the first and the last
element of the queue. It is illustrated by an animation in the next slide.

16 / 60

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Implementing As Dynamically Allocated Data Structure
The enqueue() Function — Creating a Queue

..

tail

.

head

. null.

new_node

The queue before the line no. 9 of the enqueue() function is performed

17 / 60

.

Implementing As Dynamically Allocated Data Structure
The enqueue() Function — Creating a Queue

..

tail

.

head

. null.

new_node

The queue after the line no. 9 of the enqueue() function is performed

17 / 60

.

Implementing As Dynamically Allocated Data Structure
The enqueue() Function

Adding an element to the existing queue is implemented differently. In the line
no. 11 the enqueue() function uses the tail pointer to reach the current
last element of the queue and to store in its next field the address of the new
element. That’s how the new element becomes the last one in the queue.
Before exiting, the function has to ensure the correct state of the queue, or
more precisely, that the tail pointer is still pointing to the last element of the
queue. Therefore, in the line no. 12 the function assigns the address of the
new element to the pointer. Please note, that the lines no. 11 and no. 12 are
related, and cannot switch their places in the function. On the other hand,
the line no. 12 could be replaced by the fifo->tail=fifo->tail->next;
statement, but then the function would be less legible. However, similar
expressions will be used in the future lectures, when necessary. The message
from the line no. 15 is displayed only if creating the new element fails. In that
case the queue stays as it was, before the function started.

18 / 60

.

Implementing As Dynamically Allocated Data Structure
The enqueue() Function

The next slides presents an animation that illustrates how a new element is
added to a queue consisting of a single element. The element would be added
in the same way, if the queue contained more than one element.

19 / 60

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Implementing As Dynamically Allocated Data Structure
The enqueue() Function — Adding a New Element

..

head

. null. null.

tail

.

new_node

Before the line no. 11 of the enqueue() function is performed

20 / 60

.

Implementing As Dynamically Allocated Data Structure
The enqueue() Function — Adding a New Element

..

head

. next. null.

tail

.

new_node

After the line no. 11 of the enqueue() function is performed

20 / 60

.

Implementing As Dynamically Allocated Data Structure
The enqueue() Function — Adding a New Element

..

head

. next. null.

tail

.

new_node

After the line no. 12 of the enqueue() function is performed

20 / 60

.

Implementing As Dynamically Allocated Data Structure
The Dequeue Operation

The dequeue operation removes an element from the front (the beginning) of
the fifo queue. The operation should satisfy the following assertions:

▶ If the queue doesn’t exist then the state of its pointers should not change
after the operation is performed — both pointers have to have the value
of null.

▶ If an element is removed from a queue that has only one element, then
after the operation is performed both queue pointers must have the value
of null.

▶ If an element is removed from a queue consisting of more than one el-
ement, then after the operation is successfully completed the queue is
reduced by one element and the pointers correctly point to the head and
tail of the queue.

An implementation of the operation in a form of a function is presented in the
next slide.

21 / 60

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Implementing As Dynamically Allocated Data Structure
The dequeue() Function

1 int dequeue(struct fifo_pointers *fifo)
2 {
3 if(fifo->head) {
4 struct fifo_node *tmp = fifo->head->next;
5 int data = fifo->head->data;
6 free(fifo->head);
7 fifo->head=tmp;
8 if(tmp==NULL)
9 fifo->tail = NULL;

10 return data;
11 }
12 return -1;
13 }

22 / 60

.

Implementing As Dynamically Allocated Data Structure
The dequeue() Function

Please observe, that the dequeue() function definition is very similar to the
definition of the pop() function for the stack. The dequeue() function, just
like the pop() function returns -1 if it is called for an empty queue. The
operation of removing an element from the head of the queue is similar to the
operation of removing an element from the top of a stack. There are only two
differences. The first one is that the head and tail pointers are fields of a
structure and the second one is that the tail pointer has to be assigned the
null value, after an element is removed from a queue, that contained only
one element. This is enforced by the assertions given in the previous slides.
The assignment is performed in the 8th and 9th lines.

23 / 60

.

Implementing As Dynamically Allocated Data Structure
The enqueue() and dequeue() Functions — Summary

The enqueue and dequeue operations are the basic ones that should be imple-
mented for the fifo queue. There are necessary for using the data structure
in a program. Their example implementations are presented in the previous
slides. However, they may be written differently. For example, the dequeue()
function could return no value or a value that describes the result of the opera-
tion of removing an element. That would require defining a separate function
for reading the value of the element at the head of the queue. The way
the functions are implemented depends on the preferences and needs of the
programmer and the problem that she or he tries to solve.

24 / 60

.

Implementing As Dynamically Allocated Data Structure
Displaying Values of Elements on the Screen

Implementing the operation of displaying all values store in the elements of
the fifo queue is not mandatory, but it is quite convenient. In the next slides
are presented two function that implements such an operation.

25 / 60

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Implementing As Dynamically Allocated Data Structure
The print_queue() Function

1 void print_queue(struct fifo_pointers fifo)
2 {
3 while(fifo.head) {
4 printf("%d ",fifo.head->data);
5 fifo.head = fifo.head->next;
6 }
7 puts("");
8 }

26 / 60

.

Implementing As Dynamically Allocated Data Structure
The print_queue() Function

The structure of the queue pointers is passed by value to the function, because
it is handy to use the head pointer for iterating over the elements of the
queue. That however means, that the value of the pointer is changed inside
the function and those modifications cannot “go” outside. Passing the queue
pointers structure by value prevents such an issue. If the head pointer had a
different value after the function exits than it had before the function started,
then that would mean that the address of the fist element of the queue has
been lost. The while loop inside the print_queue() function is performed
as long as the head pointer has a value different than null, which means
as long as the queue has elements containing not yet displayed values. The
printing of the elements is performed in the 4th line. In the 5th line the
head pointer is “moved” to the next element of the queue by storing in it the
address stored in the next field of the element that it currently points to.

27 / 60

.

Implementing As Dynamically Allocated Data Structure
The print_queue() Function — The for Loop Version

1 void print_queue_with_for(struct fifo_pointers fifo)
2 {
3 for(;fifo.head;fifo.head=fifo.head->next)
4 printf("%d ",fifo.head->data);
5 puts("");
6 }

28 / 60

.

Implementing As Dynamically Allocated Data Structure
The print_queue() Function — The for Loop Version

The same operation of printing the values of elements of the fifo queue can
be implemented, in the C language, with the use of the for loop, just as it
is demonstrated in the previous slide. The head pointer is the loop counter
in the function. Please note, that the initialization part of the loop has been
omitted. The condition part specifies that the loop is performed as long as the
head pointer is not equal null. In the increment part the address of the next
element in the queue is assigned to the head pointer. The function definition
is briefer than the previous one, but slightly less legible.

29 / 60

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Implementing As Dynamically Allocated Data Structure
An Example of Using — The main() Function

1 int main(void)
2 {
3 int i;
4 for(i=0;i<20;i++)
5 enqueue(&fifo,i);
6 print_queue_with_for(fifo);
7 while(fifo.head)
8 printf("%d ",dequeue(&fifo));
9 puts("");

10 return 0;
11 }

30 / 60

.

Implementing As Dynamically Allocated Data Structure
An Example of Using — The main() Function

In the main() function of the program, all defined functions for handling the
fifo queue are called, except for the print_queue() function. It can be
invoked in place of the print_queue_with_for() function or just after the
latter is called. In the 4th and 5th lines the main() function adds element
containing natural numbers raging from 0 to 19 to the queue and then prints
the content (the numbers) of the queue on the screen (line no. 6). Next,
all the elements of the queue are removed and their values are displayed once
more (lines no. 7 and no. 8).

31 / 60

.

The fifo Queue
Implementing With the Use of an Array

The fifo queue can be implemented with the use of an array. In that case
its capacity is limited by the number of the element in the array, but other
than that it should behave in the same way as a dynamically allocated queue.
If a new element cannot be added then the queue is called a full queue. The
implementation of a queue based on an array is explained with the use of
a program that stores integer numbers in such a data structure. The head
and tail pointers are replaced int the queue by the fist and last indices.
To simplify the implementation of such a queue the underlining array can
be organized as a circular array, such that has no start or end. The queue
implemented with the use of a circular array is depicted in the next slide.

32 / 60

.

The fifo Queue
Implementing With the Use of Array

..

7

.

6

.

5

.

4

.

3

.

2

.

1

.

0

.

first

.

la
st

A partially filled fifo queue

33 / 60

.

Notes

.

Notes

.

Notes

.

Notes

.

.

The fifo Queue
Implementing With the Use of an Array

Using circular array for implementing a fifo queue has two consequences.
The values of both indices are only incremented by one regardless of the
performed operation (adding or removing an element). On the other hand
a way for detecting if the queue is empty or full has to be defined. One
of the possibilities is using a separate variable for counting the elements of
the queue. The other one is described by Alfred V. Aho, John E. Hopcroft
and Jeffrey D. Ullman in the book “Algorithms and Data Structures”. The
presented program is based on their solution. The full and empty queues are
depicted in the next slides.

34 / 60

.

The fifo Queue
Implementing With the Use of an Array

..

7

.

6

.

5

.

4

.

3

.

2

.

1

.

0

.

last

.

first

A full fifo queue

35 / 60

.

The fifo Queue
Implementing With the Use of an Array

A fifo queue is full when the values of the last and first indices differ by
2 modulo the number of the array elements. Please observe, that according
to this definition in the full queue one element of the array remains unused,
just as it is showed in the picture.

36 / 60

.

The fifo Queue
Implementing With the Use of an Array

..

7

.

6

.

5

.

4

.

3

.

2

.

1

.

0

.

last

.

fi
rs

t

An empty fifo queue

37 / 60

.

Notes

.

Notes

.

Notes

.

Notes

.

.

The fifo Queue
Implementing With the Use of an Array

A fifo queue is empty when the values of the last and first indices differ
by 1 modulo the number of elements of the array.

38 / 60

.

The fifo Queue
Implementing With the Use of an Array — The Queue Structure

1 #include<stdio.h>
2 #include<stdbool.h>
3

4 #define FIFO_SIZE 20
5

6 struct queue
7 {
8 int elements[FIFO_SIZE], first, last;
9 } fifo;

39 / 60

.

The fifo Queue
Implementing With the Use of an Array — The Queue Structure

The previous slide contains the beginning of the example program that im-
plements a queue with the use of an array. The stdlib.h file is replaced by
the stdbool.h header file, because one of the functions is returning a value
of the bool type and the program doesn’t need functions for managing the
heap. The fifo_size constant defines the number of the elements of the
array. The capacity of the queue is smaller by one element. The array and the
queue indices are defined in the program as fields of a structure of the fifo
type. It can be stated that the structure is the queue itself.

40 / 60

.

The fifo Queue
Implementing With the Use of an Array — The add_one() Function

1 int add_one(int index)
2 {
3 return (index+1)%FIFO_SIZE;
4 }

41 / 60

.

Notes

.

Notes

.

Notes

.

Notes

.

.

The fifo Queue
Implementing With the Use of an Array — The add_one() Function

The add_one() function is used for incrementing the values of the queue
indices by one. Using the reminder operator ensures that the values of each
of the indices stay within an acceptable range. The function takes as an
argument the current value of an index and returns the next one.

42 / 60

.

The fifo Queue
Implementing With the Use of an Array — The make_empty() Function

1 void make_empty(struct queue *fifo)
2 {
3 fifo->first = 0;
4 fifo->last = FIFO_SIZE-1;
5 }

43 / 60

.

The fifo Queue
Implementing With the Use of an Array — The make_empty() Function

The make_empty() initializes the queue by “reseting” its indices. After the
function is performed the first index is indicating the first element of the
array and the last index indicates the last one.

44 / 60

.

The fifo Queue
Implementing With the Use of an Array — The is_empty() Function

1 bool is_empty(struct queue fifo)
2 {
3 return add_one(fifo.last)==fifo.first;
4 }

45 / 60

.

Notes

.

Notes

.

Notes

.

Notes

.

.

The fifo Queue
Implementing With the Use of an Array — The is_empty() Function

The is_empty() function returns the true value when there is no elements
in the queue or the false value if there is at least one element in the queue.
The function verifies if the value of the last index incremented with the use
of the add_one() function is equal to the value of the first index1. If so,
then the queue is empty.

1Please refer to the corresponding figure in the previous slides.
46 / 60

.

The fifo Queue
Implementing With the Use of an Array — The first_one() Function

1 int first_one(struct queue fifo)
2 {
3 if(is_empty(fifo)==true)
4 return -1;
5 else
6 return fifo.elements[fifo.first];
7 }

47 / 60

.

The fifo Queue
Implementing With the Use of an Array — The first_one() Function

In this program, the dequeue operation only removes the first element from the
queue. The first_one() function returns the value of such an element. This
element is indicated by the fist index. If the queue is empty, the function
returns the -1 value.

48 / 60

.

The fifo Queue
Implementing With the Use of an Array — The enqueue() Function

1 void enqueue(struct queue *fifo, int data)
2 {
3

4 if(add_one(add_one(fifo->last))!=fifo->first)
5 {
6 fifo->last = add_one(fifo->last);
7 fifo->elements[fifo->last] = data;
8 } else
9 fprintf(stderr, "The queue is full!\n");

10 }

49 / 60

.

Notes

.

Notes

.

Notes

.

Notes

.

.

The fifo Queue
Implementing With the Use of an Array — The enqueue() Function

The enqueue() function adds a new element and stores in it the value passed
by the data parameter. Before it happens the function makes sure that the
queue is not full. It accomplishes the task by applying the add_one() function
to the last index twice and comparing the result with the value of the first
index. If the values are equal then the queue is full and adding a new element
is impossible2. In that case the function displays on the screen a message
informing the user that the queue is full. If the queue is not full the function
first increments the value of the last index with the use of the add_one()
function and then it assigns the value of the data parameter to the element
of the array indicated by the new value of the last index (lines no. 6 and no.
7).

2Please refer to the corresponding figure in the previous slides.
50 / 60

.

The fifo Queue
Implementing With the Use of an Array — The dequeue() Function

1 void dequeue(struct queue *fifo)
2 {
3 if(is_empty(*fifo))
4 fprintf(stderr, "The queue is empty!\n");
5 else
6 fifo->first = add_one(fifo->first);
7 }

51 / 60

.

The fifo Queue
Implementing With the Use of an Array — The dequeue() Function

The dequeue() function in this implementation of the queue returns nothing,
just removes the first element. However, first it checks if the queue is empty.
If so, the function displays a corresponding message on the screen and exits.
Otherwise it removes the element by incrementing the value of the first
index with the use of the add_one() function (line no. 6).

52 / 60

.

The fifo Queue
Implementing With the Use of an Array — The main() Function

1 int main(void)
2 {
3 int i;
4 make_empty(&fifo);
5 for(i=0;i<FIFO_SIZE-1;i++)
6 enqueue(&fifo,i);
7 while(!is_empty(fifo)) {
8 printf("%d ",first_one(fifo));
9 dequeue(&fifo);

10 }
11 return 0;
12 }

53 / 60

.

Notes

.

Notes

.

Notes

.

Notes

.

.

The fifo Queue
Implementing With the Use of an Array — The main() Function

In the main() function of the program the queue is first initialized with the use
of the make_empty() function and then in the for loop elements are added to
the queue by calling the enqueue() function. The queue can have at most 19
of them. After the for loop terminates the while loop is performed in which
the values of the queue elements are read with the use of the first_one()
function and then the elements are removed with the use of the dequeue()
function.
The array based implementations of the fifo queue were used in program-
ming languages that haven’t supported dynamic allocation of the memory.
Nowadays they are applied in computer systems with limited size of the ram,
such as microcontrollers. The keyboard buffer is also implemented in such a
way. It is a place in memory where the keyboard controller stores data about
keystrokes that are latter used by the cpu. It is an example of a limited
capacity queue managed by a hardware.

54 / 60

.

Testing some of the operations on Dynamically Allocated
Data Structures

Using dynamically allocated variables and data structures is quite a difficult
task. It is relatively easy to make mistakes implementing operations for the
stack, queue or any other similar data structure. Locating and removing such
defects is a challenging task. There is however an easy way for testing func-
tions, such as the print_queue() function, that implement operations on
dynamically allocated data structures which don’t involve allocating and deal-
locating memory. It only requires to create a queue or other data structure
from elements which are statically allocated global or local variables. A queue
created in such a manner can be applied for checking the behaviour of those
functions. To some extend the same method can also be applied for test-
ing functions that implement operations requiring allocating and deallocating
memory. In the next slide a function is presented that uses the described
method to test the behaviour of print_queue() function.

55 / 60

.

Testing some of the operations on Dynamically Allocated
Data Structures

1 void print_queue_test(struct fifo_pointers *fifo)
2 {
3 struct fifo_node front, middle, rear;
4

5 front.data = 1;
6 front.next = &middle;
7 middle.data = 2;
8 middle.next = &rear;
9 rear.data = 3;

10 rear.next = NULL;
11

12 fifo->head = &front;
13 fifo->tail = &rear;
14 print_queue(*fifo);
15 fifo->head = fifo->tail = NULL;
16 }

56 / 60

.

Testing some of the operations on Dynamically Allocated
Data Structures

In the print_queue_test() function are defined three structure, named
front, middle and rear, of the struct fifo_node type. Those variables
are used for creating a queue consisting of three elements (lines no. 3–9).
To the data field of each of the structures is assigned a number. The next
field of the first element gets the address of the second element. The next
field of the second element gets the address of the third element. Finally, the
next field of the third element gets the null value. The queue pointers are
initialized in the 12th and 13th lines. The addresses of the first and the last
element of the queue are assigned to them. The created queue can be used by
the programmer to test the print_queue() function without worrying about
damaging the integrity of the queue or causing memory leakages. In the 15th
line the function zeros out the pointers of the queue, which means that the
queue ceases to exist.

57 / 60

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Summary

Queues, which can be implemented either as dynamically allocated data struc-
tures or by using arrays, have many applications. Operating systems use them
for scheduling threads and processes, for implementing special variables called
semaphores, for managing input-output operations and for many other pur-
poses. Also other programs, like compilers or concurrent programs utilizes
those data structures. The queues are also implemented in hardware, like the
aforementioned keyboard buffer.
Often the programmers create a single element of the queue that exist through-
out the whole life cycle of the program, to simplify functions that implement
operations on a queue. It is a dummy element, that doesn’t store any useful
data and it is called a sentinel node. The queue that uses such an element
is called a queue with a sentinel. Such a solution can also be applied for the
stack.

58 / 60

.

Questions

?

59 / 60

.

The End

Thank You For Your Attention!

60 / 60

.

.

Notes

.

Notes

.

Notes

.

Notes

	Queues and Their Classification
	The fifo Queue
	Implementing As Dynamically Allocated Data Structure
	Implementing With the Use of Arrays

	Testing some of the operations on Dynamically Allocated Data Structures
	Summary

