
.

.

Fundamentals of Programming 2
Recursion, Divide-And-Conquer

Arkadiusz Chrobot

Department of Computer Science

March 9, 2020

1 / 55

.

Outline

Recursion

Divide-And-Conquer

Pros and Cons of Recursion

Common Mistakes

Summary

2 / 55

.

Recursion
Introduction

In the previous lecture the definition of a stack has been given and its im-
plementation in a form of dynamically allocated data structure has been dis-
cussed. The notion of a stack has been also used in the lecture on functions.
In this context, the stack, or more precisely a call stack is an area in the pro-
gram memory where data needed for performing a function are stored. The
data are organized in stack frames also called activation records. The stack
frame stores a return address, local variables, parameters, among other data.
Using a stack for handling function calls has interesting consequences. One
of them is the possibility of creating recursive subroutines, which in case of
the C language are recursive functions. A recursive function is a function that
calls itself. Such functions implement recursive algorithms. Those algorithms
divide the problem that they solve into finite number of subproblems of smaller
size until they reduce them to a cases that can be directly solved. Then the
algorithms combine the results to get the solution of the initial problem.

3 / 55

.

Recursion
Introduction

Let’s analyse how the recursion works and discover its associations with the call
stack, using as an example a recursive function that calculates the factorial.
The definition of the factorial of a natural number n is as follows:

n! =
{

1 if n = 0 or n = 1
(n − 1)! · n for n > 1

As it can be observed the definition is recursive — for n > 1 the factorial
can be calculated if the result of factorial for an argument less by 1 is already
known. The definition also has two base cases, i.e. for which the result is
given directly. Those cases are for n = 0 and n = 1. A definition of function
which implementation is based on the presented definition of factorial is in the
next slide.

4 / 55

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Recursion
Introduction — Factorial

1 unsigned long int factorial(unsigned char n)
2 {
3 if(n==0||n==1)
4 return 1;
5 else
6 return factorial(n-1)*n;
7 }

5 / 55

.

Recursion
Introduction — Factorial

The function correctly calculates the factorial for a value of the parameter
n < 65. Above that value the overflow of function result, which is of the
unsigned long int type, occurs. Let’s analyse how the function is performed
for n=3. When it is invoked a stack frame is created for this function instance.
The function checks the condition, which is false, so it tries to evaluate the
expression factorial(2)*3. To complete the task it calls itself but for n=2.
Just like in the previous call a stack frame is created for the new instance and
the function check the condition in the line no. 3, which also is false. Then
it tries to evaluate the factorial(1)*2 expression. To this end it calls itself
for n=1. Like previously a stack frame is created for this function call, but this
time the condition in the third line is true and the instance of the function
exits and returns the value of 1.

6 / 55

.

Recursion
Introduction — Factorial

After the function exits and returns the value of factorial for n=1, the control
flow goes back to the instance of the function for n=2. This time the function
can evaluate the factorial(1)*2 expression, by replacing the first term of
the expression with the value of 1. After the result (2) is calculated the
instance of the function returns it and exits. The control flow goes back
to the instance of the function for n=3. This time it also can evaluate the
factorial(2)*3 expression by replacing the first term with the value of 2.
Finally, the function exits and returns 6 (the value of factorial for n=3). Any
time each instance of function exits, a stack frame is removed from the call
stack. The content of the stack is depicted schematically in the next slide.

7 / 55

.

Recursion
Introduction — Factorial

..

A stack
frame for

factorial(3)

The function call for n=3

8 / 55

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Recursion
Introduction — Factorial

..

A stack
frame for

factorial(3)

.

A stack
frame for

factorial(2)

A recursive call: factorial(2)*3

8 / 55

.

Recursion
Introduction — Factorial

..

A stack
frame for

factorial(3)

.

A stack
frame for

factorial(2)

.

A stack
frame for

factorial(1)

A recursive call: factorial(1)*2*3

8 / 55

.

Recursion
Introduction — Factorial

..

A stack
frame for

factorial(3)

.

A stack
frame for

factorial(2)

The factorial(1) call returns result an exits.

8 / 55

.

Recursion
Introduction — Factorial

..

A stack
frame for

factorial(3)

After factorial(2) exits.

8 / 55

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Recursion
Introduction — Factorial

.
After factorial(3) exits.

8 / 55

.

Recursion
Introduction — Factorial

Usually the performance of recursive functions is illustrated not by depicting
the state of call stack, but by drawing a function call tree which is also, in
this case, a recursion tree. In case of the factorial() function for n=3
the recursion tree is very simple (the mathematicians would say that it is a
degenerate tree).

...

factorial(2)*3 2*3

.

factorial(1)*2

.

1

9 / 55

.

Recursion
Introduction — Factorial

Usually the performance of recursive functions is illustrated not by depicting
the state of call stack, but by drawing a function call tree which is also, in
this case, a recursion tree. In case of the factorial() function for n=3
the recursion tree is very simple (the mathematicians would say that it is a
degenerate tree).

..factorial(3).

factorial(2)*3 2*3

.

factorial(1)*2

.

1

9 / 55

.

Recursion
Introduction — Factorial

Usually the performance of recursive functions is illustrated not by depicting
the state of call stack, but by drawing a function call tree which is also, in
this case, a recursion tree. In case of the factorial() function for n=3
the recursion tree is very simple (the mathematicians would say that it is a
degenerate tree).

..factorial(3).

factorial(2)*3 2*3

.

factorial(1)*2

.

1

9 / 55

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Recursion
Introduction — Factorial

Usually the performance of recursive functions is illustrated not by depicting
the state of call stack, but by drawing a function call tree which is also, in
this case, a recursion tree. In case of the factorial() function for n=3
the recursion tree is very simple (the mathematicians would say that it is a
degenerate tree).

..factorial(3).

factorial(2)*3 2*3

.

factorial(1)*2

.

1

9 / 55

.

Recursion
Introduction — Factorial

Usually the performance of recursive functions is illustrated not by depicting
the state of call stack, but by drawing a function call tree which is also, in
this case, a recursion tree. In case of the factorial() function for n=3
the recursion tree is very simple (the mathematicians would say that it is a
degenerate tree).

..factorial(3).

factorial(2)*3 2*3

.

factorial(1)*2

.

1

9 / 55

.

Recursion
Introduction — Factorial

Usually the performance of recursive functions is illustrated not by depicting
the state of call stack, but by drawing a function call tree which is also, in
this case, a recursion tree. In case of the factorial() function for n=3
the recursion tree is very simple (the mathematicians would say that it is a
degenerate tree).

..factorial(3).

factorial(2)*3 2*3

.

1*2

.

1

9 / 55

.

Recursion
Introduction — Factorial

Usually the performance of recursive functions is illustrated not by depicting
the state of call stack, but by drawing a function call tree which is also, in
this case, a recursion tree. In case of the factorial() function for n=3
the recursion tree is very simple (the mathematicians would say that it is a
degenerate tree).

..factorial(3).

factorial(2)*3 2*3

.

2

.

1

9 / 55

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Recursion
Introduction — Factorial

Usually the performance of recursive functions is illustrated not by depicting
the state of call stack, but by drawing a function call tree which is also, in
this case, a recursion tree. In case of the factorial() function for n=3
the recursion tree is very simple (the mathematicians would say that it is a
degenerate tree).

..factorial(3).

2*3

.

2

.

1

9 / 55

.

Recursion
Introduction — Factorial

Usually the performance of recursive functions is illustrated not by depicting
the state of call stack, but by drawing a function call tree which is also, in
this case, a recursion tree. In case of the factorial() function for n=3
the recursion tree is very simple (the mathematicians would say that it is a
degenerate tree).

..factorial(3).

2*3 6

.

2

.

1

9 / 55

.

Recursion
Introduction — Factorial

Usually the performance of recursive functions is illustrated not by depicting
the state of call stack, but by drawing a function call tree which is also, in
this case, a recursion tree. In case of the factorial() function for n=3
the recursion tree is very simple (the mathematicians would say that it is a
degenerate tree).

..factorial(3)=6.

2*3 6

.

2

.

1

9 / 55

.

The Divide-And-Conquer Algorithm

The Divide-And-Conquer is a method of designing a recursive algorithms. It
consists of three steps:
Divide-And-Conquer

1. Divide
Divide the problem into subproblems of the same type, but of a smaller
size.

2. Conquer
Solve the subproblems recursively, unless their size is so small, that they
can be tackled with using direct methods.

3. Merge
Combine the solutions of subproblems to get the solution of the original
problem.

10 / 55

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Divide-And-Conquer
Tower of Hanoi

The Divide-And-Conquer method can be applied to solve the Tower of Hanoi
problem, which has been formulated in the year 1883 by a French mathemati-
cian Edouard Lucas. In the problem a tower is given that consists of discs of
different diameters located on a single peg, and so constructed that smaller
discs lie on bigger discs. Also a two additional empty pegs are given. The goal
of the problem is to move the tower to one of the two additional pegs, using
the remaining one in the process, if necessary, but during each step only one
disk can be moved and never a bigger disk can be put on a top of a smaller
disk. An animation in the next slide shows the solution of the problem for a
tower consisting of three discs.

11 / 55

.

Divide-And-Conquer
Tower of Hanoi

..
1

.
2

.
3

12 / 55

.

Divide-And-Conquer
Tower of Hanoi

..
1

.
2

.
3

12 / 55

.

Divide-And-Conquer
Tower of Hanoi

..
1

.
2

.
3

12 / 55

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Divide-And-Conquer
Tower of Hanoi

..
1

.
2

.
3

12 / 55

.

Divide-And-Conquer
Tower of Hanoi

..
1

.
2

.
3

12 / 55

.

Divide-And-Conquer
Tower of Hanoi

..
1

.
2

.
3

12 / 55

.

Divide-And-Conquer
Tower of Hanoi

..
1

.
2

.
3

12 / 55

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Divide-And-Conquer
Tower of Hanoi

..
1

.
2

.
3

12 / 55

.

Divide-And-Conquer
Tower of Hanoi

Actually, a two problems of Tower of Hanoi will be solved in the lecture.
The first one has been formulated in the book “Concrete Mathematics” by
D.E.Knuth, R.L.Graham and O.Patashnik (Addison-Wesley Publishing, 1989):
The First Problem of Tower of Hanoi
Knowing how many discs the tower has, calculate the minimal number of
steps required to move it to the destination peg.

13 / 55

.

Divide-And-Conquer
Tower of Hanoi

The problem can be solved by applying the Divide-And-Conquer method. Ac-
cording to its description, in the first step a partition of the problem into
subproblem of smaller size has to be found. In the case of Tower of Hanoi the
task is pretty simple — the tower consists of discrete discs, so the subproblem
of directly smaller size, than the problem of moving n discs, is to move n − 1
discs. In the second step the strategy of recursively solving the subproblems
has to be defined. Moving the n discs is straightforward, assuming that the
method for moving n − 1 disks is known:

1. Move n − 1 discs from the source peg to the helper peg.
2. Move the nth disc from the source peg to the destination peg.
3. Move n − 1 discs form the helper peg to the destination peg.

14 / 55

.

Divide-And-Conquer
Tower of Hanoi

Let’s denote the minimal number of steps required to move the Tower of
Hanoi of n disks by Tn, and by Tn−1 the minimal number of necessary steps
to move the Tower of Hanoi of n − 1 disks. From the previous slide content it
can be derived that Tn = 2 · Tn−1+1. This relation for towers of n and n −1
disks is also true for towers of n − 1 and n − 2 disks, i.e. knowing how many
steps it takes to move the tower of n − 2 disks, it is possible to calculate how
many steps it takes to move the tower of n − 1 disks. Now, the base case
has to be defined. It can be assumed that it is a problem of moving an empty
tower, i.e. which has n = 0 disks. In that case no steps are required to move
the tower, which can be denoted as T0 = 0. The Merge Step is quite simple
in this problem: having a solution for 0 disks the solution for 1 disk can be
found, then for 2 disks and so on. The next slide contains a definition of a
function that implements this algorithm.

15 / 55

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Divide-And-Conquer
Tower of Hanoi

unsigned long int find_hanoi_steps(unsigned char discs)
{

if(discs==0)
return 0;

else
return 2*find_hanoi_steps(discs-1)+1;

}

16 / 55

.

Divide-And-Conquer
Tower of Hanoi

The number of discs of Tower of Hanoi is passed through the discs parameter
to the function. Please observe, that using the Divide-And-Conquer method
makes possible to write a function that calculates the factorial. It means that
the method may be applied to a variety of problems. The next slide shows the
recursion tree for the find_hanoi_steps() function invoked for a Tower of
Hanoi with 4 disks.

17 / 55

.

Divide-And-Conquer
Tower of Hanoi

..find_hanoi_steps(4).

2*find_hanoi_steps(3)+1

.

2*find_hanoi_steps(2)+1

.

2*find_hanoi_steps(1)+1

.

2*find_hanoi_steps(0)+1

.

0

18 / 55

.

Divide-And-Conquer
Tower of Hanoi

..find_hanoi_steps(4).

2*find_hanoi_steps(3)+1

.

2*find_hanoi_steps(2)+1

.

2*find_hanoi_steps(1)+1

.

2*find_hanoi_steps(0)+1

.

0

18 / 55

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Divide-And-Conquer
Tower of Hanoi

..find_hanoi_steps(4).

2*find_hanoi_steps(3)+1

.

2*find_hanoi_steps(2)+1

.

2*find_hanoi_steps(1)+1

.

2*find_hanoi_steps(0)+1

.

0

18 / 55

.

Divide-And-Conquer
Tower of Hanoi

..find_hanoi_steps(4).

2*find_hanoi_steps(3)+1

.

2*find_hanoi_steps(2)+1

.

2*find_hanoi_steps(1)+1

.

2*find_hanoi_steps(0)+1

.

0

18 / 55

.

Divide-And-Conquer
Tower of Hanoi

..find_hanoi_steps(4).

2*find_hanoi_steps(3)+1

.

2*find_hanoi_steps(2)+1

.

2*find_hanoi_steps(1)+1

.

2*find_hanoi_steps(0)+1

.

0

18 / 55

.

Divide-And-Conquer
Tower of Hanoi

..find_hanoi_steps(4).

2*find_hanoi_steps(3)+1

.

2*find_hanoi_steps(2)+1

.

2*find_hanoi_steps(1)+1

.

2*find_hanoi_steps(0)+1

.

0

18 / 55

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Divide-And-Conquer
Tower of Hanoi

..find_hanoi_steps(4).

2*find_hanoi_steps(3)+1

.

2*find_hanoi_steps(2)+1

.

2*find_hanoi_steps(1)+1

.

2*0+1

.

0

18 / 55

.

Divide-And-Conquer
Tower of Hanoi

..find_hanoi_steps(4).

2*find_hanoi_steps(3)+1

.

2*find_hanoi_steps(2)+1

.

2*find_hanoi_steps(1)+1

.

1

.

0

18 / 55

.

Divide-And-Conquer
Tower of Hanoi

..find_hanoi_steps(4).

2*find_hanoi_steps(3)+1

.

2*find_hanoi_steps(2)+1

.

2*1+1

.

1

.

0

18 / 55

.

Divide-And-Conquer
Tower of Hanoi

..find_hanoi_steps(4).

2*find_hanoi_steps(3)+1

.

2*find_hanoi_steps(2)+1

.

3

.

1

.

0

18 / 55

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Divide-And-Conquer
Tower of Hanoi

..find_hanoi_steps(4).

2*find_hanoi_steps(3)+1

.

2*3+1

.

3

.

1

.

0

18 / 55

.

Divide-And-Conquer
Tower of Hanoi

..find_hanoi_steps(4).

2*find_hanoi_steps(3)+1

.

7

.

3

.

1

.

0

18 / 55

.

Divide-And-Conquer
Tower of Hanoi

..find_hanoi_steps(4).

2*7+1

.

7

.

3

.

1

.

0

18 / 55

.

Divide-And-Conquer
Tower of Hanoi

..find_hanoi_steps(4).

15

.

7

.

3

.

1

.

0

18 / 55

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Divide-And-Conquer
Tower of Hanoi

..find_hanoi_steps(4)=15.

15

.

7

.

3

.

1

.

0

18 / 55

.

Divide-And-Conquer
Tower of Hanoi

Let’s now try to find solution for the second problem of Tower of Hanoi which
is defined as follows:
Second Problem of Tower of Hanoi
Find an algorithm for moving the Tower of Hanoi with minimal number of
steps.
It shows up, that the same way of reasoning that has been applied for solving
the first problem of Tower of Hanoi can also be used for finding the solution for
the second one. Like in the previous problem, moving an empty tower requires
no action, so 0 steps has to be made. To move a tower of n discs, first a
tower of n − 1 disc has to be moved from the source peg to the helper peg.
Next, the nth disc has to be moved form the source peg to the destination
peg, and finally the tower of n − 1 discs has to be moved from the helper peg
to the destination peg. The next slide contains a definition of a function that
implements this algorithm.

19 / 55

.

Divide-And-Conquer
Tower of Hanoi

1 void hanoi_movements(unsigned int discs,
2 unsigned char source,
3 unsigned char helper,
4 unsigned char destination)
5 {
6 if(discs) {
7 hanoi_movements(discs-1,source,destination,helper);
8 printf("Move the disc no. %u from the peg no. %u\
9 to the peg no. %u\n",discs,source,destination);

10 hanoi_movements(discs-1,helper,source,destination);
11 }
12 }

20 / 55

.

Divide-And-Conquer
Tower of Hanoi

By the first parameter the number of Tower of Hanoi discs is passed to the
function. By the next three parameters the number of the source peg, the
helper peg and the destination peg are passed. In the line no. 6 the function
checks if the number of discs is greater than zero. If the condition is satisfied
then it starts informing user which disc (by displaying its number) has to be
moved from which peg to which peg (also by displaying their numbers) in a
given step. According to the presented analysis, first the function has to move
the smaller tower from the source peg to the helper peg, which is in this case
a destination peg. Hence, the first recursive invocation of the function (line
no. 7). Next, the function displays a message informing the user to move the
nth disc (lines no. 8 and 9) and finally it calls itself recursively (line no 10)
to move n − 1 discs from the helper peg (which in this case is the source peg)
to the destination peg.

21 / 55

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Pros and Cons of Recursion

The biggest advantage of using the recursion is that it makes the definitions
of functions brief. Let’s check it using two examples. The first example is a
function that converts decimal numbers grater than 0 into binary numbers.
The second example is a program (actually two of them) that draws, in a
graphical mode, a fractal called Sierpiński Triangle.

22 / 55

.

Pros and Cons of Recursion
Conversion from Decimal to Binary

At the first sight the algorithm of converting a decimal number into a binary
number seems not to be recursive. It consists of finding the reminder after
division of a number by two and the integer result of dividing the number by
two, until the latter operation yields 0. Then the reminders has to be ordered
from the last to the first. The last sentence suggests using a stack, which
means that applying a recursion would simplify the solution — the recursive
functions use the hardware supported call stack. Please observe, that the result
of integer division becomes the input data for the next step of the algorithm,
so it may be expressed in a recursive form. The base case is when the integer
division yields zero. The next slide presents a definition of a function which
converts a decimal number into binary and displays the result on the screen.

23 / 55

.

Pros and Cons of Recursion
Conversion from Decimal to Binary

1 void convert_to_binary(unsigned long int number)
2 {
3 if(number) {
4 convert_to_binary(number/2);
5 printf("%lu",number%2);
6 }
7 }

24 / 55

.

Pros and Cons of Recursion
Conversion from Decimal to Binary

The presented function check if the number passed to it is greater then zero.
If so, it calls itself recursively for this number divided by two. This sequence
of calls ends when the value of the number becomes zero for some invocation.
Then returns from the recursive calls take place and in each of them then
printf() function is invoked which displays the reminder after division of
the number passed by the parameter by two. The algorithm that the function
implements may be created with the use of Divide-And-Conquer method. The
base case takes place when the integer division yields zero. The partition of the
problem is made each time the number is divided by two. The merging takes
place when the function prints the reminders. The function doesn’t convert
the 0 number. It could be changed by placing only the recursive invocation
in the conditional statement, but after such a modification the function will
always display the binary numbers that start with a leading zero (as a value
of the most significant bit).

25 / 55

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Pros and Cons of Recursion
Sierpiń́ski Triangle

The next example requires a little more complicated code. It draws a frac-
tal on the screen which is called a Sierpiński Triangle after its discoverer, a
Polish mathematician Wacław Sierpiński. The Sierpiński Triangle is created
by partitioning a triangle (usually equilateral or isosceles, but it can be any
triangle, except of a degenerate one) into four smaller triangles and removing
the middle one of them. The activity is then repeated for the three remaining
triangles, and then for the next remaining triangles and so on. As it may
be observed from the description the algorithm of creating such a triangle is
recursive. Reaching a triangle of a given minimal length of a side or achieving
a given level of nested triangles may be uses as a condition for ending the
recursion. The latter option is applied in the presented programs. First, two
recursive algorithms for drawing the fractal are presented.

26 / 55

.

Pros and Cons of Recursion
Sierpiń́ski Triangle — The First Approach

The first algorithm draws a triangle and finds the middle points of its sides.
Then it draws a three smaller triangles which one vertex overlaps with one
of the vertices of the bigger triangle and the two others are in the centers of
the sides of the triangle. This activity is repeated for the three triangles and
the next three triangles, and so on, until the given level of nested triangles
is reached. An animation in the next slide shows a few initial steps of the
algorithm. Then the source code of a program that utilizes the algorithm to
draw the fractal is presented.

27 / 55

.

Pros and Cons of Recursion
Sierpiń́ski Triangle — The First Approach

.

28 / 55

.

Pros and Cons of Recursion
Sierpiń́ski Triangle — The First Approach

..

(0,1)

.

(5,7)

.

(10,1)

28 / 55

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Pros and Cons of Recursion
Sierpiń́ski Triangle — The First Approach

..

(0,1)

.

(5,7)

.

(10,1)

.

((0+5)/2,(1+7)/2)

.

((0+10)/2,(1+1)/2)

28 / 55

.

Pros and Cons of Recursion
Sierpiń́ski Triangle — The First Approach

..

(0,1)

.

(5,7)

.

(10,1)

.

(2,5;4)

.

(5,1)

28 / 55

.

Pros and Cons of Recursion
Sierpiń́ski Triangle — The First Approach

..

(0,1)

.

(5,7)

.

(10,1)

.

(2,5;4)

.

(5,1)

.

((5+10)/2,(7+1)/2)

28 / 55

.

Pros and Cons of Recursion
Sierpiń́ski Triangle — The First Approach

..

(0,1)

.

(5,7)

.

(10,1)

.

(2,5;4)

.

(5,1)

.

(7,5;4)

28 / 55

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Pros and Cons of Recursion
Sierpiń́ski Triangle — The First Approach

..

(0,1)

.

(5,7)

.

(10,1)

.

(2,5;4)

.

(5,1)

.

(7,5;4)

.

(7.5,4)

28 / 55

.

Pros and Cons of Recursion
Sierpiń́ski Triangle — The First Approach

#include<allegro.h>

void draw_triangle(int x, int y, int x1, int y1, int x2, int y2, unsigned char n)
{

int colour = makecol(255,255,255);
line(screen,x,y,x1,y1,colour);
line(screen,x1,y1,x2,y2,colour);
line(screen,x2,y2,x,y,colour);
if(n--) {

draw_triangle((x+x1)/2,(y+y1)/2,x1,y1,(x2+x1)/2,(y2+y1)/2,n);
draw_triangle(x,y,(x1+x)/2,(y1+y)/2,(x2+x)/2,(y2+y)/2,n);
draw_triangle((x+x2)/2,(y+y2)/2,(x1+x2)/2,(y1+y2)/2,x2,y2,n);

}
}

29 / 55

.

Pros and Cons of Recursion
Sierpiń́ski Triangle — The First Approach

int main(void) {
int width=1336,height=768;
if(allegro_init())

allegro_message("allegro_init: %s\n",allegro_error);
if(install_keyboard())

allegro_message("install_keyboard: %s\n",allegro_error);
set_color_depth(32);
if(set_gfx_mode(GFX_AUTODETECT_FULLSCREEN,width,height,0,0))

allegro_message("%s\n",allegro_error);
height-=1;
draw_triangle(width/2,0,0,height,width,height,14);
clear_keybuf();
while(!keypressed());
allegro_exit();
return 0;

}
END_OF_MAIN()

30 / 55

.

Pros and Cons of Recursion
Sierpiń́ski Triangle — The First Approach

The presented program uses the Allegro library, version 4.4. The definition
of the draw_triangle() function (the first of the previous slides) is short,
but worth of analysing. It has seven parameters. By the first pair of them
the coordinates of the top vertex of the triangle are passed. The second pair
of parameters is used for passing the coordinates of the left vertex and the
next pair passes the coordinates of the right vertex. The last parameter is
used for passing the number of levels of nested triangles. The function first
draws a triangle according to the coordinates passed to it and then checks if
the number of levels is greater then zero and decrements it by one. If the
condition is satisfied then the function calls itself recursively three times, to
draw three new triangles. Please note the arguments of those calls. The
number of levels is already decremented. Only one set of coordinates remains
the same for each of the invocations. For the others coordinates appropriate
averages are calculated.

31 / 55

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Pros and Cons of Recursion
Sierpiń́ski Triangle — The First Approach

In the main() function aside from the functions of the Allegro library the
draw_triangle() is called.

32 / 55

.

Pros and Cons of Recursion
Sierpiń́ski Triangle — The Second Approach

The second algorithm of drawing the Sierpiński Triangle is a slight modification
of the first one. The beginning is the same — a triangle is drawn and the
middle points of its sides are found. However, in the next step the centers of
the sides are connected together to draw an internal, reversed triangle. The
activity is repeated for the three other triangles that are created in the process
and the next three triangles and so on, until a given level of nested triangles
is reached. A few of the initial steps of the algorithms are presented in the
animation showed in the next slide. Then a source code of a program that
utilises the described algorithm to draw the Sierpiński Triangle is presented.

33 / 55

.

Pros and Cons of Recursion
Sierpiń́ski Triangle — The Second Approach

.

34 / 55

.

Pros and Cons of Recursion
Sierpiń́ski Triangle — The Second Approach

..

(0,1)

.

(5,7)

.

(10,1)

34 / 55

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Pros and Cons of Recursion
Sierpiń́ski Triangle — The Second Approach

..

(0,1)

.

(5,7)

.

(10,1)

.

((0+5)/2,(1+7)/2)

.

((0+10)/2,(1+1)/2)

.

((5+10)/2,(7+1)/2)

34 / 55

.

Pros and Cons of Recursion
Sierpiń́ski Triangle — The Second Approach

..

(0,1)

.

(5,7)

.

(10,1)

.

(2,5;4)

.

(5,1)

.

(7,5;4)

34 / 55

.

Pros and Cons of Recursion
Sierpiń́ski Triangle — The Second Approach

#include<allegro.h>

void draw_triangle(int x, int y, int x1, int y1, int x2, int y2, int colour, unsigned char n)
{

line(screen,(x+x1)/2,(y+y1)/2,(x1+x2)/2,(y1+y2)/2,colour);
line(screen,(x1+x2)/2,(y1+y2)/2,(x+x2)/2,(y+y2)/2,colour);
line(screen,(x+x1)/2,(y+y1)/2,(x+x2)/2,(y+y2)/2,colour);
if(n--) {

draw_triangle((x+x1)/2,(y+y1)/2,x1,y1,(x2+x1)/2,(y2+y1)/2,colour,n);
draw_triangle(x,y,(x1+x)/2,(y1+y)/2,(x2+x)/2,(y2+y)/2,colour,n);
draw_triangle((x+x2)/2,(y+y2)/2,(x1+x2)/2,(y1+y2)/2,x2,y2,colour,n);

}
}

35 / 55

.

Pros and Cons of Recursion
Sierpiń́ski Triangle — The Second Approach

int main(void) {
int width=1336,height=768;
if(allegro_init())

allegro_message("allegro_init: %s\n",allegro_error);
if(install_keyboard())

allegro_message("install_keyboard: %s\n",allegro_error);
set_color_depth(32);
if(set_gfx_mode(GFX_AUTODETECT_FULLSCREEN,width,height,0,0))

allegro_message("%s\n",allegro_error);
height-=1;
int colour = makecol(255,255,255);
line(screen,width/2,0,0,height,colour);
line(screen,0,height,width,height,colour);
line(screen,width,height,width/2,0,colour);
draw_triangle(width/2,0,0,height,width,height,colour,14);
clear_keybuf();
while(!keypressed());
allegro_exit();
return 0;

}
END_OF_MAIN()

36 / 55

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Pros and Cons of Recursion
Sierpiń́ski Triangle — The Second Approach

The presented program differs by a few details from the previous one. The
most significant of them are:

1. The draw_triangle() has an additional parameter by which the colour’s
code of the triangle is passed. It eliminates the necessity of calculating
it inside the function’s body. This approach can also be applied in the
previous program.

2. In the function the centers of the triangles sides are calculated several
times. For the first time when the internal triangle is drawn, and next
when the function is called recursively. It can be eliminated by storing the
results of those calculations in local variables used latter as argument for
the recursive calls. This will make the definition of the function longer,
but the function will be more efficient.

3. The first triangle is drawn outside of the draw_triangle() function, in
the main() function.

37 / 55

.

Pros and Cons of Recursion
Effectiveness of the Recursion

Let’s consider the effectiveness of the recursion. Each recursive call involves
creating a stack frame. It takes time and uses some free space in the memory,
so it degrades the effectiveness of recursive functions. The more recursive
calls a function has the less efficient it becomes, comparing to its iterative
counterparts. There is one more reason for refraining from using the recursion
in every possible function. It is explained with the use of Fibonacci Numbers
problem.

38 / 55

.

Pros and Cons of Recursion
Fibonacci Sequence

The Fibonacci Sequence has been discovered by a medieval Italian mathe-
matician Leonardo Fibonacci, who tried to use it for describing the grow of
a population of rabbits. It occurred to be insufficient for this purpose, but it
can be applied to many other practical problems. Even some concepts from
art can be described using this sequence. The Fibonacci Sequence is defined
as follows:

fibonacci(n) =






0 if n = 0
1 if n = 1
fibonacci(n − 2) + fibonacci(n − 1) for n ≥ 2

The n in the pattern is a natural number and it defines the place of a given
Fibonacci Number in the sequence. All numbers that belong to the Fibonacci
Sequence are natural numbers. The definition of the sequence encourages to
implement a function that finds successive Fibonacci Numbers in a recursive
fashion. A definition of such a function in presented in the next slide.

39 / 55

.

Pros and Cons of Recursion
Fibonacci Sequence

1 unsigned int get_fibonacci_number(unsigned char order)
2 {
3 if(order==0)
4 return 0;
5 if(order==1)
6 return 1;
7 return get_fibonacci_number(order-1)+get_fibonacci_number(order-2);
8 }

40 / 55

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Pros and Cons of Recursion
Fibonacci Sequence

The definition of the function is brief and understandable because it mirrors
the definition of the sequence. The analysis of the function behaviour is a little
more difficult since it calls itself twice in the 7th line. In that case it should
be taken into account that expressions are evaluated from the left to the right
side, so the “left” invocation is performed as first, and only after it exits the
“right” is performed. After the latter exits the total value of the expression
can be calculated. Let’s create a recursion tree for the function when it is
invoked with the order parameter equal 4. For the sake of simplicity the
name of the function in the tree is shortened to just one letter — f.

41 / 55

.

Pros and Cons of Recursion
Fibonacci Sequence

..f(4).

f(3)

.

f(2)

.

f(1)

.

f(0)

.

f(1)

.

f(2)

.

f(1)

.

f(0)

42 / 55

.

Pros and Cons of Recursion
Fibonacci Sequence

..f(4).

f(3)

.

f(2)

.

f(1)

.

f(0)

.

f(1)

.

f(2)

.

f(1)

.

f(0)

42 / 55

.

Pros and Cons of Recursion
Fibonacci Sequence

..f(4).

f(3)

.

f(2)

.

f(1)

.

f(0)

.

f(1)

.

f(2)

.

f(1)

.

f(0)

42 / 55

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Pros and Cons of Recursion
Fibonacci Sequence

..f(4).

f(3)

.

f(2)

.

f(1)

.

f(0)

.

f(1)

.

f(2)

.

f(1)

.

f(0)

42 / 55

.

Pros and Cons of Recursion
Fibonacci Sequence

..f(4).

f(3)

.

f(2)

.

f(1)

.

f(0)

.

f(1)

.

f(2)

.

f(1)

.

f(0)

42 / 55

.

Pros and Cons of Recursion
Fibonacci Sequence

..f(4).

f(3)

.

f(2)

.

f(1)

.

f(0)

.

f(1)

.

f(2)

.

f(1)

.

f(0)

42 / 55

.

Pros and Cons of Recursion
Fibonacci Sequence

..f(4).

f(3)

.

f(2)

.

f(1)

.

f(0)

.

f(1)

.

f(2)

.

f(1)

.

f(0)

42 / 55

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Pros and Cons of Recursion
Fibonacci Sequence

..f(4).

f(3)

.

f(2)

.

f(1)

.

f(0)

.

f(1)

.

f(2)

.

f(1)

.

f(0)

42 / 55

.

Pros and Cons of Recursion
Fibonacci Sequence

..f(4).

f(3)

.

f(2)

.

f(1)

.

f(0)

.

f(1)

.

f(2)

.

f(1)

.

f(0)

42 / 55

.

Pros and Cons of Recursion
Fibonacci Sequence

It can be observed, by analysing the recursion tree, that a lot of the recursive
calls calculate the same value (they are marked in red color in the tree).
This influences the effectiveness measured as a time of performance and the
required memory. Finding the first 45 Fibonacci Numbers with the use of the
function takes a few second, even with the use of a powerful computer.
The question arises, if a more efficient version of the function can be created,
that doesn’t perform the redundant calculations. The answer is positive. Ac-
cording to the Fibonacci Sequence definition, the function needs only to re-
member the two last Fibonacci Numbers to calculate the next one. Moreover
it doesn’t have to be recursive, it can be an iterative function. The definition
of such a function is presented in the next slide.

43 / 55

.

Pros and Cons of Recursion
Fibonacci Sequence — Iterative Version

unsigned int get_fibonacci_number(unsigned char order)
{

unsigned int current = 0, next = 1, result = 0;
unsigned int i;
for(i=0;i<order;i++) {

result = current + next;
current = next;
next = result;

}
return current;

}

44 / 55

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Pros and Cons of Recursion
Fibonacci Sequence

The definition of the function is not as legible as the definition of its recursive
version, but still pretty understandable. The current variable stores the result
of the currently calculated Fibonacci Number and the next variable the value
of the next Fibonacci Number. To calculate another Fibonacci Number those
two values are added. The result is stored in the result variable. Then the
value stored in next variable replaces the one stored in the current variable,
and the value stored in the result variable replaces the one stored in the next
variable. Those calculations are preformed in the for loop which repeats them
as many times as it is defined by the position in the sequence of the number
to be calculated. The loop also calculates a redundant Fibonacci Number,
but only one. It’s the number that follows in the sequence the one that is
calculated. Calculating the initial 45 Fibonacci Numbers with this function,
using the same computer as previously takes a lot less time. Additionally, the
function requires less memory while running.

45 / 55

.

Pros and Cons of Recursion
Fibonacci Sequence

It can be proved, using the computational complexity theory, that the algo-
rithm applied by the recursive function, which calculates the Fibonacci Num-
ber, is an exponential-time algorithm. For the forth Fibonacci Number it
creates a call tree with four levels. For the third Fibonacci Number it creates
a call tree of three levels. Because each node of the tree has at most two
successors then the total number of nodes in the tree is 2order, where the
order is the position in the Fibonacci Sequence of the calculated Fibonacci
Number. Additionally, the bigger the call tree, the more it contains instances1

of the function that calculate redundant values. The iterative version utilises
a linear-time algorithm, thus its running time is much shorter, and it uses less
memory than the recursive version.

1A function instance is an invocation of the function with a specific argument.
46 / 55

.

Pros and Cons of Recursion
Binomial Coefficients

Calculating the binomial coefficients, which are commonly used in combina-
torics, requires applying a complicated pattern. However, the operation has
some properties that makes it possible to calculate binomial coefficients re-
cursively:

(
n
k

)
=






1 for k = 0 or k = n
n for k = 1(n−1

k−1

)
+

(n−1
k

)
in other cases

The next slides contains a function definition that implements this formula,
similarly like the recursive function that calculated Fibonacci Numbers applied
the Fibonacci Sequence definition.

47 / 55

.

Pros and Cons of Recursion
Binomial Coefficients

unsigned int get_binomial_coefficients(unsigned char n, unsigned char k)
{

if(k==0||k==n)
return 1;

if(k==1)
return n;

return get_binomial_coefficients(n-1,k-1)+get_binomial_coefficients(n-1,k);
}

48 / 55

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Pros and Cons of Recursion
Binomial Coefficients

Using the recursion is not the most effective way of calculating the binomial
coefficients, just like applying it for calculating Fibonacci Numbers. Aside
from recursive calls that calculate redundant values, in the case of the function
presented in the previous slide, a risk of overflow of the unsigned int type
values arises. This error leads to incorrect results. However, creating an
iterative counterpart for the function is not as easy as in the case of Fibonacci
Numbers. The iterative function requires applying of two-dimensional array
and two loops, nested one in the other.

49 / 55

.

Common Mistakes

Using the recursion is prone to many mistakes. The most common category of
such mistakes are incorrectly defined conditions for terminating the recursion.
Such mistakes can be of mathematical or computing science nature. In the
first case the base cases and the problem partitioning operation are incorrectly
defined and as a result the condition for stopping the recursion is never met.
In the second case the data types of variables may be chosen incorrectly or
the statements used in the function body may not behave as intended by the
programmer. Wrongly chosen data types can cause overflows and thus the
function may never terminate. Similarly, using wrong statements, may cause
the same troubles. Especially “treacherous” are the increment and decrement
operators. Using them in arguments for recursive calls should be avoided.
Sometimes the cause of an error may be misinterpretation of the function
code by the compiler. That’s why paying an attention to warnings issued by
this program during the compilation process is important.

50 / 55

.

Common Mistakes

The recursion has a lot in common with the mathematical induction. The
correctness of recursive algorithms may be proved with the use of this tech-
nique. The mistakes of computing science nature can be dealt with by using
such tools as debuggers and by paying attention to details while writing re-
cursive functions. In the ideal world errors in recursive functions would result
in infinite recursive calls of those functions. In the real world such incorrectly
written recursive functions result in a stack overflow, which means that the
function has generated so many stack frames that there is no space left on the
stack for a new one. This exception can be also caused by correctly written
recursive functions, but run in environments in which they have only a stack
of a small size to their disposal. In that case replacing the arguments passed
by a value by the arguments passed by a pointer or by a constant is worth
considering.

51 / 55

.

Summary

The Divide-And-Conquer method is a powerful tool for creating recursive al-
gorithms. The recursion makes it possible to implement them in a compact
form. However, as it is demonstrated in the lecture, using recursive functions
is not always efficient. Sometimes it is better to spend some time analysing
the problem in order to find an iterative or even simpler implementation of
the solution. For example by reading the book “Concrete Mathematics”, a
simple solution of the first problem of Tower of Hanoi can be found. The
recursive equations describing the number of minimal steps required to move
the tower can be simplified to Tn = 2n − 1, where n is the number of discs
in the tower. That means that even a loop is not necessary to calculate the
result. A function that applies such a pattern is sufficient. Moreover, it is a
function that utilises a constant-time algorithm.

52 / 55

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Summary

Although recursive functions have drawbacks, learning this technique is impor-
tant to any decent programmer. There are recursive algorithms which cannot
be easily implemented in an iterative form. It would require to explicitly im-
plement a stack as, for example, a dynamically allocated data structure, which
is a more tedious work than just simply writing a recursive function. Some
of the recursive functions can be automatically converted to an iterative form
by the compiler. Finally, the last argument for using the recursion is that
there are some efficient recursive algorithms that are easily implemented in a
form of recursive functions. The iterative version of those functions are more
complicated and at most as efficient as the recursive ones. An example of
such an algorithm is QuickSort which will be described in future lectures.

53 / 55

.

Questions

?

54 / 55

.

The End

Thank You For Your Attention!

55 / 55

.

.

Notes

.

Notes

.

Notes

.

Notes

	Recursion
	Divide-And-Conquer
	Pros and Cons of Recursion
	Common Mistakes
	Summary

