
.

.

Fundamentals of Programming 2
Stack And Its Applications

Arkadiusz Chrobot

Department of Computer Science

March 2, 2020

1 / 73

.

Outline

Abstract Data Structures

Stack — Introduction

Stack — Implementation

Memory Leaks

Examples of Stack Applications

Summary

2 / 73

.

Abstract Data Structures

Thanks to the functions managing the heap, which were introduced in the pre-
vious lecture, it is possible to create dynamically allocated variables. However,
there are many more possibilities offered by these functions. They allow the
programmers to create the whole data structures called dynamically allocated
data structures. The main advantage of such data structures is that their size
doesn’t have to be known before the program runs. They are created, as their
name suggests, dynamically when the program is performed and their size is
limited only by the available space in the heap. The abstract data structures
are the majority of dynamically allocated data structures. Those structures
usually are not a part of the programming language standard, but can be con-
structed with the help of elements provided by the language. To create such
a structure, first its abstract data type has to be defined. The type describes
not only the data that the structure can store but also the operations that
can be applied to it. The stack is the first such a data structure that will be
introduced in this course.

3 / 73

.

Stack — Introduction

A stack in computer science is an abstract data structure, that stores data ac-
cording to the Last In First Out rule, or lifo for short. It can be implemented
in several different forms. One of them is an abstract data structures in which
elements storing data are linked together with the use of pointers. The stack
is also a special case of another data structures called queues, which in turn
a special case of lists. All these structures will be successively introduced in
the lectures. To better understand what is a stack, let’s assume, that a list
is a collection of connected elements with a beginning and an end. A stack
is a kind of list in which operations of adding and removing elements can be
applied to only one of its ends. Usually the stack is depicted as a vertical list
which one end is called a top.

4 / 73

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Stack — Implementation

The stack is an abstract data structures, so an abstract data type for the stack
has to be created. The data type ought to define the type of information stored
in the stack and also the operations that can be carried out on this structure.
The task has to be completed with the use of elements provided by the C
language. Its first part can be accomplished with a structure data type and
the second with the functions. For the sake of simplicity let’s assume, that the
stack should store, in its elements, numbers of the int type. A stack storing
strings of characters also will be presented in the lecture.

5 / 73

.

Stack — Implementation
Stack Base Type

struct stack_node {
int data;
struct stack_node *next;

};

6 / 73

.

Stack — Implementation

The previous slide contains a definition of an example structure that describes
the type of a single stack element which is also called the stack base type.
It contains two fields. The first one stores data. In many cases there can
be a larger number of such fields and they can store more complex data. In
the example there is only one such a field of the int type and named data.
Second field in the example base type is a pointer. There are stacks with
elements containing more than one pointer field. However, in any dynamically
allocated stack, at least one such a pointer field in each element should exist.
Please notice the type of the pointer field. It is the same as the type of the
structure that contains it. It means that the structure is recursive and that
the pointer can point to another structure of the same type as the one in
which it is contained. In other words, thanks to this pointer, the elements of
stack can be linked together.

7 / 73

.

Stack — Implementation

Elements of the stack are linked together with the use of pointer fields. How-
ever, to perform an operation on the stack, the program has to know where is
the top of the stack. Hence, a separate pointer, local or global, is needed for
storing the address of the top of the stack. The pointer can have any name,
but usually it is described as a stack pointer.
The only thing that is now missing in the definition of abstract type for the
stack are the operations. The most basic of them are: adding a new element
to the stack, which is called push and removing an element from the stack,
which is named pop. Both those operations are performed on the top of the
stack. An optional operation, which is sometimes defined, is retrieving the
value of the stack top element and it is called peek. All three operations are
defined in the lecture.

8 / 73

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Stack — Implementation
The push() Function

The push operation is implemented in a form of push() function. The be-
haviour of the function should satisfy the following conditions (assertions):

1. Before the function is performed the stack pointer has to point the top
element of the stack or be an empty pointer — in the latter case the
stack is empty (or nonexistent).

2. The function as a result should return an address that either will be the
same as the one stored in the stack pointer — in that case adding a
new element to the stack has failed — or it will be an address of a new
element on the top of the stack — in that case the operation has been
successful.

9 / 73

.

Stack — Implementation
The push() Function

1 struct stack_node *push(struct stack_node *top, int number)
2 {
3 struct stack_node *new_node = (struct stack_node *)
4 malloc(sizeof(struct stack_node));
5 if(new_node!=NULL) {
6 new_node->data = number;
7 new_node->next = top;
8 top = new_node;
9 }

10 return top;
11 }

Warning! The line numbers are not a part of the source code. They are
introduced to make describing the function code easier.

10 / 73

.

Stack — Implementation
The push() Function

The push() function takes two arguments which are passed by its parameters.
The first one is the stack pointer and the second is a number which is to be
stored in a new element of the stack. First, the function allocates memory
for the new element (lines no. 3 and 4). What happens next depends on the
result of the allocation. If it fails then the new_node pointer value will be
null and the function will return the unchanged value of the top pointer.
Otherwise, the new_node pointer will store the address of the new element.
The number passed by the number parameter will be stored in the data field
of the new element (line no. 6). In the 7th line, the address currently stored
in the top pointer in assigned to the next filed of the new element. Thus,
the new element is linked to the rest of the stack and becomes a new top of
the stack. Therefore its address is assigned to the top pointer in the 8th line.
After that the function returns the address of a new top element of the stack
and terminates.

11 / 73

.

Stack — Implementation
The push() Function

The push() can be implemented in many was. Aside from the presented one,
definitions exist in which the stack pointer is passed by a pointer to pointer
parameter which is modified in the function body. Such a solution is discussed
in more details in the pop() function description.
The next slides illustrate successful adding of a new element to the existing
stack which has two elements. Please note, that the next field of the new
element is initially marked in a red color. It means that it is an incorrect
pointer (a wild pointer).

12 / 73

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Stack — Implementation
The push() Function

..

new_node

.

data

.

next

.

top

.

data

.

next

.

data

.

null

Before the 7th line of the push() function is performed.

13 / 73

.

Stack — Implementation
The push() Function

..

new_node

.

data

.

next

.

top

.

data

.

next

.

data

.

null

Before the 8th line of the push() function is performed.

13 / 73

.

Stack — Implementation
The push() Function

..

new_node

.

data

.

next

.

top

.

data

.

next

.

data

.

null

Before the 9th line of the push() function is performed.

13 / 73

.

Stack — Implementation
The push() Function

Please note the value of the next field in the bottom element of the stack.
It is a null value. It means that the element which contains such a field
is the last element of the stack. There are no other stack elements behind
it. Let’s find out if the push() function assures that the next field in the
bottom element of the stack always gets the null value. It shows up, that it
happens only when the function is given a stack pointer with the null value
when it is called for the first time. In such a case the null value is assigned
to the next field of the first and only element of the stack. However, if in
such a case an incorrect pointer is passed to the function, then its value will
be assigned to the next field. It is a dangerous situation from the program
point of view, because it will be unable to locate the end of the stack. Thus,
the programmers should always take care of passing an empty stack pointer
to the push() function when it is creating a stack, i.e. when it is invoked
for the first time in the program. This is especially important in case of local
stack pointers.

14 / 73

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Stack — Implementation
The pop() Function

The pop operation is implemented in the form of the pop() function. Similarly
as in case of the push() function the behaviour of the pop() function should
satisfy the following assertions:
1. Before the function is performed the stack pointer should point to the

top element of an existing stack, or be an empty pointer.
2. After the function is performed, the stack pointer should point to the

top element of the existing stack, which is one element shorter, or be an
empty pointer.

15 / 73

.

Stack — Implementation
The pop() Function

1 int pop(struct stack_node **top)
2 {
3 int result = -1;
4 if(*top) {
5 result = (*top)->data;
6 struct stack_node *tmp = (*top)->next;
7 free(*top);
8 *top = tmp;
9 }

10 return result;
11 }

16 / 73

.

Stack — Implementation
The pop() Function

The pop() function has only one parameter which is a pointer to a pointer
or double pointer1. Using such a parameter is necessary because the function
needs to modify the stack pointer and it is not possible to return its new value,
because the pop() function also needs to return the value of data field of
the removed stack element. In this case using the pointer to a pointer as a
parameter is the best option. By this parameter the address of a stack pointer
is passed to the function. The next slide illustrates how the pointer to pointer
works.

1The latter name is sometimes confusing, because it can also mean a pointer of the
double type.

17 / 73

.

Stack — Implementation
The pop() Function

..

&pointer;

.

int **double_pointer;

.

int *pointer;

.

int variable;

18 / 73

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Stack — Implementation
The pop() Function

The previous slide shows that the pointer to a pointer (double_pointer) can
point to a pointer (pointer) which in turn points to a variable (variable).
The variable can be statically or dynamically allocated.
To access the value of the variable variable using the pointer to pointer the
dereference operator have to be applied twice (like this: **double_pointer).
If the operator is applied only once, then the value of the pointer pointer
can be accessed.

19 / 73

.

Stack — Implementation
The pop() Function

The pop() function has a local variable (result) of the int type which
initial value is set to -1. If the stack is empty then the function will return
such a value and terminate. The state of the stack (empty or existing) is
verified in the 4th line of the function. The *top condition is a shorter form
of the *top!=NULL expression. If it’s true the function assigns the value of the
current top element of the stack to the result variable (line no. 5) and stores
the address of a next element in the tmp pointer (line no. 6). The address
is taken from the next field of the stack current top element. Then the top
element is removed (line no. 7). Now, the stack pointer has an incorrect value
— it doesn’t point to the top of the stack. To fix it, in the 8th line the value
of tmp pointer is assigned to the stack pointer. Next, the function returns the
value of the reslut variable and terminates.

20 / 73

.

Stack — Implementation
The pop() Function

Please observe, that the pop() function removes correctly also the last (the
bottom) element of the stack. Its next pointer field has a value of null and
such a value is assigned to the tmp when the 6th line of the function is applied
to a stack with one and only element. After the 8th line is performed also the
stack pointer gets such a value. This is an expected result, since the stack
should become empty after its only element is removed.
The next slides illustrate the behaviour of the pop() function when it removes
a top element from a stack that initially has three of them. Contrary to what
the slide suggests the content of the removed element doesn’t vanish after the
free() function is called, nor the pointer that points to it becomes empty.
Nonetheless the element should not be accessed any more. Also the pointer
should not be used until a new address is stored in it. The reasons for such
restrictions were explained in the previous lecture.

21 / 73

.

Stack — Implementation
The pop() Function

..

*top

.

data

.

next

.

tmp

.

data

.

next

.

data

.

null

After the 6th line of the pop() function is performed.

22 / 73

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Stack — Implementation
The pop() Function

..

*top

.

data

.

next

.

tmp

.

data

.

next

.

data

.

null

After the 7th line of the pop() function is performed.

22 / 73

.

Stack — Implementation
The pop() Function

..

*top

.

tmp

.

data

.

next

.

data

.

null

After the 8th line of the pop() function is performed.

22 / 73

.

Stack — Implementation
The peek() Function — Optional

1 int peek(struct stack_node *top)
2 {
3 if(top)
4 return top->data;
5 else {
6 fprintf(stderr,"The stack is empty.\n");
7 return -1;
8 }
9 }

23 / 73

.

Stack — Implementation
The peek() Function — Optional

The peek operation is optional. It doesn’t have to be implemented in every
stack implementation. Nonetheless it is presented in this lecture in the form
of a peek() function. Its definition in relatively simple. The stack pointer is
passed to the function with the use of its parameter. If it is not empty (the
condition top is shorter form of the expression top!=NULL), then the function
returns the value stored in the top element of the stack (or the value of the
element, for short). Otherwise, it prints a message on the screen informing
the user that the stack is empty and returns the same value as the pop()
function in the same case.

24 / 73

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Stack — Implementation
Example Program

All elements necessary to use a stack are now implemented. The next slides
present a simple program, that uses such a data structure. It generates sub-
sequent natural numbers and stores them on the stack, then it gets them
from the stack and displays on the screen. Aside from the header files the
code of the program contains the functions that are defined in this lecture
and the main() function. The latter function is the only one that needs to be
described. Such a description is given in the slide that follows the slide with
the main() function definition.

25 / 73

.

Stack — Implementation
Example Program

#include<stdio.h>
#include<stdlib.h>
#include<time.h>

struct stack_node {
int data;
struct stack_node *next;

};

26 / 73

.

Stack — Implementation
Example Program

struct stack_node *push(struct stack_node *top, int number)
{

struct stack_node *new_node = (struct stack_node *)
malloc(sizeof(struct stack_node));

if(new_node!=NULL) {
new_node->data = number;
new_node->next = top;
top = new_node;

}
return top;

}

27 / 73

.

Stack — Implementation
Example Program

int pop(struct stack_node **top)
{

int result = -1;
if(*top) {

result = (*top)->data;
struct stack_node *tmp = (*top)->next;
free(*top);
*top = tmp;

}
return result;

}

28 / 73

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Stack — Implementation
Example Program

int peek(struct stack_node *top)
{

if(top)
return top->data;

else {
fprintf(stderr,"The stack is empty.\n");
return -1;

}
}

29 / 73

.

Stack — Implementation
Example Program

int main(void)
{

struct stack_node *top = NULL;
srand(time(0));
int i;
for(i=1; i<6+rand()%5; i++)

top=push(top,i);
printf("The value of the stack top: %d\n",peek(top));
while(top)

printf("%d ",pop(&top));
puts("");
return 0;

}

30 / 73

.

Stack — Implementation
Example Program

The stack pointer is declared as a local variable of the main() function called
top. Initially the stack is empty. In the for loop the push() function is called
which adds elements to the stack. The values of the elements are defined by
the loop counter (the i variable). The initial value of the counter is always 1,
but the final value is generated randomly and is ranging from 6 to 10. Before
the program runs it is hard to predict how many numbers will be stored in the
stack. After the loop terminates the program displays the value of the stack
top element on the screen. Next, the numbers are removed from the stack
and printed on the screen in the while loop. The loop terminates when the
stack is empty. Its condition is equivalent to the top!=NULL expression. The
displayed numbers expose an important property of the stack: elements of the
stack are removed in reverse order to the one in which they were added.

31 / 73

.

Memory Leaks

The implementations of dynamically allocated data structures are prone to serious
errors. Incorrectly linked elements of a stack or similar structure are one of the
examples. Let’s assume that some overzealous programmer decides to zero out the
top parameter at the beginning of the push() function. Such a mistake causes
lack of connections between elements of the stack. Moreover, aside from the last
element, non other is pointed by any pointer. Those elements cannot be deallocated.
The areas of the heap that are allocated to the elements are lost until the program
finishes. In the Computer Science jargon such a mistake is called a memory leak. In
the worst case it can lead to exhaustion of the space in the heap. The first defence
against memory leaks is to avoid them by carefully analysing implementations of
all operations performed on the data structure. There exist also software tools
like debuggers and dedicated libraries that make detecting of such errors easier.
Unfortunately, they are not part of the C language standard, because their internal
working depends on the used computer and operating system.

32 / 73

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Stack — Applications
Conversion From Binary To Decimal

The stack is quite commonly used data structure. As a second example of
its application a program is presented that converts a binary number to a
decimal number. Using a stack implemented as a dynamically allocated data
structure to this end is a suboptimal solution, but it is just for demonstrating
the applications of the stack. In the next lecture a better solution of the
problem will be presented. In the program the getch() function from the
curses library is used to allow the program to read the binary number from
the keyboard bit by bit. Each of the bits is stored in separated element of
the stack. Hence, the least significant bit of the number is stored in the
top element of the stack and the most significant one in the bottom element.
Using the curses library requires to include the curses.h and local.h header
files in the program.

33 / 73

.

Stack — Applications
Conversion From Binary To Decimal

#include<stdlib.h>
#include<curses.h>
#include<locale.h>

struct stack_node {
int data;
struct stack_node *next;

};

34 / 73

.

Stack — Applications
Conversion From Binary To Decimal

struct stack_node *push(struct stack_node *top, int number)
{

struct stack_node *new_node = (struct stack_node *)
malloc(sizeof(struct stack_node));

if(new_node!=NULL) {
new_node->data = number;
new_node->next = top;
top = new_node;

}
return top;

}

35 / 73

.

Stack — Applications
Conversion From Binary To Decimal

int pop(struct stack_node **top)
{

int result = -1;
if(*top) {

result = (*top)->data;
struct stack_node *tmp = (*top)->next;
free(*top);
*top = tmp;

}
return result;

}

36 / 73

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Stack — Applications
Conversion From Binary To Decimal

void put_binary_on_stack(struct stack_node **top)
{

int input = 0;
do {

input = getch();
if(input=='0'||input=='1')

*top=push(*top,input-'0');
} while(input=='0'||input=='1');

}

37 / 73

.

Stack — Applications
Conversion From Binary To Decimal

The previous slides contains definitions of the push() and pop() functions
which have been already discussed, so no new description of them is given. The
last slide shows the definition of a function that reads successive characters
entered by the user with the keyboard. If those characters are the 0 and
1 digits then it stores them in the stack. The activity is repeated until the
user presses a key representing any other character. The function has only
one parameter, which is a pointer to a pointer. By this parameter the stack
pointer (initially empty) is passed to the function. The pointer is modified in
the function. The characters are read from the keyboard in the do…while loop
which terminates after a character is entered which is not a binary digit. Each
bit is stored in a separate stack element. Please notice the push() function
invocation. The value it returns is stored in the dereferenced top pointer
which is also passed in the same form to the function as its first argument.
The second argument is the input − '0' expression.

38 / 73

.

Stack — Applications
Conversion From Binary To Decimal

Because the value of the bit is stored in the input variable in a form of the
ascii code it has to be converted to a digit. It is accomplished by subtracting
from the value the ascii code of the 0 character.

39 / 73

.

Stack — Applications
Conversion From Binary To Decimal

int convert_binary_to_decimal(struct stack_node **top)
{

int result = 0, base = 1;
while(*top) {

int digit = pop(top);
result += digit * base;
base *= 2;

}
return result;

}

40 / 73

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Stack — Applications
Conversion From Binary To Decimal

The actual conversion is performed by a function which definition is presented
in the previous slide. The stack pointer is modified by the pop() function
invoked in the described function. Hence, the latter function has a parameter
which is a pointer to a pointer. The result of the conversion is stored in the
local variable named result. Each bit removed from the stack, starting with
the least significant, has to be multiplied by a corresponding base (the value
of the base variable) which is a power of two (20 = 1, 21 = 2, 22 = 4, etc.).
Hence, the value of the base variable is multiplied by 2 in each of the while
loop iterations. The result of multiplying the removed bit by the corresponding
base is added to the sum of such products calculated for the less significant
bits. The loop terminates when the stack is empty. Next, the function returns
the value of the result variable and terminates.

41 / 73

.

Stack — Applications
Conversion From Binary To Decimal

int main(void)
{

if(setlocale(LC_ALL,"")==NULL) {
fprintf(stderr,"Language settings initialization\
exception!\n");
return -1;

}
if(!initscr()) {

fprintf(stderr,"The curses library initialization\
exception!\n");
return -1;

}

42 / 73

.

Stack — Applications
Conversion From Binary To Decimal

The previous slide presents the beginning of the main() function which con-
tains the code that initializes the language settings and the curses library.

43 / 73

.

Stack — Applications
Conversion From Binary To Decimal

printw("Please enter a binary number terminated with any\
character:\n");
(void)refresh();
struct stack_node *top = NULL;
put_binary_on_stack(&top);

44 / 73

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Stack — Applications
Conversion From Binary To Decimal

In the part of main() function, presented in the previous slide, the message
to the user informing her or him what he or she has to do is displayed on the
screen and the put_binary_on_stack() function is invoked that creates a
stack and stores in it the bits of binary number entered by the user.

45 / 73

.

Stack — Applications
Conversion From Binary To Decimal

printw("The value of the binary number in decimal is: %d.\n",
convert_binary_to_decimal(&top));

(void)refresh();
getch();
if(endwin()==ERR) {

fprintf(stderr,"The endwin() function exception!\n");
return -1;

}
return 0;

}

46 / 73

.

Stack — Applications
Conversion From Binary To Decimal

In the last part of the main() function, presented on the previous slide, the
convert_binary_to_decimal() function is invoked, which converts the bi-
nary number to the decimal number. The obtained value is displayed on the
screen and the program waits for the user to press any key. After the user
does it, the curses library is finalized and the program finishes. Please note,
that using the stack implemented as a dynamically allocated structure allows
the program to convert a relatively big binary numbers. The limit is maximum
number that can be stored in the int type variable, which stores the result of
the conversion and the limit of the heap size.

47 / 73

.

Stack — Applications
Evaluating RPN Expressions

The stack is used for evaluating arithmetic expressions written in the Reversed
Polish Notation (RPN) also called the postfix notation. The notation was
proposed by an Australian computer scientist and philosopher Charles Hamblin
and it is based on the Polish Notation (PN) also called the prefix notation
proposed by Polish mathematician and philosopher Jan Łukasiewicz. Both
notations do not require any parentheses to define the precedence of binary
operators in any possible expression. In the PN the operators precede the
arguments and in the RPN they follow the arguments. The next slide presents
several expressions written in the traditional (infix) notation and in the RPN.

48 / 73

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Stack — Applications
Evaluating RPN Expressions

2 + 2 Ñ 2 2 +
(5 − 2) ∗ (4 + 1) Ñ 5 2 − 4 1 + ∗
(3 + 2) ∗ 7 Ñ 3 2 + 7 ∗
3 + 2 ∗ 7 Ñ 2 7 ∗ 3 +

49 / 73

.

Stack — Applications
Evaluating RPN Expressions

The animation shows how a value of an RPN expression can be evaluated with
the use of the stack.

..

5

.

5

.

2

.

5

.

-

.

5

.

4

.

5

.

1

.

5

.

+

.

5

.

*

.

5

.

=

.

5

50 / 73

.

Stack — Applications
Evaluating RPN Expressions

The animation shows how a value of an RPN expression can be evaluated with
the use of the stack.

..

5

.

5

.

2

.

2

.

5

.

2

.

-

.

5

.

2

.

4

.

5

.

2

.

1

.

5

.

2

.

+

.

5

.

2

.

*

.

5

.

2

.

=

.

5

.

2

50 / 73

.

Stack — Applications
Evaluating RPN Expressions

The animation shows how a value of an RPN expression can be evaluated with
the use of the stack.

..

5

.

3

.

2

.

3

.

-

.

3

.

4

.

3

.

1

.

3

.

+

.

3

.

*

.

3

.

=

.

3

50 / 73

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Stack — Applications
Evaluating RPN Expressions

The animation shows how a value of an RPN expression can be evaluated with
the use of the stack.

..

5

.

3

.

4

.

2

.

3

.

4

.

-

.

3

.

4

.

4

.

3

.

4

.

1

.

3

.

4

.

+

.

3

.

4

.

*

.

3

.

4

.

=

.

3

.

4

50 / 73

.

Stack — Applications
Evaluating RPN Expressions

The animation shows how a value of an RPN expression can be evaluated with
the use of the stack.

..

5

.

3

.

4

.

1

.

2

.

3

.

4

.

1

.

-

.

3

.

4

.

1

.

4

.

3

.

4

.

1

.

1

.

3

.

4

.

1

.

+

.

3

.

4

.

1

.

*

.

3

.

4

.

1

.

=

.

3

.

4

.

1

50 / 73

.

Stack — Applications
Evaluating RPN Expressions

The animation shows how a value of an RPN expression can be evaluated with
the use of the stack.

..

5

.

3

.

5

.

2

.

3

.

5

.

-

.

3

.

5

.

4

.

3

.

5

.

1

.

3

.

5

.

+

.

3

.

5

.

*

.

3

.

5

.

=

.

3

.

5

50 / 73

.

Stack — Applications
Evaluating RPN Expressions

The animation shows how a value of an RPN expression can be evaluated with
the use of the stack.

..

5

.

15

.

2

.

15

.

-

.

15

.

4

.

15

.

1

.

15

.

+

.

15

.

*

.

15

.

=

.

15

50 / 73

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Stack — Applications
Evaluating RPN Expressions

The animation shows how a value of an RPN expression can be evaluated with
the use of the stack.

..

5

.

result=15

.

2

.

result=15

.

-

.

result=15

.

4

.

result=15

.

1

.

result=15

.

+

.

result=15

.

*

.

result=15

.

=

.

result=15

50 / 73

.

Stack — Applications
Evaluating RPN Expressions

As it can be observed in the animation from the previous slide, the RPN
expressions are read from the left to the right side. If a symbol is met that
is a number, then it is added to the stack, but if it is an operator, then its
arguments are removed from the stack (if the RPN expression is correct, then
a proper number of arguments is already stored on the stack), the operation
is carried out and its result is stored back in the stack. The example program
implements an evaluation of very crude RPN expressions, in particular:
1. the RPN expressions consist only of single-digit natural numbers and

three types of operators: adding, multiplying and subtracting,
2. the RPN expressions do not contain any whitespaces,
3. the = symbol terminates every RPN expression and informs the program

to start evaluating it,
4. the program doesn’t check the correctness of the RPN expression — it

assumes that the expression is correct.

51 / 73

.

Stack — Applications
Evaluating RPN Expressions

The beginning of the program is the same as in the program that converts
binary number to decimal — the described program also uses the curses library
and the push() and pop() functions.

52 / 73

.

Stack — Applications
Evaluating RPN Expressions

#include<stdlib.h>
#include<curses.h>
#include<locale.h>

struct stack_node {
int data;
struct stack_node *next;

};

53 / 73

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Stack — Applications
Evaluating RPN Expressions

struct stack_node *push(struct stack_node *top, int number)
{

struct stack_node *new_node = (struct stack_node *)
malloc(sizeof(struct stack_node));

if(new_node!=NULL) {
new_node->data = number;
new_node->next = top;
top = new_node;

}
return top;

}

54 / 73

.

Stack — Applications
Evaluating RPN Expressions

int pop(struct stack_node **top)
{

int result = -1;
if(*top) {

result = (*top)->data;
struct stack_node *tmp = (*top)->next;
free(*top);
*top = tmp;

}
return result;

}

55 / 73

.

Stack — Applications
Evaluating RPN Expressions

int calculate_rpn_expression(void)
{

int input = 0;
struct stack_node *top = NULL;
do {

input = getch();
int first_argument=0, second_argument=0, result=0;
switch(input) {
case '+':

result = pop(&top) + pop(&top);
top = push(top,result);
break;

case '-':
first_argument = pop(&top);
second_argument = pop(&top);
top = push(top,second_argument - first_argument);
break;

56 / 73

.

Stack — Applications
Evaluating RPN Expressions

case '*':
result = pop(&top)*pop(&top);
top = push(top,result);
break;

default:
if(input>='0'&&input<='9')

top=push(top,input-'0');
}

} while(input!='=');

return pop(&top);
}

57 / 73

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Stack — Applications
Evaluating RPN Expressions

The parameterless calculate_rpn_expression() function presented in the
two previous slides reads in the do…while loop subsequent characters, entered
by user with the use of the keyboard, which belong to the RPN expression
and recognizes them. The recognition of expressions in Computer Science is
called parsing. If the character from the keyboard is a digit, then the program
stores its numeric value in the stack. However, it the characters is an operator
then the function removes two of its arguments from the stack2, carries out
the recognized operation and stores the result back in the stack. The loop
terminates when the “equals” symbol is recognized. After that the function
returns the only value that is stored in the stack and also terminates. The
stack should now be empty.

2Be careful with the order of the arguments for the subtraction operator!
58 / 73

.

Stack — Applications
Evaluating RPN Expressions

int main(void)
{

if(setlocale(LC_ALL,"")==NULL) {
fprintf(stderr,"Language settings initialization exception!\n");
return -1;

}
if(!initscr()) {

fprintf(stderr,"The curses library initialization exception!\n");
return -1;

}
printw("Please enter an RPN expression:\n");
(void)refresh();
printw("\nThe result is: %d.\n",calculate_rpn_expression());
(void)refresh();
getch();
if(endwin()==ERR) {

fprintf(stderr,"The endwin() function exception!\n");
return -1;

}
return 0;

}

59 / 73

.

Stack — Applications
Evaluating RPN Expressions

In the program’s main() function, aside from the functions that initialize
and finalize the curses library and change the language settings, also the
calculate_rpn_expression() function is invoked. It returns the value of
the RPN expression as its result. The length of the expression is limited only
by the size of the available free memory in the heap. It is due to the use of
a stack in a form of a dynamically allocated data structure. The value of the
expression has to fit in the range of the int data type.

60 / 73

.

Stack — Applications
Stack of Strings

The last example shows how to use the stack for storing strings of characters.
It is assumed that the number of the characters in a single string is limited to
100. The program doesn’t use the curses library. The strings are passed to
the program as its arguments. In the program aside from the stdio.h and
stdlib.h header files also the header file associated with string processing is
included.

61 / 73

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Stack — Applications
Stack of Strings

#include<stdio.h>
#include<stdlib.h>
#include<string.h>

typedef struct stack_node {
char arg[100];
struct stack_node *next;

} node;

62 / 73

.

Stack — Applications
Stack of Strings

In the program the declaration of the first field is modified so it can store
string of at most 100 characters. Also its name is changed. The typedef
keyword is applied in order to avoid repeating the whole specification of the
pointer type in the definitions of functions. It’s a convenient albeit less legible
solution.

63 / 73

.

Stack — Applications
Stack of Strings

node *push(node *top, char *str)
{

node *new_node = NULL;
new_node = (node*)malloc(sizeof(node));
if(new_node==NULL) {

fprintf(stderr,"A memory allocation exception!\n");
return top;

}
strncpy(new_node->arg,str,100);
new_node->next=top;
return new_node;

}

64 / 73

.

Stack — Applications
Stack of Strings

The push() function is defined in a similar fashion as in the previously pre-
sented programs, but as a second argument it takes a pointer to a string. The
string is copied with the use of strncpy() function to the new element of the
stack. Please note, that in case of the memory allocation failure, the function
first displays a message and only then it returns the address of the original
stack top element. Also returning of the new element address is implemented
in a little more compact manner — after the new element is linked to the rest
of the stack its address is immediately returned by the function. The address
should be assigned to the stack pointer in the place in code where the function
is invoked.

65 / 73

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Stack — Applications
Stack of Strings

node *pop(node **top)
{

node *next = NULL, *old_top = NULL;
if(*top!=NULL) {

next=(*top)->next;
(*top)->next = NULL;
old_top = *top;
*top = next;

}
return old_top;

}

66 / 73

.

Stack — Applications
Stack of Strings

The pop() function presented in the previous slide doesn’t free the memory
allocated to the stack top element, but it only disconnects the element from
the rest of the stack, assigns the null value to its next pointer field and
returns its address. The stack pointer is passed to the function by the pointer
to a pointer parameter. Inside the function the stack pointer is modified, so
after the current stack top element is unlinked from the rest of the stack, the
address of the element that followed it in the stack is stored in that pointer.

67 / 73

.

Stack — Applications
Stack of Strings

int main(int argc, char **argv)
{

node *top = NULL;
int i;
for(i=0; i<argc; i++)

top = push(top,argv[i]);
while(top) {

node *tmp = pop(&top);
printf("%s\n",tmp->arg);
free(tmp);
tmp=NULL;

}
return 0;

}

68 / 73

.

Stack — Applications
Stack of Strings

In the main() function the program arguments are stored in the stack inside
the for loop. Because the argument stored in the first element of the argv
array always exists — it is the full path to the program executable file, then
the program always displays at least one message on the screen. Elements
of the stack are removed in the while loop. Please observe, that they are
deallocated one by one, outside the pop() function.

69 / 73

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Summary

The stack has many more applications than it is presented in the lecture.
The compilers uses it to evaluate the values of arithmetical expressions. The
algorithm for converting those expressions from the infix to the postfix notation
also uses a stack, but this time the operators and parentheses, instead of the
numbers are stored there. The author of this algorithm is Edsgar Dijkstra
and it is called a shunting-yard algorithm. It won’t be however discussed in
details in the lecture. The operating systems use the stack for managing
processes and resources. User applications, such as text editors use the stack
for implementing the “undo” operation.

70 / 73

.

Summary

The stack can be implemented with the use of a “regular”, i.e. statically
allocated array. However, its size is that case is limited by the size of the
array. As a stack pointer the index of the array can be used. Adding an
element to the stack involves incrementing the value of the index by one and
storing the data in the element of the array designated by the index. Removing
an element from the stack consists of reading the data from the array element
designated by the index and decreasing the value of the index by one.

71 / 73

.

Questions

?

72 / 73

.

The End

Thank You For Your Attention!

73 / 73

.

Notes

.

Notes

.

Notes

.

Notes

	Abstract Data Structures
	Stack — Introduction
	Stack — Implementation
	Memory Leaks
	Examples of Stack Applications
	Summary

