
.

.

Fundamentals of Programming 2
Binary Search Trees (bst) — Part Two

Arkadiusz Chrobot

Department of Computer Science

4 maja 2020

1 / 39

.

Outline

Introduction

Searching In BST
The Minimal and Maximal Key
Specified Key

Removing Node

Changes In the main() Function

Summary

2 / 39

.

Introduction

In this part of the lecture the rest of operations for the BST is defined. The
majority of functions that implement that operations is presented in the recur-
sive and iterative form, except for the functions that implement the operation
of removing a single node from the BST. Those are defined only in the ite-
rative form. In the final part of the lecture changes are discussed that have
to be introduced to the program from the previous lecture, to invoke the new
functions.

3 / 39

.

BST Search

Let’s start with functions which find the BST nodes that store the minimal
and maximal key. Those functions return addresses of the nodes. If the nodes
don’t exist then they will return the null value.

4 / 39

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Searching In BST
The Minimal and Maximal Key

The order of nodes in the BST helps locating nodes that store the minimal
or maximal key. The node with minimal key is the leftmost node of the BST,
and the node with maximal key is the rightmost node of the BST. Such nodes
don’t exist only when the BST is empty. Even the BST with only one node
has a node with minimal and maximal key — this is the same node, which is
also the root of the tree.

5 / 39

.

Searching In BST
Minimal Key

Finding the node with minimal key in BST consists of traversing the tree
starting with the root and directing to the left, until the node with null
value of the field pointing to the left child is found. The next slide presents a
recursive function that implements that algorithm. If the function is applied
to a BST node which is not a root then it will locate a node with minimal key
in a subtree where this node is a root.

6 / 39

.

Searching in BST — Minimal Key
Recursive Version

1 struct tree_node *find_minimum(struct tree_node *root)
2 {
3 if(root && root->left_child)
4 return find_minimum(root->left_child);
5 else
6 return root;
7 }

7 / 39

.

Searching In BST — Minimal Key
Recursive Version

The function from the previous slide returns the address of the BST node
storing the minimal key or a null value if such a node doesn’t exist. It has
only one parameter. The parameter is used for passing the address of the root
or, in the case of recursive invocations, the addresses of subsequently visited
nodes of the BST. In the 3rd line the function checks if the node pointed
by the root parameter and its left child exist. If the first expression in the
condition evaluates to false then it means that the function has been invoked
for an empty tree. Therefore, it returns the null value and exits. If the second
expression in the condition evaluates to true then it means that the currently
visited node is not the one that the function searches for, so it invokes itself
for the left child of the node (4th line). Those invocation are repeated until
the function finds the leftmost node of the BST. In that case the address of
the node is returned by the function.

8 / 39

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Searching In BST — Minimal Key
Iterative Function

1 struct tree_node *find_minimum(struct tree_node *root)
2 {
3 while(root && root->left_child)
4 root = root->left_child;
5 return root;
6 }

9 / 39

.

Searching In BST — Minimal Key
Iterative Function

The iterative version of the find_minimum() function has the same prototype
as its recursive one. The body of the function contains a while loop in which
the root pointer parameter is used for traversing BST nodes, starting with
the root and finishing with the one that has no left child. If the function is
invoked for an empty tree then the loop won’t be performed even once. After
the loop stops the function returns the address stored in the root pointer and
exits.

10 / 39

.

Searching In BST — Maximal Key

The operation of searching for the BST node with the maximal key is per-
formed similarly to the operation of searching for the node with the minimal
key. The only difference is that this time the key is stored in the rightmost
node of the tree. It means that the node has no right child. Searching for
that node fails only when the operation is performed for an empty tree. If the
operation is performed for a node other than the root of the BST then it will
find a node of the BST that stores a maximal key in the subtree in which this
node is the root. The next two slides present the recursive and iterative forms
of a function that implements the operation of searching the BST node with
the maximal key. Because those functions are very similar to the functions for
searching the node with the minimal key then they are not described.

11 / 39

.

Searching In BST — Maximal Key
Recursive Version

1 struct tree_node *find_maximum(struct tree_node *root)
2 {
3 if(root && root->right_child)
4 return find_maximum(root->right_child);
5 else
6 return root;
7 }

12 / 39

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Searching In BST — Maximal Key
Iterative Version

1 struct tree_node *find_maximum(struct tree_node *root)
2 {
3 while(root && root->right_child)
4 root = root->right_child;
5 return root;
6 }

13 / 39

.

Searching In BST — The Specified Key

The algorithm for finding a node with a specified key is similar to the algorithm
for searching a place in the BST for a new node in the operation of adding a
node to the tree. By comparing the specified key with the key stored in the
currently visited node it can be decided which subtree (left or right) should be
searched for that node in the next step. The operation is completed when the
currently visited vertex stores the specified key or when there are no nodes left
to visit. In the latter case the node storing the specified key does not exists.

14 / 39

.

Searching In BST — The Specified Key
Recursive Version

1 struct tree_node *find_node(struct tree_node *root, int key)
2 {
3 if(root && root->key > key)
4 return find_node(root->left_child,key);
5 else if(root && root->key < key)
6 return find_node(root->right_child,key);
7 else
8 return root;
9 }

15 / 39

.

Searching In BST — The Specified Key
Recursive Version

The function presented in the previous slide returns the address of the BST
node and has two parameters. The first parameter, which is a pointer, is used
for passing the address of the root or, when the function is called recursively,
the address of the left or the right child of the currently visited node. The
second parameter is used for passing the specified key. In the 3rd line the
function checks whether the address passed by the root parameter is not
null and if the key stored in the node pointed by the root parameter is
greater than the key the function searches for. If the first expression in the
condition evaluates to false when the function is called for the first time
then it means that the tree is empty. If the same expression evaluates to
false when the function is called recursively then it means there is no node
in the tree that stores the specified key. If both expressions evaluate to true
then the function is invoked recursively and the first argument of this call is
the address of the left child of the currently visited node (4th line).

16 / 39

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Searching In BST — a Specified Key
Recursive Version

If the condition in the 3rd line of the function is not met then the function
verifies condition in the 5th line. Once again it checks if the root parameter
has a value different then null. It is necessary, because the function performing
the statements in the 5th line has no information whether the same expression
in the 3rd line evaluated to true or false. If the node pointed by the root
pointer exists then the function checks if the key that it stores is less than
the specified key. If so, the function is called for the node’s right child. The
recursive calls stop because of two reasons. The first one is that the root
parameter becomes an empty pointer. That means that there is no node that
stores the specified key and the function returns null (8th line). The second
reason is that the node doesn’t have a key that is less than or greater than
the specified one and it means there is only one possibility — the node stores
the specified key and the function returns its address and exits.

17 / 39

.

Searching In BST — a Specified Key
Iterative Version

1 struct tree_node *find_node(struct tree_node *root, int key)
2 {
3 while(root) {
4 if(root->key == key)
5 return root;
6 if(root->key > key)
7 root = root->left_child;
8 else
9 root = root->right_child;

10 }
11 return root;
12 }

18 / 39

.

Searching In BST — a Specified Key
Iterative Version

The prototype of the iterative form of the find_node() function is the same
as for the recursive version. The tree is traversed with the use of the while
loop, which repeats itself as long as the root parameter has a value different
than null. The value of the parameter is changed inside the loop. If the key
stored in the currently visited node is equal to the specified key (4th line)
then the function returns the address of that node and exits (line no. 5). If
the key stored by the node is greater than the specified key (line no. 6) then
the address of the left child of the currently visited node is assigned to the
root pointer (7th line). If even this condition is not satisfied then the address
of the right child of that node is assigned to the root pointer. If the while
loop stops because the condition in the 3rd line is not met then it means that
there is no node in the tree that stores the specified key. In such a case the
function returns null value and exits (11th line).

19 / 39

.

Removing Node

The operation of removing a single node from the BST deletes a node with
the specified key. While implementing such an operation the following cases
should be considered:

1. the node storing the specified key doesn’t exist — no action needs to be
taken,

2. the node has no children — it can be deleted, but the null value has
to be assigned to the left_child or right_child pointer field of its
parent, depending which one points to the node,

3. the node has only one child — before the node is removed, the address
of its child has to be assigned to the pointer field of its parent that points
to the node, just like in the previous case,

4. the node has two children — it’s the most complicated case; the node
cannot be simply removed; another node should be found in the BST
that could be removed instead.

20 / 39

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Removing Node

In the last case the other node can be the predecessor or successor of the node
originally to be removed. The predecessor is the node that stores the greatest
key from all the keys smaller than or equal to the key stored in the original
node. The successor is the node that stores the smallest key from all keys
greater than the key stored in the original node. The predecessor is also the
rightmost node in the left subtree of the original node and the successor is the
leftmost node in the right subtree of the original node. Before the successor
or predecessor will be removed the data from that node should be assigned to
the original node.
The operation implemented in this lecture chooses the predecessor of the
node with two children to be removed. The description of its implementation
starts with the presentation of a function that isolates (i.e. finds and unlinks)
the predecessor from the tree. Then the function that handles all four cases
introduced in the previous slide is explained.

21 / 39

.

Removing Node
The isolate_predecessor() Function

1 struct tree_node *isolate_predecessor(struct tree_node **root)
2 {
3 while(*root && (*root)->right_child)
4 root = &(*root)->right_child;
5 struct tree_node *predecessor = *root;
6 if(*root)
7 *root = (*root)->left_child;
8 return predecessor;
9 }

22 / 39

.

Removing Node
The isolate_predecessor() Function

The function returns the address of the predecessor of the BST node effectively
pointed by the root parameter, which is a pointer to a pointer. It should be
invoked only from within the function that deletes a BST node and then and
only then if the node has two children. The function takes one argument.
It is the address of the left_child field of the original node, that stores
the address of its left child (which is also the root of its left subtree). In the
while loop (lines no. 3 and 4) the function traverses the left subtree taking its
rightmost branch until it finds the rightmost node of the subtree. Please note,
how the root pointer to a pointer is used inside the loop. In each iteration
the address of the pointer field which stores the address of the right child
of the currently visited node is assigned to the pointer. The loop stops when
the node is located that has no right child. Validating in the 3rd line if the
expression *root doesn’t evaluate to null is redundant.

23 / 39

.

Removing Node
The isolate_predecessor() Function

After the predecessor of the node to be removed is found the function stores
its address in a local pointer named predecessor. Then, after checking that
the predecessor exists (6th line), which is also redundant, the function assigns
the address stored in its left_child field to the variable pointed by the root
pointer. It is necessary for two reasons. The predecessor doesn’t have a right
child, but it still may have a left child. If such a child exists then its address
has to be stored in the pointer field of the predecessor’s parent that points
to the predecessor. Otherwise the left child and possibly the whole subtree
associated with that node could be lost. If the left child doesn’t exist then
the predecessor’s left_child field stores the null value, which should be
assigned to the pointer field of the predecessor’s parent that points to the
predecessor, after the latter is unlinked from the tree. The statement in the
7th line handles both cases. After the predecessor is unlinked, the function
returns its address and exits (8th line).

24 / 39

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Removing Node

1 void delete_node(struct tree_node **root, int key)
2 {
3 while(*root && (*root)->key!=key) {
4 if((*root)->key>key)
5 root = &(*root)->left_child;
6 if((*root)->key<key)
7 root = &(*root)->right_child;
8 }
9 if(*root) {

10 struct tree_node *node = *root;
11 if(!node->left_child)
12 *root = (*root)->right_child;
13 else if(!node->right_child)
14 *root = (*root)->left_child;
15 else {
16 node = isolate_predecessor(&(*root)->left_child);
17 (*root)->key = node->key;
18 (*root)->value = node->value;
19 }
20 free(node);
21 }
22 }

25 / 39

.

Removing Node

The delete_node() function returns no value but it has a pointer to a pointer
parameter. It allows the function to change the value stored in the root pointer
or the pointer fields of the BST nodes. By the second parameter is passed the
key that identifies the node for removal. In the while loop (3rd to 8th line)
the tree is traversed in order to locate the node. The find_node() function
cannot be applied for this task because not only the address of the node is
required but also the address of the variable or field that stores the address.
This is enabled by the pointer to a pointer. Inside the while loop it is verified
if the *root expression doesn’t evaluate to null (3rd line). The loop can stop
when the node that is looked for is found or when there are no BST nodes
left to traverse. The latter also happens when the function is invoked for an
empty BST. The next steps depend on whether the *root expression points
to an existing BST node or not. This is tested in the 9th line of the function.

26 / 39

.

Removing Node

If the expression *root evaluates to null it means that there is no node
that should be removed. Otherwise the function assigns the address of the
node pointed by *root to a local pointer called node (10th line) and then it
checks if its left child doesn’t exist. If so, then there is a node to be removed
with at most one child — the right child still may exist. The address of that
child is assigned to the variable pointed by the root parameter. The variable
can be a root pointer or a pointer field of the parent of the removed node.
The assignment protect the right child, possibly along with a whole subtree
associated with it, from being unlinked from the BST. If the right child doesn’t
exist then the right_child pointer field stores the null value that should
be assigned to the variable pointed by root parameter. Hence, the statement
in the 12th line is correct even in this case.

27 / 39

.

Removing Node

If the left child exists then the function checks if the right child of the removed
node doesn’t exists. If so, it acts similarly as when the left child doesn’t exist,
but this time it is certain that the other child exists (the left_child field
stores a value different than null) and its address should be assigned to the
variable pointed by the root parameter (14th line). Otherwise, the left child
would be unlinked from the BST. If both children of the node exists (16th
line) then the function calls the isolate_predecessor() function that finds
the predecessor of the node, unlinks it from the tree and returns its address,
which is then assigned to the node pointer. Next, the delete_node() func-
tion copies the data from the predecessor to the node that was originally to
be removed (17th and 18th lines). Before the function exits it deallocates the
memory allocated to the node pointed by the node pointer. In both previo-
usly described cases, the address of the node that should be removed is also
assigned to the variable (10th line), so in all three cases the correct node is
deleted.

28 / 39

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Removing Node

In the next slide is an animation that shows the operation of removing a node
with two descendants (it is also the root of the BST).

29 / 39

.

Removing Node

..

root

.

43

.

2

.

1

.

3

.

6

.

5

.

7

.

node

30 / 39

.

Changes In the main() Function

To test the behaviour of functions that have been defined in this lecture it
is necessary to invoke them in the main() function of the program from
the previous lecture, somewhere between calling the add_node() and the
removing_tree_nodes() functions. The next slides show an example of a
code that does it.

31 / 39

.

Changes In the main() Function

1 if(root) {
2 printw("The value associated with the smallest key: %c\n",
3 find_minimum(root)->value);
4 printw("The value associated with the greatest key: %c\n",
5 find_maximum(root)->value);
6 refresh();
7 getch();
8 }

32 / 39

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Changes In the main() Function

Usually the results of find_minimum() and find_maximum() functions sho-
uld be assigned to two different pointers. The content of the nodes should
be displayed only after the main() function verifies that both of the pointers
store values different than null. But another approach can also be taken,
which is demonstrated in the previous slide. The main() function checks that
the tree is not empty (1st line) before the functions are called. If so, then the
functions will return addresses of existing nodes for sure. Please notice, how
the functions are invoked (3rd and 5th lines). Both of them return addresses
of existing nodes that can be directly used for accessing the value fields of
those nodes.

33 / 39

.

Changes In the main() Function

1 int key;
2 scanw("%d",&key);
3 struct tree_node *result = find_node(root,key);
4 if(result) {
5 printw("The value associated with the key %d is %c\n",
6 result->key, result->value);
7 refresh();
8 getch();
9 erase();

10 delete_node(&root,key);
11 print_keys(root,COLS/2,1,20);
12 refresh();
13 getch();
14 }

34 / 39

.

Changes In the main() Function

The code from the previous slide asks the user to input a key which is then
searched in the BST (2nd line). If the key is found by the find_node()
function then the content of the node that stores it is displayed on the screen
(lines no. 5 and 6). Next, the node is deleted from the tree (10th line) and
the keys stored in the BST are displayed in a way that shows the shape of the
tree (11th line).
The program, that is available on the course’s web page, uses a macro called
recursive, which is a marker. If it is defined at the beginning of the program
or as a compilation option, then in the compiled program only the recursive
functions that implement some of the BST operations will be used. Otherwise,
only the iterative functions will be applied.

35 / 39

.

Summary

Among the operations that are described in the lecture the most time–consuming
is the operation of searching/traversing the BST. The operation is also fre-
quently performed as a part of other operations. The time needed to perform
it is proportional to the hight of the tree. In the case of a full binary tree,
the hight can be computed with the use of the following formula log2(n),
where n is the number of the nodes in the tree. In most cases the keys in the
BSTs are randomly dispersed and those data structures have shapes close to
the shape of the full binary tree. Hence, the BST is usually a very effective
data structure. The possibility of implementing a tree with the use of an array
has been mentioned in the first part of the lecture. The example of such an
implementation in case of the BST is … a sorted array. Just as in the BST the
keys (and possibly values) form an ascending order starting from left to the
right. If the binary search algorithm is applied for searching a key in such an
array, then the time complexity of such an operation is the same as for the
BST searching.

36 / 39

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Summary

Using an array allows for implementing other types of trees. An example of
such an implementation is presented in the next lecture. Not all BSTs have
the same or even similar shape as the full binary tree. The corner cases are
BSTs in which nodes with already sorted keys are inserted. Those trees have
the same shape as linear lists. The time needed for traversing such trees is
directly proportional to the number of their nodes. To prevent such cases the
operation of balancing the BST could be applied. The tree that is created
with the use of such an operation is called a balanced tree. Examples of such
trees are the avl trees and the red–black trees. They won’t be discussed in
this lecture.

37 / 39

.

Questions

?

38 / 39

.

The End

Thank You For Your Attention!

39 / 39

.

.

Notes

.

Notes

.

Notes

.

Notes

	Introduction
	Searching In BST
	The Minimal and Maximal Key
	Specified Key

	Removing Node
	Changes In the main() Function
	Summary

