
.

.

Fundamentals of Programming 2
Pointers and Dynamically Allocated Variables

Arkadiusz Chrobot

Department of Computer Science

February 24, 2020

1 / 56

.

Outline

Pointers — Short Revision

Function Pointers

Dynamically Allocated Variables

How To Read Complicated C Declarations?

2 / 56

.

Pointers — Short Revision

A pointer variable or a pointer, for short, does not store directly any
meaningful information, instead it stores an address of a single memory
cell or the first memory cell from a group of adjacent memory cells that
store data processed by a program. Such a variable is declared in the
following way:

data_type *pointer_name;
In this case the data type describes not the type of information stored
in the pointer (it is always an address), but the type of of data stored in
a pointed variable, which is the aforementioned memory cell or group of
memory cells. Hence, the declaration: int *integer_pointer; should
be read, as a pointer to a variable of the int type, but usually the more
convenient (although quite confusing) form is used: pointer of the int
type. It is also possible to declare a pointer that points to data of an
unspecified type, using the following pattern:

void *pointer_name;
The type of the data can be defined/modified with the use of casting.

3 / 56

.

Pointers — Short Revision
Pointers Values

Pointers always store only addresses of memory cells. A pointer that
points to nothing is called an empty pointer and it has a value described
by the null constant. The ISO C99 allows using the 0 number instead
of the aforementioned constant. Global pointers are empty pointers
by default. Local pointers have an unspecified default value. In Com-
puter Science jargon such pointers are called wild pointers. Using them
without proper initialization is very dangerous, because it may cause
damage to information stored in any of program’s memory cells and
result in aborting the program. The printf() function and its deriva-
tives allow the programmer to display or write to a file the content of
a pointer with the use of the %p formatting string. It is not allowed to
use this string with the scanf() function and its derivatives.

4 / 56

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Pointers — Short Revision
Data Access

If a pointers points to data of a specified type, then it is possible to get
the data by dereferencing the pointer variable. In the C language the *
(“start” or “asterisk”) symbol is used as the dereference operator. It is
the same symbol which is used in pointer declaration. To dereference a
declared and initialized pointer it is necessary to put the symbol before
its name. The pointer can be initialized by assigning it an address of
a local or global variable with the use of the & (ampersand) operator,
which is called the address operator. This operator ought to be placed
before the name of the variable which address it should return. If a
pointer points to a structure or an union then accessing its members
can be done twofolds:

structure_name->field_name
or:

(*structure_name).field_name
It is recommended to use the first notation, because its shorter and
more legible.

5 / 56

.

Pointers — Short Revision
Pointer Arithmetic

Pointers, or more specifically the addresses stored inside of them can be
compared with use of the same operators that are used for comparing,
for example, the integer numbers. Additionally, the C language allows
using the pointer arithmetic which means that it makes it possible
to add to a pointer or subtract from a pointer an integer number.
Moreover, two pointers can be subtracted from each other, but they
cannot be added. Also, the increment and decrement operators may
be applied to the pointers. The pointer arithmetic can be used, for
example, with arrays. However, it should be applied cautiously, and
whenever it is possible to avoid it, the arithmetics should be not used.

6 / 56

.

Pointers — Short Revision
Using Pointers in Functions

The pointers may be applied as parameters of functions. The arguments
passed by such parameters are stated to be passed by a pointer or by
an address. Pointer parameters are used in the function body just
like regular pointers. The name of the argument passed by a pointer
parameter has to be prefixed by the address operator (&). There are
two exceptions from the rule. The first one are pointers and the second
one are the linear arrays which names in the C language are (almost)
equivalent to the pointers. The argument data type has to be the
same as the data type of the pointer parameter, with the exception
of the void pointer parameter. Changing data pointed by the pointer
parameters results in the change of the value of arguments passed by
them — the arguments are pointed variables.
Functions may return the values of pointers (addresses). In that case
the data type of function’s returned value should be declared as a
pointer type. Returning an address of any local variable is dangerous
and discouraged.

7 / 56

.

Pointers — Short Revision
Example

#include <stdio.h>

int main(void)
{

int *pointer = NULL;
int variable = 3;
pointer = &variable;
printf("The value of the pointed variable: %d\n",*pointer);
printf("The address stored in the pointer: %p\n",pointer);
variable++;
printf("The value of the pointed variable: %d\n",*pointer);
*pointer+=1;
printf("The value of the pointed variable: %d\n",variable);
return 0;

}

8 / 56

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Pointers — Short Revision
Comment

By tracing the program from the previous slide it is possible to find out
that the value of the pointed variable can be changed with the use of
the pointer, and also the modified valued can be read using the same
pointer. Please note the difference between reading the value of the
pointer (the address it stores) and reading the value of the variable
pointed by the pointer.

9 / 56

.

Pointers — Short Revision

To better understand how the pointers work, let’s take a look at a very
simplified model of the computer memory, in which each variable has
the size of a single cell. The variables from the example program could
be arranged in the memory in the following way:

..

addresses

. 0x0000.
0x0001

.

0x0002

.

0x0003

.

0x0004

.

0x0005

.

0x0006

.

cells

. 0.

3

.

0

.

0

.

0x0001

.

0

.

0

.

pointer

.

variable

10 / 56

.

Pointers — Short Revision

The picture from the previous slide is for reference only. The addresses
of cells in the drawing are not real. They are simplified in order to make
the depiction of memory easy to understand. In reality the variable may
be arranged differently than they are in the picture. There is also one
more simplification made in the drawing — it is assumed that every
cell in the memory is capacious enough to store an address (to serve as
a pointer) and a value of the int type. Real cells usually have the size
of a single byte and the size of pointers and int type variables depends
on the architecture of the computer that runs the program. Most of
contemporary computers have a 64-bit architecture and thus the size
of both data types is eight bytes. For the 32-bit computers the size is
four bytes. That means that the address as well as the value are stored
in more than one memory cell. The addresses are written using the
hexadecimal numbers. One hexadecimal digit is equivalent to four bit,
so the addresses in the picture are 16-bits wide.

11 / 56

.

Function Pointers

Functions just like data are stored in cells of the ram. Hence, just
like regular data functions may be pointed by pointers and also can be
invoked. Even those functions that take arguments. Function pointers
have to have a specific data type. For example if a function doesn’t
return any value (or in other words: returns void) and doesn’t take any
arguments, then the function pointer should be declared as follows:

void (*function_pointer)(void);
Please notice how the parentheses are used. Without them the decla-
ration would describe a prototype (header) of a function that takes no
arguments and returns a pointer of an unspecified type. The pointer
to a function that takes two arguments of int type and returns a value
of the same type could be declared in the following way:

int (*another_function_pointer)(int, int);

12 / 56

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Function Pointers

The declarations of function pointers can be even more complicated.
The topic will be discussed at the end of the lecture. It is possible
to create structures and unions with fields that are function pointers
or arrays with elements that are such pointers. In the next slides two
example programs are presented that show how to use the function
pointers declared in the previous slide.

13 / 56

.

Function Pointer
Example — Simple Function Pointer

#include<stdio.h>

void say_hello(void)
{

puts("Hello there!");
}

int main(void)
{

void (*function_pointer)(void) = 0;
function_pointer = say_hello;
function_pointer();
return 0;

}

14 / 56

.

Function Pointers
Example — Comment

In the program from the previous slide, the say_hello() function is
declared that takes no arguments and returns no value. In the main()
function of the program, a pointer to the aforementioned function is
declared. It is a local pointer, thus it is initialized with 0 in the place of
its declaration. Lack of initialization for such a pointer is not signaled
by the compiler, but it may have dangerous consequences during the
program run. Thus its initialization is always recommended. In the
next line of the main() function a curious assignment is made. Literally
it can be interpreted as assigning the function name to a pointer. In
reality, the name of a function in the C language is (almost) equivalent
to a pointer, just like in the case of an array. So, in that line the address
of the say_hello() function is assigned to the function pointer. The
code of the program can be made a little shorter by replacing the two
described lines of the main() function with the following one:

void (*function_pointer)(void) = say_hello;

15 / 56

.

Function Pointers
Examples — Comment (Continued)

The statement in the next line looks like an invocation of the function,
but with the pointer name used instead of the function name. Indeed, in
the line the function is called, but indirectly, with the use of the pointer
variable that points to the function. The parentheses () placed behind
the pointer are the function call operator. It orders the computer to
activate the function. If the function needed arguments then their list
would be embraced by those parentheses, what is shown in the next
program.

16 / 56

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Function Pointers
Example — More Advanced Function Pointer

#include<stdio.h>

int add_up(int first, int second)
{

return first+second;
}

int main(void)
{

int (*another_function_pointer)(int, int) = NULL;
another_function_pointer = add_up;
printf("Adding %d to %d gets %d.\n",3,2,

another_function_pointer(3,2));
return 0;

}

17 / 56

.

Function Pointers
Example — Comment

In the program from the previous slide a more advanced function is
defined that takes to numbers as arguments and returns their sum.
A pointer to such a function is declared and initialized in the main()
function. This time it is assigned the value of the null, to show that
it also can be applied in such a case. In the next line the pointer is
assigned the address of the add_up() function. Like in the previous
example those two lines can be replaced by the following one:

int (*another_function_pointer)(int, int) = add_up;
The add_up() function has two parameters, thus when it is invoked
two arguments have to be passed to it. The same has to be done when
it is invoked with the use of the pointer. In the case of the program
those arguments are two numbers: 3 and 2. Please note, that the value
returned by the function is an argument of the printf() function call,
that displays the result on the screen.

18 / 56

.

Dynamically Allocated Variables

The pointers play one more important role in programming. They
allow using dynamically allocated variables. Before this term will be
explained, let’s review the information about the scope of variables:

▶ global variables — created in the data area of the program’s mem-
ory; exist through the whole life cycle of the program; initialized
by default with the zero value.

▶ local variables — also called automatic variables; associated with
functions; created on the call stack (an area of program memory)
when the function is called; are a part of an activation record
(a stack frame); not initialized by default; cease to exist when
the function terminates; their scope depends on the place of their
declaration.

19 / 56

.

Dynamically Allocated Variables

The dynamically allocated variables have some properties of both of the
kinds described in the previous slide. The programmer decides about
their scope and life cycle. Hence the name — they are created and
destroyed when the program is running. Those variables are created
in a area of the program memory that is called a heap, with the use
of dedicated subroutines that are standard elements of a programming
language. In case of the C language they are functions and are described
in the next slides. The subroutines that create dynamically allocated
variables allow the programmer to specify the size of the variable or in
other words the number of memory cells that constitute the variable,
but they do not allow her or him to give it a name. Those subroutines
return the address of the new variable, which can be stored in a pointer.
Thus the pointer becomes the only link between the variable and the
rest of the program. After such an assignment the dynamically allo-
cated variable becomes a pointed variable. Additionally, if the pointer
is of a specific type, it also determines the type of the dynamically
allocated variable.

20 / 56

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Dynamically Allocated Variables

It is possible to point a single dynamically allocated variable with sev-
eral pointers. This allows for interpreting the same data stored in the
variable in different ways. However, this is a complicated case and
won’t be further discussed in the lecture. The operation of creating a
dynamically allocated variable boils down to making a reservation of a
continuous area of memory for the variable in the heap and it is called
an allocation. It is not a trivial operation and it can fail. The way
the allocation is done depends on the computer and operating system
internal workings, but the details won’t be discussed in the lecture.
However, it has to be stated, that all allocated memory on the heap
must be freed when the dynamically allocated variables are no longer
used or before the program terminates. The operation of freeing the
memory is carried out with the use of another subroutines, which mark
the allocated memory as free, i.e. ready to be used for another dynam-
ically allocated variables. Freeing memory is also called a deallocation
of a variable and is equivalent to destroying it.

21 / 56

.

Dynamically Allocated Variables
Heap Handling Functions in the C Language

There are four functions in the C language responsible for managing
(allocating and freeing) the heap. They are described in tables in this
and following slides.

Function Name Description
malloc() The function takes only one argument, which is an

expression defining the size (in bytes) of the mem-
ory area which is to be allocated in the heap. The
returned value is of the void * type and it is the
address of the first memory cell from the group of
cells that belong to the allocated area. The ad-
dress is called the address of the dynamically allo-
cated variable (memory area) or a pointer to the
dynamically allocated variable (memory area). If
the function fails to allocate memory, it returns
the null value. The allocated memory is unini-
tialized.

22 / 56

.

Dynamically Allocated Variables
Heap Handling Functions in the C Language

Function Name Description
calloc() This is actually a form of the malloc() function,

which is designed to simplify the allocation of
memory for arrays. It takes two arguments. The
first one is the number of elements of the dynam-
ically allocated array and the second one is the
size of a single element. The array is initialized
with zeros.

23 / 56

.

Dynamically Allocated Variables
Heap Handling Functions in the C Language

Function Name Description
free() The function is responsible for freeing the memory.

It returns no value, but takes the pointer to the
memory to be freed as its argument. The memory
should be previously allocated by one of three func-
tion that can do it, otherwise a serious exception
may occur and the program may be aborted. If an
empty pointer is passed to the function, it will take
no actions. It should be noticed, that the function
doesn’t zero out the memory area that it deallocates,
it just marks it as free. The data stored inside the
area still exists, but they mustn’t be accessed. The
function also doesn’t zero out the passed pointer and
as long as it is not assigned a new address it mustn’t
be used. In Computer Science jargon such a pointer
is called a hanging pointer.

24 / 56

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Dynamically Allocated Variables
Heap Handling Functions in the C Language

Function Name Description
realloc() The function modifies the size of the allocated memory

area in the heap. It takes two arguments. The first one
is the pointer to that area, and the second one is the new
size expressed in bytes. The function returns an address
of the modified memory area (the value of the void *
type) or null if it failed. The returned address may be
different from the passed address, in case the function has
to overcome obstacles in resizing the area by coping the
data stored in it to another memory area. If the memory
area is expanded, the data inside it are preserved. How-
ever, if the area is shrank, a data loss may occur. If an
empty pointer is passed to the function it will behave like
the malloc() function and if the new size is set to 0 the
function will behave like the free() function.

25 / 56

.

Dynamically Allocated Variables

All the functions described in tables are declared in the stdlib.h
header file. Declarations of two other useful functions are in the string.h
header file. The first function was already introduced. It is the memset()
function that stores a specified value in a memory area pointed by a
pointer. It takes three arguments. The first one is the pointer (of the
void * type) to the memory area, the second one is the value (of the
int type) to be stored in the area and the last argument is the size of
the area expressed in bytes. The memset() function returns the void
* pointer to the area which now stores the value. The second useful
function is the memcpy(), which copies the content of one memory area
to another. It takes three arguments. The first one is a pointer to the
destination area and the second one is the pointer to the source area.
Both of them are of the void * type. The last argument is the size
of data to be copied. The function returns the pointer (of the void *
type) to the destination area.

26 / 56

.

Dynamically Allocated Variables
Example — Dynamically Allocated Variable of int Type

#include<stdio.h>
#include<stdlib.h>

int main(void)
{

int *variable = (int *)malloc(sizeof(int));
if(variable) {

printf("The address of the dynamically allocated variable:\
%p\n",variable);

*variable = 24;
printf("The value of the dynamically allocated variable:\

%d\n",*variable);
free(variable);
variable=NULL;

}
return 0;

}

27 / 56

.

Dynamically Allocated Variables
Example — Dynamically Allocated Variables of int Type

In the previous slide a simple, not split into functions, program is pre-
sented that uses a dynamically allocated variable of the int type. The
variable is created by invoking the malloc() function. The size of the
variable is calculated with the use of sizeof operator applied to the
int type. The value (the address) returned by the malloc() function
is casted to the int * type and stored in the pointer named variable.
After the program checks if the memory allocation was successful, the
address stored in that pointer is displayed on the screen and then a
number 24 is stored in the dynamically allocated variable. Next, the
value of the variable is displayed on the screen. After completing all
described actions the program deallocates the dynamically allocated
variable using the free() function and assigns the null constant value
to the pointer. No operation can be carried out with the use of dynami-
cally allocated variable until the program makes sure that the allocation
operation was completed successfully.

28 / 56

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Dynamically Allocated Variables
Example — Dynamically Allocated Array

The next slides contain a source code of a program that uses a dynam-
ically allocated array. The memory for that array is allocated with the
use of calloc() function.

29 / 56

.

Dynamically Allocated Variables
Example — Comment

#include<stdio.h>
#include<stdlib.h>

#define NUMBER_OF_ELEMENTS 20

void fill_array(int *array)
{

int i;
for(i=0;i<NUMBER_OF_ELEMENTS;i++)

array[i]=i;
}

30 / 56

.

Dynamically Allocated Variables
Example — Comment

The beginning of the source code of the program that demonstrates
the use of dynamically allocated array is presented. It’s very similar to
the beginning of program that uses a regular (i.e. statically allocated)
array. A constant is defined that describes the number of the array’s
elements and a function which assigns the value of indices to the ele-
ments of the array. The declaration of the function’s parameter may
be changed to int array[]. In the C language the name of an array
is (almost) equivalent to a pointer. That means that the same syntax
can be used to handle both statically and dynamically allocated arrays.

31 / 56

.

Dynamically Allocated Variables
Example — Dynamically Allocated Array

void print_array(int *array)
{

int i;
for(i=0;i<NUMBER_OF_ELEMENTS;i++)

printf("%d ",array[i]);
puts("");

}

32 / 56

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Dynamically Allocated Variables
Example — Dynamically Allocated Array

In the previous slide a function that displays the array content on the
screen is presented. That function can also be applied to a statically
allocated array.

33 / 56

.

Dynamically Allocated Variables
Example — Dynamically Allocated Array

int main(void)
{

int *array_pointer = (int *)calloc(NUMBER_OF_ELEMENTS,
sizeof(int));

if(array_pointer) {
fill_array(array_pointer);
print_array(array_pointer);
free(array_pointer);
array_pointer = NULL;

}
return 0;

}

34 / 56

.

Dynamically Allocated Variables
Example — Comment

In the main() function a dynamically allocated array is created with
the use of the calloc() function invocation. As the first argument the
constant describing the number of elements of the array is passed to
the function, and as the second one the size of a single element. In
this case the size of int type. After the program makes sure that the
allocation was successful it calls the functions that assign values to the
elements of the array and print them on the screen. Finally, the array
is deallocated and the pointer is assigned a null value.

35 / 56

.

Dynamically Allocated Variables
Example — Own Implementation of calloc() Function

The next example is a program which behaves in the same way as
the previous one, but it uses its own implementation of the calloc()
function. The function that reimplements the behaviour of calloc()
is called allocate_array().

36 / 56

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Dynamically Allocated Variables
Example — Own Implementation of calloc() Function

#include<stdio.h>
#include<stdlib.h>
#include<string.h>

#define NUMBER_OF_ELEMENTS 20

void *allocate_array(unsigned int number_of_elements,
unsigned int element_size)

{
unsigned long int array_size =

element_size * number_of_elements;
void *array_pointer = malloc(array_size);
if(array_pointer)

array_pointer = memset(array_pointer,0,array_size);
return array_pointer;

}

37 / 56

.

Dynamically Allocated Variables
Example — Comment

The string.h header file is included in the program to allow using the
memset() function. In the program the allocate_array() function is
defined which is the counterpart of the calloc() function. The number
of elements of the array and the size of a single element are passed by
the parameters to the function. First, the allocate_array() function
calculates the total size of the array by multiplying the values of both
parameters. Next, it allocates the memory for the array by calling the
malloc() function. After making sure that the allocation was success-
ful i.e. checking if the value of the array_pointer variable is different
than 0 (null), the function zeroes out the content of the array by in-
voking the memeset() function. Regardless if the array was created and
initialized or not, the function returns the value of array_pointer vari-
able. This is consistent with the behaviour (semantics) of the calloc()
function.

38 / 56

.

Dynamically Allocated Variables
Example — Comment (Continued)

Please note that the allocate_array() returns a value of the same
type (void *) as the calloc() function. Its also worth noticing, that
the product calculated in the first line of the function is stored in a
variable of twice as capacious type as the type of the multiplication
arguments, to avoid an overflow.

39 / 56

.

Dynamically Allocate Variables
Example — Own Implementation of calloc() Function

void fill_array(int *array)
{

int i;
for(i=0;i<NUMBER_OF_ELEMENTS;i++)

array[i]=i;
}

void print_array(int *array)
{

int i;
for(i=0;i<NUMBER_OF_ELEMENTS;i++)

printf("%d ",array[i]);
puts("");

}

40 / 56

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Dynamically Allocated Variables
Example — Comment (Continued)

The two functions presented in the previous slide are the same as in
the previously described example.

41 / 56

.

Dynamically Allocated Variables
Example — Own Implementation of calloc() Function

int main(void)
{

int *array_pointer = (int *)
allocate_array(NUMBER_OF_ELEMENTS, sizeof(int));

if(array_pointer) {
fill_array(array_pointer);
print_array(array_pointer);
free(array_pointer);
array_pointer = NULL;

}
return 0;

}

42 / 56

.

Dynamically Allocated Variables
Example — Comment

In the main() function the calling of calloc() is replaced by invocation
of the allocate_array() function. The way of using the functions in
both presented programs is the same.

43 / 56

.

Dynamically Allocated Variables
Example — Dynamically Allocated Array

One of the advantages of the dynamically allocated variables is that
their size can be modified while the program is running. The next
program creates an array with as many elements as the user requests
when the program starts. The size of the array is hence described by
the value of a variable instead of the value of a constant. The ISO C99
standard allows the programmer to declare a local arrays which size is
also described by a value of a variable, but in the newer edition of the
standard (ISO C11) that way of declaring an array is not recommended.
It is possible that in the future editions of the standard this method
of declaring an array will be forbidden. Using dynamically allocated
variables for this purpose is generally a better idea. The next example
shows how to do it.

44 / 56

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Dynamically Allocated Variables
Example — Dynamically Allocated Array

#include<stdio.h>
#include<stdlib.h>

void fill_array(int *array, unsigned int number_of_elements)
{

int i;
for(i=0;i<number_of_elements;i++)

array[i]=i;
}

void print_array(int *array, unsigned int number_of_elements)
{

int i;
for(i=0;i<number_of_elements;i++)

printf("%d ",array[i]);
puts("");

}

45 / 56

.

Dynamically Allocated Array
Example — Comment

The number_of_elements constant is removed from the program. It
is replaced by a variable of the same name, although written in lower
cases. The fill_array and print_array() functions get an additional
parameter. It is used for passing the number of elements of the array.

46 / 56

.

Dynamically Allocated Variables
Example — Dynamically Allocated Array

int main(void)
{

puts("How many elements should the array have?");
unsigned int number_of_elements = 0;
scanf("%u",&number_of_elements);
int *array_pointer =

(int *)calloc(number_of_elements, sizeof(int));
if(array_pointer) {

fill_array(array_pointer,number_of_elements);
print_array(array_pointer,number_of_elements);
free(array_pointer);
array_pointer = NULL;

}
return 0;

}

47 / 56

.

Dynamically Allocated Variables
Example — Comment

In the main() function the aforementioned number_of_elements vari-
able is declared. It is of the unsigned int type. In the variable the
number of elements, given by the user, is stored. The value is used
for allocating a memory for the array. Please notice while running the
program, that the number of displayed values of the array elements is
equal to the number inputed by the user to the program.

48 / 56

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Dynamically Allocated Variables
Summary

The pointers and dynamically allocated variables may be applied for
building a more complex and advanced data structures, than the arrays
described in the lecture. Those structures will be presented soon.

49 / 56

.

How To Read Complicated C Declarations? 1

Looking at the examples presented in the lecture it is easy to discover
that the variables in the C language may have a complicated declara-
tions. Function pointers are one of the examples. Fortunately, there is
a rule that defines how to read such declarations:

The Rule
Start at the variable name (or innermost construct if no identifier is
present). Look right without jumping over a right parenthesis; say what
you see. Look left again without jumping over a parenthesis; say what
you see. Jump out a level of parentheses if any. Look right; say what
you see. Look left; say what you see. Continue in this manner until
you say the variable type or return type.

1Based on an article by Terence Parr published here: https://parrt.cs.usfca.edu/
doc/how-to-read-C-declarations.html

50 / 56

.

How To Read Complicated C Declarations?

The next slides contain a few examples of declarations with their de-
scriptions. The names of the variables in examples are one letter long,
to avoid giving away to soon the meaning of the declarations.

51 / 56

.

How To Read Complicated C Declarations?
Example no 1

Example
int *a[10];

Answer
The a variable is an array of 10 pointers of the int type.

52 / 56

.

Notes

.

Notes

.

Notes

.

Notes

https://parrt.cs.usfca.edu/doc/how-to-read-C-declarations.html
https://parrt.cs.usfca.edu/doc/how-to-read-C-declarations.html

.

.

How To Read Complicated C Declarations?
Example no 2

Example
int (*x) (int *, int *);

Answer
The x variable is a pointer to a function that has two pointer parameters
of the int type and returns a value of the int type.

53 / 56

.

How To Read Complicated C Declarations?
Example no 3

Example
int (*(*v)[])();

Answer
The v variable is a pointer to an array of pointers to functions that take
unspecified number of arguments and return a value of the int type.

54 / 56

.

Questions

?

55 / 56

.

The End

Thank You For Your
Attention!

56 / 56

.

Notes

.

Notes

.

Notes

.

Notes

	Pointers — Short Revision
	Function Pointers
	Dynamically Allocated Variables
	How To Read Complicated C Declarations?

