
.

......

Fundamentals of Programming 2
Binary Search Trees (bst) — Part One

Arkadiusz Chrobot

Department of Computer Science

May 21, 2019

1 / 55

Outline

...1 Introduction

...2 Definitions

...3 Implementation
Base Type and Root Pointer
Adding a Node
Traversing a Binary Tree
Showing the Construction of the BST
Removing All Nodes From Binary Tree

...4 Summary

2 / 55

Introduction

Introduction

Trees are nonlinear abstract data structures used for representing
hierarchically ordered data. They are a special case of other data
structures that will be discussed in future lectures. Those structures
are called graphs. The Binary Search Tree can be considered a
tree with a specific order of elements (nodes). Trees and graphs
in computer science are implementations of mathematical concepts.
Therefore, some definition from mathematics related to the trees are
introduced in the next slides.

3 / 55

Definitions

Definitions
Tree

A tree is a set T of one or more elements called nodes or vertexes
satisfying the following conditions:

there is one special node called root,
the rest of the nodes are partitioned into m ≥ 0 disjoint sets
T1, . . . , Tm, which are also trees. The trees T1, . . . , Tm are
called subtrees of the root.

4 / 55

Definitions

Definitions
Degree of Node

The number of subtrees of a single tree node is called a degree. The
nodes with degree higher than zero are called internal nodes or inner
nodes. The nodes with degree equal zero are called external nodes
or leafs.

..degree=3.

degree=2

.

degree=0

.

degree=0

.

degree=0

.

degree=1

.

degree=0

5 / 55

Definitions

Definitions
Level of Node

The level of a node is defined recursively: the root has a level equal
0 and the level of each other node is higher by one than the level of
the root in a smallest subtree that includes the node.

..level=0.

level=1

.

level=2

.

level=2

.

level=1

.

level=1

.

level=2

6 / 55

Definitions

Definitions
Ordered Trees

If the order of the subtrees in a tree does matter then the tree is an
ordered tree.

7 / 55

Definitions

Definitions
The Hight of the Tree

The tree hight is the maximal level of its nodes plus one.

8 / 55

Definitions

Definitions
Binary Tree

A binary tree is a finite set of nodes, which either is empty of it
consists of the root node and two disjoint binary trees called the
left and right subtrees. Therefore, the degree of each node in a
binary tree doesn’t exceeds two. If the left and/or right subtree of
a given node is not empty, then the root of that subtree is called a
descendant (or a child) of the given node, while the node is called
an ancestor (or a parent) of that root. Interesting fact: according
to the introduced definitions the binary tree is not a tree, because it
can have no elements and the tree has to have at least one element.

9 / 55

Definitions

Definitions
Differences Between Trees and Trees

If it is assumed that the figures in the slide show binary trees, then
they are two different binary trees, otherwise those figures show the
same tree.

..node 1.

node 2

..node 1.

node 2

10 / 55

Definitions

Definitions
Full and Complete Binary Tree

If a binary tree of a given height has all possible nodes, then it is
called a full binary tree. If a binary tree of a given height has all
possible nodes on every level, except possibly a few on the last one,
it is called a complete binary tree.

........

The Full Binary Tree

.......

The Complete Binary Tree

It’ worth to mention that in computer science the trees are drawn
with the root up. 11 / 55

Definitions

Definitions
The BST

Binary Search Tree (bst) is applied for implementing data struc-
tures called dictionaries in which every value is identified by a
unique key. In the BST the keys are ordered according to the fol-
lowing rule:
.Key Order in the BST..

......

Let x be a node in the BST. If y is a node in the left subtree of
the x node then key(x) ≥ key(y). If y is node in the right
subtree of x node then key(x) ≤ key(y).

Peter Braß1 calls the BSTs the first model of search trees.

1Peter Brass “Advanced Data Structures”, Cambridge University Press, Cam-
bridge, 2008

12 / 55

Implementation

Implementation
The implementation is discussed with the use of a BST that stores
key–value pairs, where the key is an ascii code of character and
the value is the character. The definition of the BST allows the
key of a given node to be repeated in the left or right subtree of
that node. Unfortunately, this complicates the implementation of
adding a new node to the tree. Thus, some compromise has to be
made. Some computer scientists think that keys in the BST should
not repeat, others claim that the keys may repeat, but those that
do should be placed always on the left or always on the right side
of the node that stores the same key. The first approach seems to
be plausible, but may cause problems when the BST is for example
applied for storing personal data, where the surname of the person is
the key. The aforementioned Peter Braß proposes to allow the keys
to repeat, but store the values only in the tree leaves. In the lecture
yet another approach is taken — the keys are allowed to repeat and
each node stores a value.

13 / 55

Implementation

Implementation

Just like other data structures the binary trees can be implemented
with the use of arrays or as dynamically allocated data structures.
In the lecture the latter approach is discussed. Similarly as for lists
and other the like structures the base type of BST (the data type of
a single node) and operations for the tree have to be defined. As for
the operations, in the lecture are only defined adding a new node
to the BST, printing the content of the tree and removing all nodes
from the BST. The printing operation utilizes several binary tree
traversing algorithms and can also visualise the structure of the tree
on the screen. According to the definition that is introduced in the
lecture an empty binary tree is an existing tree, so formally there
is no operation of removing or creating a binary tree (also a BST).
The operation of removing a single node from a tree is complicated
and it will be discussed in the next lecture, together with some other
additional operations.

14 / 55

Implementation

Implementation
Header Files

1 #include<stdlib.h>
2 #include<time.h>
3 #include<curses.h>
4 #include<locale.h>

15 / 55

Implementation

Implementation
Header Files

Aside for header files that are also included in programs discussed
in the previous lectures, there are also included the curses.h and
locale.h files. Some of the functions declared in the curses.h
header file are used for printing the content of the tree on the screen
in a way that shows the shape of the BST. The time() function
declared in the time.h header file is applied for initializing the prng,
that is used for generating keys and values added to the BST.

16 / 55

Implementation Base Type and Root Pointer

Base Type and Root Pointer

1 struct tree_node
2 {
3 int key;
4 char value;
5 struct tree_node *left_child, *right_child;
6 } *root;

17 / 55

Implementation Base Type and Root Pointer

Base Type

The definition of BST base type resembles the definition of doubly
linked list, but the pointer fields serve a different purpose. The
left_child field points the left child of the node and thus the whole
left subtree of the node in general, the right_child field points the
right child of the node and in result the whole right subtree of the
node. If the node is a leaf then both pointer fields have the null
value. If the node has only one child then only one of those fields
has such a value. There are implementations of the BST where a
third pointer field is used. The field points to the parent of the
node. The only node that stores null value in such a field is the
root. The key and value fields are used for storing, respectively,
the key and related with the key value. In the previous slide also a
global variable named root is declared. The variable is a pointer to
the root node of the tree.

18 / 55

Implementation Base Type and Root Pointer

BST Operations

Some of the operations for the BST can be implemented in a sim-
ple way both as recursive and iterative functions, others are usually
implemented only as recursive functions. The definitions of the iter-
ative counterparts of the latter functions would be complicated and
at most as efficient as the recursive functions. In the lecture both
iterative and recursive implementations of a given operation are pre-
sented, whenever both of them are easy to create. The description
starts with the operation of adding a node to the BST.

19 / 55

Implementation Adding a Node

Adding a Node — Recursive Approach

1 void add_node(struct tree_node **root, int key, char value)
2 {
3 if(*root==NULL)
4 {
5 *root = (struct tree_node *)
6 malloc(sizeof(struct tree_node));
7 if(*root) {
8 (*root)->key = key;
9 (*root)->value = value;

10 (*root)->left_child = (*root)->right_child = NULL;
11 }
12 } else
13 if((*root)->key >= key)
14 add_node(&(*root)->left_child,key,value);
15 else
16 add_node(&(*root)->right_child,key,value);
17 }

20 / 55

Implementation Adding a Node

Adding a Node — Recursive Approach
The add_node() function doesn’t return any value, but has three
parameters. The first one is a pointer to a pointer. It is used for
passing an address of the root pointer or, when the function is called
recursively, an address of one of the children of the currently visited
node. The key is passed by the second parameter and by the third
is passed the value. The pair (the key and the value) is stored in
the new node of the BST. The function checks if the value of the
pointer pointed by the root pointer is null, after it is called. If it
is the first (non–recursive) call of the function and the condition is
fulfilled then the tree is empty and the function adds the first node
to it. Therefore, the function allocates memory for the node (lines
no. 5 and 6) and initializes fields of the node (lines 8, 9 and 10).
Please observe, that both pointer fields get the null value. If the
condition in the 3rd line is not fulfilled then the tree already has
some nodes. In that case the function performs the statement in
the 13th line, i.e. check the relation between the key stored in a
visited node and the one that should be assigned in the new node.21 / 55

Implementation Adding a Node

Adding a Node — Recursive Approach

If the key in the visited node is greater or equal to the new key, then
the add_node() function calls itself for the left child of the node,
which is also the root of its left subtree. Thus, all values with the
key equal to the key of the visited node are stored in the left subtree
of the node. If the condition in the 13th line is not satisfied, then the
function is invoked recursively for the right child of the visited node.
Please note, that in both cases the first argument of the function
is the address of the appropriate pointer field, hence the field can
be modified by subsequent instances of the function, if needed. The
function stops invoking itself when one of its instances is invoked for
a pointer field that has a value of null. In that case the instance
creates a new node of the BST by performing statements (lines no.
4–11), in the same way as it is described in the previous slide and
terminates.

22 / 55

Implementation Adding a Node

Adding a Node — Recursive Approach

After the new node is created the other instances of the add_node()
also terminate. There is an animation in the next slide that shows
how the nodes containing the following keys: 4, 2, 1, 3 and 5 are
added to the BST.

23 / 55

Implementation Adding a Node

Adding a Node

..4.

2

.

1

.

3

.

5

24 / 55

Implementation Adding a Node

Adding a Node

..4.

2

.

1

.

3

.

5

24 / 55

Implementation Adding a Node

Adding a Node

..4.

2

.

1

.

3

.

5

24 / 55

Implementation Adding a Node

Adding a Node

..4.

2

.

1

.

3

.

5

24 / 55

Implementation Adding a Node

Adding a Node

..4.

2

.

1

.

3

.

5

24 / 55

Implementation Adding a Node

Adding a Node

..4.

2

.

1

.

3

.

5

24 / 55

Implementation Adding a Node

Adding a Node — Iterative Approach

1 void add_node(struct tree_node **root, int key, int value)
2 {
3 while(*root!=NULL) {
4 if((*root)->key>=key)
5 root = &(*root)->left_child;
6 else
7 root = &(*root)->right_child;
8 }
9 *root = (struct tree_node *)

10 malloc(sizeof(struct tree_node));
11 if(*root) {
12 (*root)->key = key;
13 (*root)->value = value;
14 (*root)->left_child = (*root)->right_child = NULL;
15 }
16 }

25 / 55

Implementation Adding a Node

Adding a Node — Iterative Approach
It shows up that the iterative version of add_node() function is as
simple as its recursive counterpart. The prototype of the function
is the same. The first element of its body is the while loop (lines
no. 3–8). If the tree is empty the loop will perform no iteration. If
it already has nodes then the relation between the key in a visited
node and the new key is tested inside the loop. If the key in the node
is greater or equal to the new key then the address of the pointer
field that points to the left child of the node is assigned to the root
pointer to a pointer (5th line), otherwise the address of the pointer
field that points to the right child of the node is assigned to the
root parameter (7th line). If one of the fields has a null value then
the loop terminates. Next, the new node is created (line no. 9 and
10) and its address is assigned to field pointer pointed by the root
parameter. Should the while loop terminate without performing a
single iteration, the address of the new node would be assigned to
the root pointer — the node would become the root of the BST.
The fields of the new node are initialized (lines no. 12–14). 26 / 55

Implementation Traversing a Binary Tree

Traversing the Binary Tree

There are three recursive algorithms that make it possible to traverse
a binary (in fact any) tree:

...1 in–order,

...2 pre–order,

...3 post–order.
In all the algorithms it is assumed that the left subtree is traversed
first and the right subtree is traversed next.

27 / 55

Implementation Traversing a Binary Tree

Traversing a Binary Tree
In–order Algorithm

The in–order algorithm for traversing a binary tree is defined as
follows:

...1 traverse the left subtree,

...2 visit the root,

...3 traverse the right subtree.
The algorithm is usually implemented in a form of a recursive func-
tion. The next slide contains a definition of a function that applies
the algorithm for printing the keys stored in a BST. There is also a
figure that shows an example of such a tree and a result of traversing
the tree with the use of the algorithm.

28 / 55

Implementation Traversing a Binary Tree

Traversing a Binary Tree
In–order Algorithm

1 void print_inorder(struct tree_node *root)
2 {
3 if(root) {
4 print_inorder(root->left_child);
5 printf("%d ",root->key);
6 print_inorder(root->right_child);
7 }
8 }

..2.

1

.

3

.The Result..

...... 1, 2, 3

29 / 55

Implementation Traversing a Binary Tree

Traversing a Binary Tree
Pre–order Algorithm

The pre–order algorithm for traversing a binary tree is defined as
follows:

...1 visit the root,

...2 traverse the left subtree,

...3 traverse the right subtree.
This algorithm is also usually implemented in a from of recursive
function. The difference between the in–order and pre–order algo-
rithm is that in the latter the root is visited first and then both of
the subtrees. In the next slide is defined a function that applied
the algorithm for printing the keys stored in a BST. There is also
a part of the slide that illustrates how the algorithm is applied for
an example BST and what is the result of traversing the tree with
the use of the pre–order algorithm — just like in the case of the
in–order algorithm.

30 / 55

Implementation Traversing a Binary Tree

Traversing a Binary Tree
Pre–order Algorithm

1 void print_preorder(struct tree_node *root)
2 {
3 if(root) {
4 printf("%d ",root->key);
5 print_preorder(root->left_child);
6 print_preorder(root->right_child);
7 }
8 }

..2.

1

.

3

.The Result..

...... 2, 1, 3

31 / 55

Implementation Traversing a Binary Tree

Traversing a Binary Tree
Post–order Algorithm

The post–order algorithm for traversing a binary tree is defined as
follows:

...1 traverse the left subtree,

...2 traverse the right subtree,

...3 visit the root.
It is usually implemented in a form of a recursive function, just
like the two previously discusser algorithms. In the algorithm the
subtrees are visited first, then the root. The next slide presents an
example implementation of the algorithm together with a figure that
illustrates how the algorithm can be applied to an example tree —
just like in cases of previously discussed algorithms.

32 / 55

Implementation Traversing a Binary Tree

Traversing a Binary Tree
Post–order Algorithm

1 void print_postorder(struct tree_node *root)
2 {
3 if(root) {
4 print_postorder(root->left_child);
5 print_postorder(root->right_child);
6 printf("%d ",root->key);
7 }
8 }

..2.

1

.

3

.The Result..

...... 1, 3, 2

33 / 55

Implementation Traversing a Binary Tree

Printing the Content of a Binary Tree

The functions presented in the previous slides display on the screen
only the keys stored in the BST, using a given binary tree traversing
algorithm. The next slides contain definitions of functions that print
the whole content of the tree nodes, i.e. the key - value pairs. The
functions use to this end respectively: the in–order, pre–order and
post–order algorithm. Each key - value pair is printed in a separate
line of the screen.

34 / 55

Implementation Traversing a Binary Tree

Printing the Content of a BST — In–order Algorithm

1 void print_inorder(struct tree_node *root)
2 {
3 if(root) {
4 print_inorder(root->left_child);
5 printw("key: %4d, value: %4c\n",
6 root->key,root->value);
7 print_inorder(root->right_child);
8 }
9 }

35 / 55

Implementation Traversing a Binary Tree

Printing the Content of a BST — Pre–order Algorithm

1 void print_preorder(struct tree_node *root)
2 {
3 if(root) {
4 printw("key: %4d, value: %4c\n",
5 root->key,root->value);
6 print_preorder(root->left_child);
7 print_preorder(root->right_child);
8 }
9 }

36 / 55

Implementation Traversing a Binary Tree

Printing the Content of a BST — Pre–order Algorithm

1 void print_postorder(struct tree_node *root)
2 {
3 if(root) {
4 print_postorder(root->left_child);
5 print_postorder(root->right_child);
6 printw("key: %4d, value: %4c\n",
7 root->key,root->value);
8 }
9 }

37 / 55

Implementation Traversing a Binary Tree

Arithmetic Expression Tree
Tree traversing algorithms have many others applications than just
printing the content of BST or other binary tree. For example, a
binary tree may represent an arithmetic expression, like 2 · 3. The
operator of such an expression could be stored in the root of the tree,
and the leaves may represent the arguments. In result the construc-
tion of the tree determines what operation is performed on which
arguments. Such a tree is called an arithmetic expression tree. If the
tree is traversed using the in–order algorithm then the result will
be the arithmetic expression in the Infix Notation. If however, the
pre–order algorithm is applied then the resulting expression will be
in Polish Notation. Finally, if the post–order algorithm is applied
to this tree, then the expression will be in Reversed Polish Notation.
The next slides contain images that show the described operations.
The arithmetic expressions represented by the arithmetic expres-
sion tree can be much more complex than the one presented in the
lecture.

38 / 55

Implementation Traversing a Binary Tree

Arithmetic Expression Tree

..*.

2

.

3

.
In–order Algorithm Result..
...... 2 * 3

39 / 55

Implementation Traversing a Binary Tree

Arithmetic Expression Tree

..*.

2

.

3

.
Pre–order Algorithm Result..
...... * 2 3

39 / 55

Implementation Traversing a Binary Tree

Arithmetic Expression Tree

..*.

2

.

3

.
Post-order Algorithm Result..
...... 2 3 *

39 / 55

Implementation Showing the Construction of the BST

Showing the Construction of the BST

It would be interesting to print the content of the BST in a way that
would show the construction of the tree. To this end the capabilities
enabled by the curses library are applied. The subsequent levels of
the BST2 are separated from each other by two lines of the screen,
to make the construction of the tree more visible. The algorithm
applied for this task is the pre-order tree traversing algorithm, be-
cause it starts with the root and roots of subtrees, which have to
be printed first. Since printing pairs of a key and a value could
deteriorate the visibility of the tree construction, two functions are
presented that print separately the keys and the values.

2A single level of the tree include all existing nodes that have the same level.
40 / 55

Implementation Showing the Construction of the BST

Showing the Construction of the BST — Printing
Values

1 void print_values(struct tree_node *root, int x, int y,
2 unsigned int distance)
3 {
4 if(root) {
5 mvprintw(y,x,"%4c",root->value);
6 print_values(root->left_child,x-distance,y+2,distance/2);
7 print_values(root->right_child,x+distance,y+2,distance/2);
8 }
9 }

41 / 55

Implementation Showing the Construction of the BST

Showing the Construction of the BST — Printing
Values

The print_values() function has four parameters. The first one
is a pointer used for passing the address of the root of the BST or
addresses of its subtrees. Next two parameters are used for passing
the coordinates where the value of the currently visited node should
be displayed. By the last parameter is passed the half of the distance
between two sibling nodes. It is taken into account by the function
even if only one of the nodes exists. The function checks first if it is
invoked for an existing node of the tree (4th line). If so, then it prints
the value stored in the node in a place on the screen determined
by the coordinates passed to the function. Next, it it calls itself
recursively for the left and then the right child of the node. Please
note, how the value of the forth parameter is applied in the argument
of the recursive calls. For the left child it is subtracted from the
horizontal coordinate of the parent of the node, and for the right
child it is added to the same coordinate. The vertical coordinate is
increased by 2, while the distance between descendants is halved. 42 / 55

Implementation Showing the Construction of the BST

Showing the Construction of the BST — Printing Keys

1 void print_keys(struct tree_node *root, int x, int y,
2 unsigned int distance)
3 {
4 if(root) {
5 mvprintw(y,x,"%4d",root->key);
6 print_keys(root->left_child,x-distance,y+2,distance/2);
7 print_keys(root->right_child,x+distance,y+2,distance/2);
8 }
9 }

43 / 55

Implementation Showing the Construction of the BST

Showing the Construction of the BST — Printing Keys

The function that prints keys of the BST is defined almost in the
same way as the function that prints values. The only difference is
in the statement from the 5th line, where instead of the value field
the key field is printed.

44 / 55

Implementation Removing All Nodes From Binary Tree

Removing All Nodes From Binary Tree

1 void remove_tree_nodes(struct tree_node **root)
2 {
3 if(*root)
4 {
5 remove_tree_nodes(&(*root)->left_child);
6 remove_tree_nodes(&(*root)->right_child);
7 free(*root);
8 *root = NULL;
9 }

10 }

45 / 55

Implementation Removing All Nodes From Binary Tree

Removing All Nodes From Binary Tree

The function that removes all the nodes from a binary tree uses the
post–order algorithm for traversing the tree, so there is no danger
that the recursive calls of the function would receive addresses of
nonexistent fields. Since all nodes are removed from the tree, the
root pointer has to store the null value after the function termi-
nates. That’s why in the 8th line the function assigns the value to
the variable pointed by the root parameter. The statement also
assigns the null value to each of pointer fields of tree nodes, before
they are deleted. Owing to the applied algorithm, the function re-
moves nodes from the tree starting with leaves and finishing with
the root.

46 / 55

Implementation Removing All Nodes From Binary Tree

The main() Function
First Part

1 int main(void)
2 {
3 if(setlocale(LC_ALL,"")==NULL) {
4 fprintf(stderr,"The language settings exception!\n");
5 return -1;
6 }
7 if(!initscr()) {
8 fprintf(stderr,"The curses library initialization error!\n");
9 return -1;

10 }
11 int i;
12 srand(time(0));
13 for(i=0;i<10;i++) {
14 int key = 0; char value = 0;
15 value='a'+rand()%('z'-'a'+1);
16 key = (int)value;
17 add_node(&root,key,value);
18 } 47 / 55

Implementation Removing All Nodes From Binary Tree

The main() Function
First Part

In the first part of the main() function the curses library and the
PRNG are initialized and then ten nodes that stores lowercase letters
of Latin alphabet are added to the BST (lines no. 13–18).

48 / 55

Implementation Removing All Nodes From Binary Tree

The main() Function
Second Part

1 printw("Data in the tree (in-order):\n");
2 print_inorder(root);
3 refresh();
4 getch();
5 erase();
6 printw("Data in the tree (post-order):\n");
7 print_postorder(root);
8 refresh();
9 getch();

10 erase();
11 printw("Data in the tree (pre-order):\n");
12 print_preorder(root);
13 refresh();
14 getch();
15 erase();

49 / 55

Implementation Removing All Nodes From Binary Tree

The main() Function
Second Part

In the second part of the main() function the content of the BST is
displayed on the screen with the use of the discussed tree traversing
algorithms. After each of the functions implementing the aforemen-
tioned algorithms is performed the program stops until the user
presses any key on the keyboard. After that content of the screen
is cleared and another function is performed.

50 / 55

Implementation Removing All Nodes From Binary Tree

The main() Function
Third Part

1 printw("The construction of the BST (values):");
2 print_values(root,COLS/2,1,20);
3 refresh();
4 getch();
5 erase();
6 printw("The construction of the BST (keys):");
7 print_keys(root,COLS/2,1,20);
8 refresh();
9 getch();

10 erase();
11 remove_tree_nodes(&root);
12 if(endwin()==ERR) {
13 fprintf(stderr,"The endwin() function exception!\n");
14 return -1;
15 }
16 return 0;
17 }

51 / 55

Implementation Removing All Nodes From Binary Tree

The main() Function
Third Part

In the third part of the main() function definition the values and
keys stored in the BST nodes are displayed on screen in a way that
shows the construction of the tree. Please note the coordinates of the
first displayed node, i.e. the root of the tree. The vertical coordinate
is 1, which means that the data from the node are displayed in the
second line of the screen. The value of the horizontal coordinate is
cols/2, where cols is a constant defining the number of columns in
the screen. It means that the value or the key is displayed in the half
length of the screen. That way the construction of the BST should
be more visible, but the overall effect depends on the actual content
of the nodes. Just like in the second part, the program stops after
each function terminates and waits for the user to press any key on
the keyboard. Then the content of the screen is cleared and the
next function is performed. After the keys are printed all the nodes
are removed from the BST, the curses library is finalized and the
program terminates. 52 / 55

Summary

Summary

The properties of the BST will be closely discussed in the next
lecture. It is however worth to mention now, that the trees (not
only BSTs or binary trees) are flexible data structures which are
applied in compilers (the aforementioned arithmetic expression trees
or syntax trees in general), operating systems (for example the CFS
and CFQ algorithms used by Linux kernel), computer graphics (for
example the bsp trees) and in many other programs ranging from
the bookkeeping applications to the artificial intelligence software.
For many issues trees are the most effective data structures.

53 / 55

The End

Questions

?

54 / 55

The End

The End

Thank You For Your Attention!

55 / 55

	Introduction
	Definitions
	Implementation
	Base Type and Root Pointer
	Adding a Node
	Traversing a Binary Tree
	Showing the Construction of the BST
	Removing All Nodes From Binary Tree

	Summary

