
.

......

Fundamentals of Programming 2
Circular Doubly Linked List

Arkadiusz Chrobot

Department of Computer Science

May 14, 2019

1 / 39

Outline

...1 Introduction

...2 Implementation
Base Type and List Pointer
Creating the List
Adding an Element to the List
Removing an Element From the List
Printing the Content of the List
Removing the List

...3 Summary

2 / 39

Introduction

Introduction

A circular linked list is a list that doesn’t have the first and the
last element. Every node has its predecessor and successor. Such a
list can be singly or doubly linked. A singly linked linear list can be
converted to a circular list by storing the address of the first element
of the list in the pointer field of the last element. Similar operation
allow for converting the doubly linked linear list into the circular
list. In the lecture a program is presented that uses a list that from
the beginning is a circularly linked list. The next slide contains a
figure that shows the schema of such a list.

3 / 39

Introduction

Introduction

..

next

.

previous

.

data

.

next

.

previous

.

data

.

next

.

previous

.

data

.

next

.

previous

.

data

.

next

.

previous

.

data

.

next

.

previous

.

data

.

node

The Circular Doubly Linked List

4 / 39

Implementation

Implementation

Just like in the case of previously discussed lists, the circular doubly
linked list is explained with the use of a program which uses it to
store natural numbers in the ascending order. Since the circular
list doesn’t have the beginning or the end, the order is relative, i.e.
depends on the element that currently stores the smallest number
in the list.
The circular list can be implemented with the use of an array or
in a form of dynamically allocated data structure. The latter is
described in the lecture. Such lists are often implemented as lists
with sentinels, for simplifying the operations carried out on them.
The presented implementation doesn’t have such features.

5 / 39

Implementation Base Type and List Pointer

Base Type and List Pointer

1 #include<stdio.h>
2 #include<stdlib.h>
3

4 const unsigned int how_many = 2;
5

6 struct list_node
7 {
8 int data;
9 struct list_node *previous, *next;

10 } *list_pointer;

6 / 39

Implementation Base Type and List Pointer

Base Data Type

The base data type of circular doubly linked list is the same as for
the doubly linked linear list. The type can also be modified to make
it better suitable for a specific problem. The circular doubly linked
list doesn’t have any element that contains in its pointer fields even
a single null value.
In the previous slide, aside the definition of the base data type and
declaration of the list pointer, there are also preprocessor statements
that include to the program the same header files as in the previous
programs that used various kinds of lists. Also there is defined a
constant that is passed as an argument for a function that displays
the values stored in the list on screen.

7 / 39

Implementation Base Type and List Pointer

List Pointer

In the case of a circular list, regardless of it is a singly or doubly
linked list, the list pointer can point any element that belongs to
the list. There are no requirements concerning which one it is. If
the list pointer is an empty pointer (it has the null value), it means
that the list is empty (nonexistent).

8 / 39

Implementation Base Type and List Pointer

List Operations

The circular doubly linked list is an abstract data structure, just like
the other already described lists. Aside of defining the base data
type for the list also operations that are carried out on the list have
to be implemented. Just like in the case of previously discussed lists
in the lecture only the basic operations for the circular doubly linked
list are described: creating the list, adding an element (together
with traversing the list in search for an element), removing a single
element, displaying the content of the list and removing the whole
list.

9 / 39

Implementation Creating the List

Creating the List

1 struct list_node *create_list(int number)
2 {
3 struct list_node *new_node = (struct list_node *)
4 malloc(sizeof(struct list_node));
5 if(new_node) {
6 new_node->data = number;
7 new_node->previous = new_node->next = new_node;
8 }
9 return new_node;

10 }

10 / 39

Implementation Creating the List

Creating the List

The function presented in the previous slide creates a circular dou-
bly linked list by creating its first element. The definition of the
function is similar to the definition of its counterpart for the dou-
bly linked linear list. The only difference is the initialization of the
field pointers of the element. They are assigned the address of the
element that contains them (7th line) instead of the null value.
In that way the circular doubly linked list with a single element is
created.

11 / 39

Implementation Adding an Element to the List

Adding an Element to the List

The operation of adding an element to the circular doubly linked
list has to be carried out for a nonempty list. Just like in the cases
of previously discussed lists, the circular doubly linked list ought
to store values in the ascending order. The problem of finding a
place in the list for a new element is reduced to finding an element
in the list that stores a value greater than the value stored in the
new element or to finding the element that stores the smallest value
in the whole list. In the latter case the new element can store a
grater value than any of the element of the list. Both operations
of searching for the aforementioned elements are implemented in
separated helper functions that are presented in the next slides.

12 / 39

Implementation Adding an Element to the List

Adding an Element of the List
Finding the Smallest Value in the List

1 struct list_node *find_minimum_value_node(
2 struct list_node *list_pointer)
3 {
4 struct list_node *start, *result;
5 start = result = list_pointer;
6 int minimum = list_pointer->data;
7 do {
8 if(minimum>list_pointer->data) {
9 minimum = list_pointer->data;

10 result = list_pointer;
11 }
12 list_pointer = list_pointer->next;
13 } while(list_pointer!=start);
14 return result;
15 }

13 / 39

Implementation Adding an Element to the List

Adding an Element to the List
Finding the Smallest Value in the List

The function presented in the previous slide searches for an ele-
ment that stores the currently smallest number in the list. If such
a value repeats in the list several times or in other words in the
list is an aggregation or cluster of elements that store such a value
then the function will find the first element of the cluster. The
find_minimum() function uses a modified version of the algorithm
of searching the smallest value in an unsorted array. The function
takes the list pointer as an argument and returns the address of
the element that stores the smallest value. The applied algorithms
requires traversing all the elements of the list in a loop. Since none
of the elements of the list stores a null value in any of the pointer
fields, a condition that allows the loop to terminate has to be for-
mulated differently than in cases of the previously discussed lists.

14 / 39

Implementation Adding an Element to the List

Adding an Element To the List
Finding the Smallest Value in the List

In the 4th line of the find_minimum_value_node() function are
declared two local pointers: start and result. In the next line the
current value of list pointer is assigned to both of them. The start
pointer stores an address of the element from which the function
starts traversing the list. The list_pointer variable is used for
pointing successive elements of the list inside the loop. If value
of the pointer becomes the same as the value of the start then
it means that all the element of the list has been visited and the
loop should be terminated. The loop should perform at least one
iteration, so the described condition have to be evaluated after the
loop’s body, hence the do…while is applied in the function instead of
the while loop. After the loop terminates the result pointer points
to the element that stores the smallest number in the whole list. The
address is returned by the function (line no. 14). The local variable
minimum is used for storing the smallest number. Both variables
(result and minimum) are applied in the loop. 15 / 39

Implementation Adding an Element to the List

Adding an Element to the List
Finding the Smallest Value in the List

Inside the loop the function checks if the currently visited element
stores a value smaller than the one which is stores in the minimum
variable (8th line). If so, then the value is copied to the minimum
variable and the address of the element that contains the value is
stored in the result pointer. After the loop terminates the result
variable stores the address of the element with the smallest number
in the whole list.

16 / 39

Implementation Adding an Element to the List

Adding an Element to the List
Finding a Spot for the Element

1 struct list_node *find_next_node(struct list_node *list_pointer,
2 int number)
3 {
4 list_pointer = find_minimum_value_node(list_pointer);
5 struct list_node *start = list_pointer;
6 do {
7 if(list_pointer->data>number)
8 break;
9 list_pointer = list_pointer->next;

10 } while(list_pointer!=start);
11 return list_pointer;
12 }

17 / 39

Implementation Adding an Element to the List

Adding an Element to the List
Finding a Place to the Element

The find_next_node() returns an address of an element of the
list before which the new element has to be added. It takes two
arguments: the list pointer and the number to be stored in the new
element. First, the function calls the find_minimum_value_node()
function to find the element storing the smallest number in the list.
The element becomes the starting point for traversing the list (line
no. 5), which takes place in the do…while loop. The condition for
the loop is defined in the same way as in the previously described
function — the loop continues until the list pointer “goes back”
to the node from which the loop started (line no. 10). There is
however another possible scenario of terminating the loop. It may
find an element that stores a number greater than that one to be
stored in the new element (7th line). If that happens the loop will
be terminated (8th line). Regardless how the loop terminates, the
list pointer stores an address of an element before which the new
one should be inserted. The address is returned (line no. 11). 18 / 39

Implementation Adding an Element to the List

Adding an Element to the List
Adding an Element to the List

1 void add_node(struct list_node *list_pointer, int number)
2 {
3 if(list_pointer) {
4 struct list_node *new_node = (struct list_node *)
5 malloc(sizeof(struct list_node));
6 if(new_node) {
7 new_node->data = number;
8 list_pointer =
9 find_next_node(list_pointer,number);

10 new_node->next = list_pointer;
11 new_node->previous = list_pointer->previous;
12 list_pointer->previous->next = new_node;
13 list_pointer->previous=new_node;
14 }
15 }
16 }

19 / 39

Implementation Adding an Element to the List

Adding an Element to the List
The add_node() actually adds a new element to the list. It takes
two arguments: the list pointer and a number that should be stored
in the new element. It doesn’t return any value, because the result
of its performance is visible after the content of the list is displayed
on the screen. First the function checks if the list for which the
element has to be added is not empty (3th line). If so, it allocates
memory for the new element (4th and 5th lines). If the allocation
fails the function terminates and the list stays the same as it was
before the function call. If however the allocation is successful (6th
line) then the number passed to the function is stored in the new
element (7th line) and the function finds the address of the element
of the list before which the new one should be added. To this end it
calls the find_next_node() function (lines no. 8 and 9). After the
latter terminates the add_node() function adds the new element to
the list (lines no. 10, 11, 12 and 13). The operation is performed
in similar fashion as in the case of adding a new element inside a
doubly linked linear list. 20 / 39

Implementation Removing an Element From the List

Removing an Element From the List

While implementing the operation of removing a single element from
the list the following two cases should be considered:

...1 the element is removed from a single element circular list,

...2 the element is removed from a list consisting of more than one
element.

In the first case the list becomes empty after the node is removed.
In the second case the list just becomes shorter by one element. The
operation shouldn’t be performed for an empty list. The state of the
list doesn’t change only if it is empty or doesn’t contain an element
for removing.

21 / 39

Implementation Removing an Element From the List

Removing an Element From the List

1 struct list_node *delete_node(struct list_node *list_pointer, int number)
2 {
3 if(list_pointer) {
4 list_pointer = find_next_node(list_pointer,number);
5 list_pointer = list_pointer->previous;
6 if(list_pointer->data == number) {
7 if(list_pointer == list_pointer->next) {
8 free(list_pointer);
9 return NULL;

10 }
11 struct list_node *next = list_pointer->next;
12 list_pointer->previous->next = list_pointer->next;
13 list_pointer->next->previous = list_pointer->previous;
14 free(list_pointer);
15 list_pointer=next;
16 }
17 }
18 return list_pointer;
19 }

22 / 39

Implementation Removing an Element From the List

Removing an Element From the List
The delete_node() function takes two arguments: the list pointer
and a number that should be contained by the element for removing.
In case the list has many such elements, removing only one of them
is sufficient. The function returns an address of any element that
belongs to the list provided the list still is not empty after an element
is removed. Otherwise it returns null value. In the 3th line the
delete_node() function checks if it is invoked for nonempty list. If
so, it tries to locate the element for removing. To the end it calls
the find_next_node() function (4th line), but the latter function
returns the address of the element that stores a number greater
than the one passed to the delete_node() function. Thus, the
latter function “moves back” the list pointer to a previous element
and checks if it stores the requested number. In the 7th line the
function checks additionally if it’s not the only element of the list.
To find it out it is enough to check whether any of the pointer fields
of the node points to the node. In case of the described function the
next field was chosen. 23 / 39

Implementation Removing an Element From the List

Removing an Element From the List

If the condition in the 7th line is satisfied then it means the only
node of the list is to be removed. Thus, in the 8th line the function
frees the memory for the element and returns the null value in the
9th line. After that it terminates. If the condition evaluates to false
than it means the function removes an element from the list that
has at least two elements. Thus, firstly it assigns the address of the
next element to be removed to the local pointer named next (line
no. 12) and then it excludes the element for removing from the list
(lines no. 13 and 14). The operation is performed in the same way
as when an element is removed from the inside of a doubly linked
list. Then the function frees the memory allocated for the element
(line no. 15) and the address stored in the next pointer is assigned
to the list pointer (line no. 16). The assignment is necessary because
in the 21th line the function returns the content of the list pointer,
thus the pointer has to point to a valid node of the list.

24 / 39

Implementation Removing an Element From the List

Removing an Element From the List

If the list, which address is passed to the delete_node() function,
was empty the function would return in the 21th line the null value.
If the list didn’t have an element for removing the function would
return the same address as it was passed to it while it was invoked.

25 / 39

Implementation Printing the Content of the List

Printing the Content of the List

1 void print_list(struct list_node *list_pointer,
2 const unsigned int how_many)
3 {
4 if(list_pointer) {
5 list_pointer = find_minimum_value_node(list_pointer);
6 int i;
7 for(i=0; i<how_many; i++) {
8 struct list_node *start = list_pointer;
9 do {

10 printf("%d ",list_pointer->data);
11 list_pointer = list_pointer->next;
12 } while(list_pointer!=start);
13 puts("");
14 }
15 }
16 }

26 / 39

Implementation Printing the Content of the List

Printing the Content of the List
The operation of printing the values of the nodes of the list is im-
plemented in a form of the print_list() function. The function
takes two arguments and returns no value. The first argument is
the list pointer and the second one is a number defining how many
times (in separated lines) the content of the list should be displayed
on the screen. The parameter by which the number is passed is
called how_many. The argument passed by the parameter is also
called how_many and it is the constant, which is defined at the be-
ginning of the program and which value is 2. After the function
checks that the list in not empty (line no. 4), it searches for the
node storing the smallest number in the list with the use of the
find_minimum_value_node() function. It’s not necessary, but it
makes easier to find out, that the numbers in the list are stored in the
ascending order. Next, in the for loop the print_values() func-
tion assigns the address of the element to the local pointer named
start. The values of the nodes are displayed on the screen inside
the do…while loop. 27 / 39

Implementation Printing the Content of the List

Printing the Content of the List

The start pointer is used in the loop condition. After the loop
terminates the cursor is moved to the next line on the screen by
the puts() function and depending on the value of the how_many
parameter, next iteration of the for loop begins or the function
terminates.

28 / 39

Implementation Removing the List

Removing the List

1 void remove_list(struct list_node **list_pointer)
2 {
3 if(*list_pointer) {
4 struct list_node *start = *list_pointer;
5 do {
6 struct list_node *next = (*list_pointer)->next;
7 free(*list_pointer);
8 *list_pointer = next;
9 } while(*list_pointer!=start);

10 *list_pointer = NULL;
11 }
12 }

29 / 39

Implementation Removing the List

Removing the List
The operation of removing the list is implemented similarly as in
the cases of the singly linked and doubly lined lists. However, the
remove_list() function differs from its counterparts for the afore-
mentioned lists by several details: in the 3rd line it checks if the
list is not empty, it uses a different kind of loop to delete all nodes
of the list, and finally it assigns the null value to the list pointer
(10th line) after the loop terminates. The last activity is necessary,
because the list pointer should be empty after the list is destroyed.
Since none of the nodes of the list has the null value stored in
its pointer fields, the value has to be assigned directly to the list
pointer. In the function the do…while is applied for deleting nodes
of the list. It is used in a similar way as in the previously described
functions. The definition of its condition (9th line) may seem at
first incorrect and even dangerous, since the start pointer stores
an address of an element that is already deleted. But it is a proper
expression. The pointer is not dereferenced. The address stored in
it is only compared with the address stored in the list pointer. 30 / 39

Implementation Removing the List

The main() Function
The First Part

1 int main(void)
2 {
3 list_pointer = create_list(1);
4 int i;
5 for(i=2;i<5;i++)
6 add_node(list_pointer,i);
7 for(i=6;i<10;i++)
8 add_node(list_pointer,i);
9 print_list(list_pointer,how_many);

31 / 39

Implementation Removing the List

The main() Function
The First Part

In the first part of the main() function a circular doubly linked list
with a single element is created. The value of the node is 1 (3rd line).
Next, (just like in the cases of previously described lists) nodes of the
values ranging from 2 to 4 and from 6 to 9 are added to the list (lines
no. 5, 6, 7 and 8). Then the content of the list is displayed twice
on the screen according to the value of the how_many constant (9th
line). By increasing or decreasing the value of the constant before
the program compilation the programmer can define how many the
values of the nodes of the list are displayed on the screen by a single
invocation of the print_list() function.

32 / 39

Implementation Removing the List

The main() Function
The Second Part

1 add_node(list_pointer,0);
2 print_list(list_pointer,how_many);
3 add_node(list_pointer,5);
4 print_list(list_pointer,how_many);
5 add_node(list_pointer,7);
6 print_list(list_pointer,how_many);
7 add_node(list_pointer,10);
8 print_list(list_pointer,how_many);

33 / 39

Implementation Removing the List

The main() Function
The Second Part

In the second part of the main() function the nodes storing the
numbers 0, 5, 7 and 10 are added to the list. After each such an
operation the content of the list is displayed twice on the screen.

34 / 39

Implementation Removing the List

The main() Function
The Third Part

1 list_pointer = delete_node(list_pointer,0);
2 print_list(list_pointer,how_many);
3 list_pointer = delete_node(list_pointer,1);
4 print_list(list_pointer,how_many);
5 list_pointer = delete_node(list_pointer,1);
6 print_list(list_pointer,how_many);
7 list_pointer = delete_node(list_pointer,5);
8 print_list(list_pointer,how_many);
9 list_pointer = delete_node(list_pointer,7);

10 print_list(list_pointer,how_many);
11 list_pointer = delete_node(list_pointer,10);
12 print_list(list_pointer,how_many);
13 remove_list(&list_pointer);
14 return 0;
15 }

35 / 39

Implementation Removing the List

The main() Function
The Third Part

In the third part of the main() function the nodes containing num-
bers 0, 1, 1 (again, but this time no element is actually deleted), 5, 7
(two nodes contain such a number, but only one is removed) and 10
are removed from the list. After each such an operation the content
of the list is printed. The lat operation performed on the list is its
removal form the computer memory. After that the main() func-
tion returns 0 and terminates. There are many others way to test
functions that implement operations on the circular doubly linked
list, but the most basic are performed in the main() function of the
program.

36 / 39

Summary

Summary

The described program doesn’t show every functionality of the cir-
cular doubly linked list. For example the print_list() function
doesn’t display the content of the list in the reversed order.
Just like the linear lists, the circular lists can be implemented with
the use of an array or it can, as it was already mentioned, have a sen-
tinel node. Those lists are applied in operating system in schedulers
that utilise the round–robin algorithm and in network subsystems
as buffers for transmitted packages. D.E.Knuth in the first volume
of “The Art of Computer Programming” describes an algorithm for
multiplication of polynomials, where the circular list represents the
arguments. Each node of one of such lists stores a single coefficient
of one of the polynomials.

37 / 39

The End

Questions

?

38 / 39

The End

The End

Thank You For Your Attention!

39 / 39

	Introduction
	Implementation
	Base Type and List Pointer
	Creating the List
	Adding an Element to the List
	Removing an Element From the List
	Printing the Content of the List
	Removing the List

	Summary

