
.

......

Fundamentals of Programming 2
Singly Linked Linear List and Recursion

Arkadiusz Chrobot

Department of Computer Science

April 16, 2019

1 / 58

Outline

...1 Introduction

...2 Implementation
Base Type and List Pointer
Operation of Adding an Element to the List
Operation of Removing an Element From the List
Operation of Printing the List
Operation of Removing the List
Functional Approach

Performing Operations on the List Returning No Results
Performing Operations on the List That Return Results

...3 Summary

2 / 58

Introduction

Introduction

As it was said in previous lectures, the base type of such data struc-
tures as stacks and queues is recursive. The type is based on a
structure that contains a pointer field which can point to other vari-
ables of the same type. Those variables are elements (in other words:
nodes) of a data structure. This description also fits to the singly
linked linear list, which is a more general data structure than the
two aforementioned and thus it requires more of basic operations
to be implemented. A question arises, if implementing them with
the use of recursive functions would be beneficial? It shows up,
that applying the recursive approach simplifies many aspects of list
handling. To prove it the program from the previous lecture has
been modified to use mostly recursive functions. Also the relations
between the recursion and the functional programming paradigm
is explained and the usage of such a model in the C language is
demonstrated.

3 / 58

Introduction

Assumptions

The program uses a singly linked linear list to store natural numbers
in the ascending order. So, the list is sorted. Although only natural
numbers are stored in the list by the program, the list can store any
number that is of the int type.

4 / 58

Implementation Base Type and List Pointer

Base Type and List Pointer

1 #include<stdio.h>
2 #include<stdlib.h>
3

4 struct list_node {
5 int data;
6 struct list_node *next;
7 } *list_pointer;

5 / 58

Implementation Base Type and List Pointer

Base Type and List Pointer

The beginning of the program is unchanged. The same header files
are included as before. The definition of the base type and the
declaration of the list pointer also stay the same. The discussed in
the previous lecture assumption about the list pointer also holds —
the pointer always should point to a fist element of the list or have
the null value.

6 / 58

Implementation Operation of Adding an Element to the List

Operation of Adding an Element to the List

It can be concluded by applying the recursive approach to the op-
eration of adding a new element to the singly linked linear list, that
there are two cases for consideration:

...1 a new element is added to an empty (nonexistent) list,

...2 a new element is added to an existing (nonempty) list.
The second case covers all situations related to inserting a new ele-
ment to the existing sorted list, i.e. adding at the beginning, inside
and at the end. Please note, that there is no need for the operation
of creating the list in the recursive approach. It is covered by the
first case.
The operation on adding a new element to the list is implemented
with the use of a “main” function and a helper function. The latter
is described first.

7 / 58

Implementation Operation of Adding an Element to the List

Operation of Adding an Element to the List
The create_and_add_node() Function

1 int create_and_add_node(struct list_node **list_pointer,
2 int number)
3 {
4 struct list_node *new_node = (struct list_node *)
5 malloc(sizeof(struct list_node));
6 if(!new_node)
7 return -1;
8 new_node->data = number;
9 new_node->next = *list_pointer;

10 *list_pointer = new_node;
11 return 0;
12 }

8 / 58

Implementation Operation of Adding an Element to the List

Operation of Adding an Element to the List
The create_and_add_node() Function

The function, as its name suggests, creates a new element and inserts
it to the list. The function returns a value of the int type, which
is a status of the operation. It has two parameters. The first one
is a pointer to a pointer of the list base type. The second one is a
variable of the int type and it is used for passing a number which
should be stored in the new element. Please note, that the function
body is quite simple. In the lines no. 4 and 5 the function tries
to allocate memory for the new element. If the allocation fails the
function returns -1 and terminates. If it is however successful, then
the number is assigned to the element (line no. 8) and in the next
field of the same element is stored an address stored in a variable
pointed by the pointer to a pointer (line no. 9). Next, the address
of the new element is assigned to the aforementioned variable, and
the function terminates returning zero.

9 / 58

Implementation Operation of Adding an Element to the List

Operation of Adding an Element to the List
The create_and_add_node() Function

The create_and_add_node() performs activities which correspond
to all cases of adding a new element to the sorted list in the pro-
gram from the previous lecture and additionally to the operation of
creating a new list (adding the first element to the list). A question
arises, how such a simple function can cover all those cases that
in the previous version of the program required defining a several
separate functions? The answer is given after the add_node() func-
tion, which is responsible for finding a spot in the list where the new
element should be added and for invoking the described function, is
analysed.

10 / 58

Implementation Operation of Adding an Element to the List

Operation of Adding an Element to the List
The add_node() Function

1 int add_node(struct list_node **list_pointer, int number)
2 {
3 if(*list_pointer!=NULL && (*list_pointer)->data<number)
4 return add_node(&(*list_pointer)->next,number);
5 else
6 return create_and_add_node(list_pointer,number);
7 }

11 / 58

Implementation Operation of Adding an Element to the List

Operation of Adding an Element to the List
The add_node() Function

The add_node() function has the same, with the exception of the
name, prototype as the create_and_add_node() function. Also
the meaning of its return value is the same as in the previously
described function. However, the pointer to a pointer parameters
plays a different role. When the function is invoked for the first time
the parameter stores the address of the list pointer, so any operation
that changes the value of the parameter is also changing the value
of the pointer. If the function is invoked recursively (line no. 4)
then the parameter will store the address of the next field of the
list element which was pointed by the parameter previously. Let’s
analyse all possible scenarios of the function behaviour:
Adding an element to an empty list.
The *list_pointer!=NULL expression, which is a part of the con-
dition in the 3rd line is false, thus the create_and_add_node()
function is called immediately in the line no. 6, and it creates and
adds the first and only element to the list. 12 / 58

Implementation Operation of Adding an Element to the List

Operation of Adding an Element to the List
The add_node() Function

Adding an element at the beginning of the list.
In this case the first expression in the condition in 3rd line is true,
but the second one (the one after the && operator) is false, thus once
again the create_and_add_node() function is called immediately
in the 6th line, which adds an element at the beginning of the list.
Adding an element inside the list.
This time both expressions in the condition in 3rd line are true and
the function is invoked recursively (line no. 4). Those invocations
are preformed as long as the second expression in the aforemen-
tioned condition becomes false. When it happens it means that the
instance (invocation) of the function, for which it happened, should
add a new element before the element pointed by the variable, which
address is stored in the list_pointer parameter. The variable is
the next field of the element that precedes in the list the element
before which the new element has to be inserted. The case is illus-
trated in the next slide. 13 / 58

Implementation Operation of Adding an Element to the List

Operation of Adding an Element to the List
Relationship Between struct list_node **list_pointer and the next Field

.. **list_pointer.

next

.

next

.

next

Explanation of the relationship between pointer to a pointer and the
next field of a list element

14 / 58

Implementation Operation of Adding an Element to the List

Operation of Adding an Element to the List
Relationship Between struct list_node **list_pointer and the next Field —
Comment

The next field and the **list_pointer pointer are marked in the
figure in the previous slide by yellow ellipses. It means that those
two variables should be considered as one, i.e. making changes to
one of them will cause immediate change of the value of the second
one.

15 / 58

Implementation Operation of Adding an Element to the List

Operation of Adding an Element to the List
The add_node() Function

Adding an element inside the list — continued.
The element is created and added by the create_and_add_node()
function invoked in the 6th line.
Adding at the end of the list.
In this case after a sequence of recursive invocations an instance of
the function is created for which the first expression in the condition
in the 3rd line is not satisfied. It means that the new element should
be added at the end of the list. As in the previous cases the ele-
ment is actually created and added by the create_and_add_node()
function invoked in the 6th line of the add_node() function.

16 / 58

Implementation Operation of Removing an Element From the List

Operation of Removing an Element From the List

The operation of removing an element from a sorted singly linked
linear list in the recursive version consist just of locating an element
in the list, which stores a given value, and removing it from the
list. The course of the operation is always the same, regardless
of where the element is in the list. Let’s remind, that if there is
more then one element in the list that has the given value, then
removing the one that is found as the first satisfies the assumption
for the operation. The next slide contains the definition of recursive
function that implements the operation of removing a single element
from the list. Its source code is so short that it doesn’t require
partitioning into separate subroutines.

17 / 58

Implementation Operation of Removing an Element From the List

Operation of Removing an Element From the List
The delete_node() Function

1 void delete_node(struct list_node **list_pointer, int number)
2 {
3 if(*list_pointer) {
4 if((*list_pointer)->data == number) {
5 struct list_node *next = (*list_pointer)->next;
6 free(*list_pointer);
7 *list_pointer = next;
8 } else
9 delete_node(&(*list_pointer)->next, number);

10 }
11 }

18 / 58

Implementation Operation of Removing an Element From the List

Operation of Removing an Element From the List
The delete_node() Function

The function presented in the previous slide doesn’t return any
value, since it doesn’t generate any exceptions and its effects are
visible after the list is printed on the screen. The function has two
parameters — the first one is a pointer to a pointer of the struct
list_node type, and the second one is of the int type. By the lat-
ter the number is passed that should be stored in the list element to
be removed. When the function is called for the first time it checks
if the passed list is not empty (line no. 3). If the list exists then
the function checks if the first element of the list contains the value
passed by the second parameter. If so, then the element should be
removed. It that case the address stored in the next field of the
element is assigned to a local pointer (line no. 5) and the memory
allocated for the element is freed. Next, the *list_pointer vari-
able is assigned an address which was stored in the next field of
the removed element. It is an address of then second and now first
element of the list. 19 / 58

Implementation Operation of Removing an Element From the List

Operation of Removing an Element From the List
The delete_node() Function

If however the condition in the 4th line is not satisfied for the first
element, then the function is invoked recursively (line no. 9) in order
to find such an element of the list that would satisfy it. Please note,
that as the first argument for the call is passed the address of the
next field of the list element accessed in the current instance of the
function. Thus any modification of the value of the first parameter
made in the next instance of the function will be also made to the
value of the field. In that way the statements in lines no. 5, 6 and
7 handle also the cases where the element is removed from inside
the list and at its end. If the list doesn’t contain an element to be
removed, then the function is eventually called recursively for the
next field that contains the null value. In that case it does nothing,
just terminates, like its previous recursive invocations. In that way
the case of removing a nonexistent element from the list is handled
by the function.

20 / 58

Implementation Operation of Printing the List

Operation of Printing the Content of the List

The operation of printing the content of the list in the recursive
version is as short as its iterative version. It can be simply described
in the following way:

...1 if the list exists then print the value of its first element,

...2 print the content of the rest of the list.
The next slide contains definition of a function that implements the
operation.

21 / 58

Implementation Operation of Printing the List

Operation of Printing the Content of the List
The print_list() Function

1 void print_list(struct list_node *list_pointer)
2 {
3 if(list_pointer) {
4 printf("%d ",list_pointer->data);
5 print_list(list_pointer->next);
6 } else
7 puts("");
8 }

22 / 58

Implementation Operation of Printing the List

Operation of Printing the List
The print_list() Function

The print_list() function doesn’t return any value — its results
are visible on the screen. It takes only one argument, and it is the
list pointer. In the 3rd line the function checks if the pointer passed
by the function’s parameter is not empty. If the condition is satisfied
then the function prints the value of the data field of the element of
the list which address is passed by the parameter and invokes itself
recursively taking as an argument the address stored in the next
field of the currently accessed element of the list. If the address in
not null then another element of the list exists for which the next
instance of the function will repeat performing the statements in
the 4th and 5th lines. Otherwise the next recursive invocation of
the function will move the cursor to the next line on screen, using
the puts() function, and terminate. In that case also the previous
recursive invocation of the print_list() function will terminate.

23 / 58

Implementation Operation of Printing the List

Operation of Printing the List in Reversed Order
The print_list_inversely() Function

It occurs that a small modification of the print_list() function
makes it possible to perform an operation which was very hard to
do in the iterative version — printing the values of the elements
of the list in the reversed order. It suffice to swap the statements
in the 3rd and 4th lines, so as the value of the element is printed
after the return from the recursive invocation. This version of the
print_list() function is not calling the puts() function. The
latter should be called after the value of the first element is displayed
on the screen and it is difficult to detect. The cursor can be moved
to the next line on the screen after the function terminates. The
next slide contains the definition of the print_list_inversely()
which contains the described changes.

24 / 58

Implementation Operation of Printing the List

Operation of Printing the List in Reversed Order
The print_list_inversely() Function

1 void print_list_inversely(struct list_node *list_pointer)
2 {
3 if(list_pointer) {
4 print_list_inversely(list_pointer->next);
5 printf("%d ",list_pointer->data);
6 }
7 }

25 / 58

Implementation Operation of Removing the List

Operation of Removing the List

The operation of removing of all the element of the list is similar
to the operation of printing the content of the list in reversed or-
der. The difference in the implementation is the declaration of the
parameter of the function (this time it is a pointer to a pointer)
and in the operation that is performed on the element. The next
slide contains the definition of the remove_list() function which
performs such an operation.

26 / 58

Implementation Operation of Removing the List

Operation of Removing the List
The remove_list() Function

1 void remove_list(struct list_node **list_pointer)
2 {
3 if(*list_pointer) {
4 remove_list(&(*list_pointer)->next);
5 free(*list_pointer);
6 *list_pointer = NULL;
7 }
8 }

27 / 58

Implementation Operation of Removing the List

Operation of Removing the List
The remove_list() Operation

The function doesn’t return any value, but has a single parameter
which is a pointer to a pointer of the struct list_node type. When
the function is invoked for the first time it checks (line no. 3) if the
passed list exists. If so, it calls itself recursively in the 4th line.
It keeps invoking itself until one of its instances is called for the
next field of the last element in the list. The filed stores the null
value and the next invocation of the function does nothing except
terminating. The control flow goes back to 5th line of the instance
of the function called for the last element of the list. Here, the
instance frees the memory allocated for the element and assigns the
null value to the next filed of the element that was last but one
on the list. The instance terminates and the control flow returns to
the instance called for the last but one element, which will repeat
the described activities for the element. The returns will be finished
when the first element of the list is deallocated and the instance
invoked for that element will terminate. 28 / 58

Implementation Operation of Removing the List

Operation of Removing the List
The remove_list() Function

Please note, that the 4th and 5th lines of the described function can-
not be swapped, otherwise the function would be invoked recursively
for nonexistent elements of the list.

29 / 58

Implementation Functional Approach

Functional Approach

The recursion is strongly related to the functional paradigm of pro-
gramming, where is used in place of the iteration. It is not the only
one element of this paradigm. In the functional model the most
important concept is the function. The variables are immutable,
i.e. the values that are assigned to them cannot be changed. Thus
any subroutine that operates on such variables has no side-effects.
Functions can be passed by parameters to other functions perform
operations on them or use them for performing other operations.
The latter functions are called the higher order functions. The C
language doesn’t support directly the higher order functions or the
functional paradigm, but similar effects can be achieved with the
use of function pointers.

30 / 58

Implementation Functional Approach

Performing Operations on the List that Return No
Results

First a function is defined that recursively traverses the list and
performs an operation for each of its elements which is defined by
a function, which address is passed to it as an argument. The next
slide contains the definition of the function.

31 / 58

Implementation Functional Approach

Performing Operations on the List Returning No
Results
The iterate_list() Function

1 void iterate_list(struct list_node *list_pointer,
2 void (*action)(struct list_node *))
3 {
4 if(list_pointer) {
5 if(action)
6 action(list_pointer);
7 iterate_list(list_pointer->next,action);
8 }
9 }

32 / 58

Implementation Functional Approach

Performing Operations on the List Returning No
Results
The iterate_list() Function

The function doesn’t return any value but has two parameters. The
first one is used for passing the list pointer and the second for passing
the address of a function which also doesn’t return any value but
takes as an argument an element of the list for which it performs an
operation. The iterate_list() function is a higher order function.
In the 4th line it checks if the list pointer which it received by
its first parameter is not empty. If the condition is satisfied the
function checks if the pointer to the function is also not empty.
If not, no operation is performed on the currently accessed list’s
element, just the iterate_list() calls itself recursively (line no.
7). Otherwise the function pointed by the action pointer is invoked
for the element of the list that is accessed by the current instance
of the iterate_list() function.

33 / 58

Implementation Functional Approach

Performing Operations on the List Returning No
Results
The print_element() Function

1 void print_element(struct list_node *list_pointer)
2 {
3 printf("%d ",list_pointer->data);
4 }

34 / 58

Implementation Functional Approach

Performing Operations on the List Returning No
Results
The print_element() Function

The print_element() function defines an example operation for a
single element of the list — it prints the value of the data field
of the element on the screen. If the iterate_list() function is
called with the address of the print_element() function as its sec-
ond argument, then it will print the values of all elements of the
list on the screen. The only difference between such a result of the
iterate_list() function and the result of the print_list() func-
tion is that the former doesn’t moves the cursor to the next line on
the screen.

35 / 58

Implementation Functional Approach

Performing Operations on the List Returning No
Results
The double_element_value() Function

1 void double_element_value(struct list_node *list_pointer)
2 {
3 list_pointer->data*=2;
4 }

36 / 58

Implementation Functional Approach

Performing Operations on the List Returning No
Results
The double_element_value() Function

The function, when invoked by the iterate_list() function dou-
bles the value of the data field of the element which address is passed
to it by its parameter. Hence, in that case the iterate_list()
function doubles values of all elements of the list.

37 / 58

Implementation Functional Approach

Performing Operations on the List That Return Results

The presented higher order function makes it possible to perform op-
erations which change the values of the elements of the list, like the
double_element_value() function. It is not however completely
compatible with the functional paradigm of programming in which
once assigned variables don’t change their values. Let’s try to define
another higher order function which returns a result of the operation
performed on the list by functions invoked by it. The definition of
the function is given in the next slide.

38 / 58

Implementation Functional Approach

Performing Operations on the List That Return Results
The iterate_list_with_result() Function

1 int iterate_list_with_result(struct list_node *list_pointer,
2 int (*action)(int result, struct list_node *list_pointer))
3 {
4 int result=0;
5 for(; list_pointer; list_pointer=list_pointer->next)
6 if(action)
7 result=action(result,list_pointer);
8 return result;
9 }

39 / 58

Implementation Functional Approach

Performing Operations on the List That Return Results
The iterate_list_with_result() Function

The described function is similar to the iterate_list() function,
but in contrast to it the former function takes as a second argument
an address of a function that returns a value of the int type and
it has two parameters. By the first parameter a variable is passed,
which is used for accumulating results of previous operations car-
ried out by the function on element of the list. Such a parameter is
redundant in languages which directly support the functional pro-
gramming model, but it is necessary in the C language. The second
parameter is a pointer to an element of the list for which the op-
eration has to be carried out. The iterate_list_with_result()
function uses the iteration instead of the recursion (line no. 5) to
traverse the list. The loop allows it to use the local variable result
in the 7th line for storing the results of previously carried operations
on the already visited elements of the list. To make it possible, in
the same line the variable is passed as the first argument to the
invoked function pointed by the action parameter. 40 / 58

Implementation Functional Approach

Performing Operations on the List That Return Results
The add_up() Function

1 int add_up(int result, struct list_node *list_pointer)
2 {
3 return result+list_pointer->data;
4 }

41 / 58

Implementation Functional Approach

Performing Operations on the List That Return Results
The add_up() Function

The function presented in the previous slide is an example of a
function that can be invoked by the iterate_list_with_result()
function. If it happens the latter will return the sum of the values
of all elements of the list. The value will be correct if it is in the
range of the int type.

42 / 58

Implementation Functional Approach

Performing Operations on the List That Return Results
The count_elements() Function

1 int count_elements(int result, struct list_node *list_pointer)
2 {
3 return result+1;
4 }

43 / 58

Implementation Functional Approach

Performing Operations on the List That Return Results
The count_elements() Function

If the function presented in the previous slide is invoked by the
iterate_list_with_result() function than the latter will return
the number of the elements in the list. The result will be correct if
the number is in the range of the int type.

44 / 58

Implementation Functional Approach

Performing Operations on the List That Return Results
Summary

Please note, that the presented solution limits the possible opera-
tions to only those that return as a result a value of the int or
compatible type. The typical functional programming languages
doesn’t have such limitations, because they are in most cases dy-
namically typed. It means that the programmer doesn’t have to
define the types for variables parameters and the values returned
by the functions. They are dynamically defined when the program
runs.

45 / 58

Implementation

The main() Function

In the main function of the program all the previously defined func-
tions are invoked. Just as in the program presented in the previous
lecture, their behaviour is tested for all the most important cases.

46 / 58

Implementation

The main() Function
First Part

1 int main(void)
2 {
3 int i;
4 for(i=1; i<5; i++)
5 if(add_node(&list_pointer,i)==-1)
6 fprintf(stderr,"Adding an element to the list exception!\n");
7 for(i=6; i<10; i++)
8 if(add_node(&list_pointer,i)==-1)
9 fprintf(stderr,"Adding an element to the list exception!\n");

10 print_list(list_pointer);

47 / 58

Implementation

The main() Function
First Part

In the first part of the main() function, which is presented in the
previous slide, a list is created that contains natural numbers rang-
ing for 1 to 4 and form 6 to 9. Please note, that the whole operation
is carried out with the use of the add_node() function. Each time
the function is called its result is checked. Should it be equal -1 the
program prints a message about the failure of adding a new element
to the list. Please observe that the first argument of the add_node()
is the address of the list pointer. After the list is created its content
is displayed on the screen by the print_list() function.

48 / 58

Implementation

The main() Function
Second Part

1 if(add_node(&list_pointer,0)==-1)
2 fprintf(stderr,"Adding an element to the list exception!\n");
3 print_list(list_pointer);
4 if(add_node(&list_pointer,5)==-1)
5 fprintf(stderr,"Adding an element to the list exception!\n");
6 print_list(list_pointer);
7 if(add_node(&list_pointer,7)==-1)
8 fprintf(stderr,"Adding an element to the list exception!\n");
9 print_list(list_pointer);

10 if(add_node(&list_pointer,10)==-1)
11 fprintf(stderr,"Adding an element to the list exception!\n");
12 print_list(list_pointer);

49 / 58

Implementation

The main() Function
Second Part

In the second part of the main() function a single element are added
at the beginning, in the middle and at the end of an existing list.
Also an element is added that stores a value that is already in the
list. After each such an operation is carried out the result returned
by the add_node() function is checked and the content of the list is
displayed on the screen with the use of the print_list() function.

50 / 58

Implementation

The main() Function
Third Part

1 print_list_inversely(list_pointer);
2 puts("");
3 delete_node(&list_pointer,0);
4 print_list(list_pointer);
5 delete_node(&list_pointer,1);
6 print_list(list_pointer);
7 delete_node(&list_pointer,1);
8 print_list(list_pointer);
9 delete_node(&list_pointer,4);

10 print_list(list_pointer);
11 delete_node(&list_pointer,7);
12 print_list(list_pointer);
13 delete_node(&list_pointer,10);
14 print_list(list_pointer);

51 / 58

Implementation

The main() Function
Third Part

In the third part of the main() function the list content is printed
in the reversed order with the use of the print_list_inversely()
function. The cursor is moved to the next line on the screen int
the 2nd line of the described part of the program, after the function
terminates. Next elements from the beginning, the middle and the
end of the list are removed. The program also tries to remove an
nonexistent element (line no. 7) and an element that stores a num-
ber which is represented by two elements in the list (line no. 11).
After each of the operations is performed, the content of the list is
displayed on the screen.

52 / 58

Implementation

The main() Function
Forth Part

1 iterate_list(list_pointer,NULL);
2 iterate_list(list_pointer,print_element);
3 puts("");
4 iterate_list(list_pointer,double_element_value);
5 iterate_list(list_pointer,print_element);
6 puts("");
7 printf("The sum of the values of the list's elements: %d\n",
8 iterate_list_with_result(list_pointer,add_up));
9 printf("The number of the list's elements: %d\n",

10 iterate_list_with_result(list_pointer,count_elements));
11 remove_list(&list_pointer);
12 return 0;
13 }

53 / 58

Implementation

The main() Function
The Forth Part

In the forth part of the main() function are invoked all functions
that in the functional programming paradigm are called higher order
functions. First the iterate_list() function is called, but with no
valid address of a function that performs an operation on the list.
This allows testing if the function behaves correctly under such cir-
cumstances. Next, the content of the list is displayed with the use
of iterate_list() invoked with an argument which is the address
of the function that prints the value of a single element of the list.
Please note, that the cursor is moved to the next line on the screen
after the function terminates. In the 4th line the same function is
called with the address of the double_element_value() function
passed as an argument. This time the iterate_list() function
doubles the value of each of the elements of the list. Then, the con-
tent of the list is displayed on the screen using the iterate_list()
function (please compare lines no. 2 and no. 5).

54 / 58

Implementation

The main() Function
The Forth Part

Next, the iterate_list_with_result() function is tested. First
it is called with the address of the add_up() function passed as
an argument, and then with the address of the count_element()
function. In the first case it sums up values of all the elements in
the list. In the second one it counts the number of the elements.
Eventually, the list is removed.

55 / 58

Summary

Summary

Using the recursion allows for shortening the definitions of functions
that implement operations on the singly linked linear list. In the case
of printing the content of the list on screen in the reversed order, the
recursion is necessary to implement such an operation. That allows
for concluding that the recursion technique should be known to any
decent programmer.
Example of application of elements of functional programming for
performing operations on the list are presented in the lecture. The
aforementioned programming model gains recently on interest, be-
cause it makes it possible to avoid many issues with concurrent pro-
gramming, which are related to the imperative programing paradigm,
which also means that they are present in the structural, procedu-
ral and object-oriented paradigms. The C language doesn’t support
directly the functional programming paradigm, thus the presented
solutions are not “purely” functional, but still are worth studying.

56 / 58

The End

Questions

?

57 / 58

The End

The End

Thank You For Your Attention!

58 / 58

	Introduction
	Implementation
	Base Type and List Pointer
	Operation of Adding an Element to the List
	Operation of Removing an Element From the List
	Operation of Printing the List
	Operation of Removing the List
	Functional Approach

	Summary

