
.

......

Fundamentals of Programming 2
The dfs and bfs Algorithms

Arkadiusz Chrobot

Department of Computer Science

June 13, 2019

1 / 70

Outline

...1 Introduction

...2 The DFS Algorithm

...3 The BFS Algorithm

...4 Summary

2 / 70

Introduction

Introduction

There are many algorithms for graphs that are known simply as the
graph algorithms. Most of them is based on or is a modification of
two fundamental graph traversing algorithms. The result of such
algorithms is a path that starts in a given vertex and covers all
vertices of a connected or strongly connected graph or ends with
a specified goal vertex. The first of those two algorithms is the
Deep-First Search algorithm called dfs for short. The second one
is the Breadth-First Search algorithm also known as bfs. They are
described in the lecture in the same order as they are mentioned in
this slide.

3 / 70

The DFS Algorithm

The DFS Algorithm
Theoretical Introduction

The dfs algorithm starts traversing the graph from a specified ver-
tex and visits all vertices that are reachable from this node. If a
vertex belonging to those vertices has at least one neighbour (adja-
cent vertex), which has not been yet visited, then the neighbour is
added to a stack, as the one to be visited next. In case the vertex has
more than one unvisited neighbour, only one is selected in this step
of the algorithm. The vertices that are on the stack are described
as discovered. After marking the current vertex as a visited the dfs
algorithm removes a single vertex from the stack (provided the data
structure is not empty) and visits it repeating the steps described
in this slide. If the dfs is used as a basis for another algorithm then
before the current vertex is marked as visited the data stored in it
are processed.

4 / 70

The DFS Algorithm

The DFS Algorithm
Theoretical Introduction

The name of the algorithm comes from how it works — it always
choses one of the unvisited neighbours of the current vertex and
visits it as next. In other words it “goes deeper” in the graph. If
the current vertex has no unvisited neighbours (or no neighbours
at all) then the dfs backtracks (“goes back”) to the previous vertex
and checks if it has any neighbours that it should visit. If the graph
traversed by the dfs is a connected or strongly connected one, then
the algorithm will terminate after visiting all vertices. If not, the
dfs will finish after visiting a component (a maximal connected
subgraph) to which the initial vertex belongs. If the objective of
using the dfs algorithm is to visit all vertices then after applying
it once for a given graph it should be checked if there are still any
unvisited vertices. If so, the algorithm should be repeatedly applied
for those vertices until none of them is left unvisited.

5 / 70

The DFS Algorithm

The DFS Algorithm
Theoretical Introduction

The dfs algorithm can also be terminated after visiting a specified
goal vertex or a vertex that satisfies the goal condition. Since the
dfs uses a stack then it is easy to implement it in a recursive form.
If the algorithm is applied to a binary tree it gives the same results
as the pre-order traversing algorithm. Thus, the dfs is a generalised
for all kinds of graphs version of the pre-order traversing algorithm.
The time-complexity of the dfs algorithm is Θ(V + E).

6 / 70

The DFS Algorithm

The DFS Algorithm
Animation

In the next slide is an animation that shows the behaviour of the dfs
algorithm for the undirected graph that has been presented in the
previous lecture. At the top of the slide is a list of vertices which
are visited by the dfs and form a path that is the result of the
algorithm. On the right is illustrated a stack, where the numbers of
discovered vertices are stored. The order of visiting the neighbours
is arbitrary. The red marked vertex of the graph in the middle of
the slide, together with an associated edge is the vertex to be visited
next. The vertex marked in yellow colour is being processed and the
vertex marked in green colour is already visited. Since the graph
is connected, the algorithm terminates after visiting all its vertices.
There is no need to repeat it for unvisited vertices.

7 / 70

The DFS Algorithm

The DFS Algorithm
Animation

..

1

.

1

.

1

.

1

.

2

.

2

.

2

.

2

.

3

.

3

.

3

.

3

. 4. 4. 4.5.5.5.5. stack:. 4.
2

.

1

.

2

.

5

.

4

.

1

.

2

.

5

.

3

.

2

.

4

.

4

.
5

.
3

.

path:

.

4

.

2

.

1

.

5

.

3

Traversing an undirected graph by the dfs algorithm

8 / 70

The DFS Algorithm

The DFS Algorithm
Animation

..

1

.

1

.

1

.

1

.

2

.

2

.

2

.

2

.

3

.

3

.

3

.

3

. 4. 4. 4.5.5.5.5. stack:. 4.
2

.

1

.

2

.

5

.

4

.

1

.

2

.

5

.

3

.

2

.

4

.

4

.
5

.
3

.

path:

.

4

.

2

.

1

.

5

.

3

Traversing an undirected graph by the dfs algorithm

8 / 70

The DFS Algorithm

The DFS Algorithm
Animation

..

1

.

1

.

1

.

1

.

2

.

2

.

2

.

2

.

3

.

3

.

3

.

3

. 4. 4. 4.5.5.5.5. stack:. 4.
2

.

1

.

2

.

5

.

4

.

1

.

2

.

5

.

3

.

2

.

4

.

4

.
5

.
3

.

path:

.

4

.

2

.

1

.

5

.

3

Traversing an undirected graph by the dfs algorithm

8 / 70

The DFS Algorithm

The DFS Algorithm
Animation

..

1

.

1

.

1

.

1

.

2

.

2

.

2

.

2

.

3

.

3

.

3

.

3

. 4. 4. 4.5.5.5.5. stack:. 4.
2

.

1

.

2

.

5

.

4

.

1

.

2

.

5

.

3

.

2

.

4

.

4

.
5

.
3

.

path:

.

4

.

2

.

1

.

5

.

3

Traversing an undirected graph by the dfs algorithm

8 / 70

The DFS Algorithm

The DFS Algorithm
Animation

..

1

.

1

.

1

.

1

.

2

.

2

.

2

.

2

.

3

.

3

.

3

.

3

. 4. 4. 4.5.5.5.5. stack:. 4.
2

.

1

.

2

.

5

.

4

.

1

.

2

.

5

.

3

.

2

.

4

.

4

.
5

.
3

.

path:

.

4

.

2

.

1

.

5

.

3

Traversing an undirected graph by the dfs algorithm

8 / 70

The DFS Algorithm

The DFS Algorithm
Animation

..

1

.

1

.

1

.

1

.

2

.

2

.

2

.

2

.

3

.

3

.

3

.

3

. 4. 4. 4.5.5.5.5. stack:. 4.
2

.

1

.

2

.

5

.

4

.

1

.

2

.

5

.

3

.

2

.

4

.

4

.
5

.
3

.

path:

.

4

.

2

.

1

.

5

.

3

Traversing an undirected graph by the dfs algorithm

8 / 70

The DFS Algorithm

The DFS Algorithm
Animation

..

1

.

1

.

1

.

1

.

2

.

2

.

2

.

2

.

3

.

3

.

3

.

3

. 4. 4. 4.5.5.5.5. stack:. 4.
2

.

1

.

2

.

5

.

4

.

1

.

2

.

5

.

3

.

2

.

4

.

4

.
5

.
3

.

path:

.

4

.

2

.

1

.

5

.

3

Traversing an undirected graph by the dfs algorithm

8 / 70

The DFS Algorithm

The DFS Algorithm
Animation

..

1

.

1

.

1

.

1

.

2

.

2

.

2

.

2

.

3

.

3

.

3

.

3

. 4. 4. 4.5.5.5.5. stack:. 4.
2

.

1

.

2

.

5

.

4

.

1

.

2

.

5

.

3

.

2

.

4

.

4

.
5

.
3

.

path:

.

4

.

2

.

1

.

5

.

3

Traversing an undirected graph by the dfs algorithm

8 / 70

The DFS Algorithm

The DFS Algorithm
Animation

..

1

.

1

.

1

.

1

.

2

.

2

.

2

.

2

.

3

.

3

.

3

.

3

. 4. 4. 4.5.5.5.5. stack:. 4.
2

.

1

.

2

.

5

.

4

.

1

.

2

.

5

.

3

.

2

.

4

.

4

.
5

.
3

.

path:

.

4

.

2

.

1

.

5

.

3

Traversing an undirected graph by the dfs algorithm

8 / 70

The DFS Algorithm

The DFS Algorithm
Animation

..

1

.

1

.

1

.

1

.

2

.

2

.

2

.

2

.

3

.

3

.

3

.

3

. 4. 4. 4.5.5.5.5. stack:. 4.
2

.

1

.

2

.

5

.

4

.

1

.

2

.

5

.

3

.

2

.

4

.

4

.
5

.
3

.

path:

.

4

.

2

.

1

.

5

.

3

Traversing an undirected graph by the dfs algorithm

8 / 70

The DFS Algorithm

The DFS Algorithm
Animation

..

1

.

1

.

1

.

1

.

2

.

2

.

2

.

2

.

3

.

3

.

3

.

3

. 4. 4. 4.5.5.5.5. stack:. 4.
2

.

1

.

2

.

5

.

4

.

1

.

2

.

5

.

3

.

2

.

4

.

4

.
5

.
3

.

path:

.

4

.

2

.

1

.

5

.

3

Traversing an undirected graph by the dfs algorithm

8 / 70

The DFS Algorithm

The DFS Algorithm
Animation

..

1

.

1

.

1

.

1

.

2

.

2

.

2

.

2

.

3

.

3

.

3

.

3

. 4. 4. 4.5.5.5.5. stack:. 4.
2

.

1

.

2

.

5

.

4

.

1

.

2

.

5

.

3

.

2

.

4

.

4

.
5

.
3

.

path:

.

4

.

2

.

1

.

5

.

3

Traversing an undirected graph by the dfs algorithm

8 / 70

The DFS Algorithm

The DFS Algorithm
Animation

..

1

.

1

.

1

.

1

.

2

.

2

.

2

.

2

.

3

.

3

.

3

.

3

. 4. 4. 4.5.5.5.5. stack:. 4.
2

.

1

.

2

.

5

.

4

.

1

.

2

.

5

.

3

.

2

.

4

.

4

.
5

.
3

.

path:

.

4

.

2

.

1

.

5

.

3

Traversing an undirected graph by the dfs algorithm

8 / 70

The DFS Algorithm

The DFS Algorithm
Animation

..

1

.

1

.

1

.

1

.

2

.

2

.

2

.

2

.

3

.

3

.

3

.

3

. 4. 4. 4.5.5.5.5. stack:. 4.
2

.

1

.

2

.

5

.

4

.

1

.

2

.

5

.

3

.

2

.

4

.

4

.
5

.
3

.

path:

.

4

.

2

.

1

.

5

.

3

Traversing an undirected graph by the dfs algorithm

8 / 70

The DFS Algorithm

The DFS Algorithm
Animation

..

1

.

1

.

1

.

1

.

2

.

2

.

2

.

2

.

3

.

3

.

3

.

3

. 4. 4. 4.5.5.5.5. stack:. 4.
2

.

1

.

2

.

5

.

4

.

1

.

2

.

5

.

3

.

2

.

4

.

4

.
5

.
3

.

path:

.

4

.

2

.

1

.

5

.

3

Traversing an undirected graph by the dfs algorithm

8 / 70

The DFS Algorithm

The DFS Algorithm
Animation

..

1

.

1

.

1

.

1

.

2

.

2

.

2

.

2

.

3

.

3

.

3

.

3

. 4. 4. 4.5.5.5.5. stack:. 4.
2

.

1

.

2

.

5

.

4

.

1

.

2

.

5

.

3

.

2

.

4

.

4

.
5

.
3

.

path:

.

4

.

2

.

1

.

5

.

3

Traversing an undirected graph by the dfs algorithm

8 / 70

The DFS Algorithm

The DFS Algorithm
Animation

..

1

.

1

.

1

.

1

.

2

.

2

.

2

.

2

.

3

.

3

.

3

.

3

. 4. 4. 4.5.5.5.5. stack:. 4.
2

.

1

.

2

.

5

.

4

.

1

.

2

.

5

.

3

.

2

.

4

.

4

.
5

.
3

.

path:

.

4

.

2

.

1

.

5

.

3

Traversing an undirected graph by the dfs algorithm

8 / 70

The DFS Algorithm

The DFS Algorithm
Animation

..

1

.

1

.

1

.

1

.

2

.

2

.

2

.

2

.

3

.

3

.

3

.

3

. 4. 4. 4.5.5.5.5. stack:. 4.
2

.

1

.

2

.

5

.

4

.

1

.

2

.

5

.

3

.

2

.

4

.

4

.
5

.
3

.

path:

.

4

.

2

.

1

.

5

.

3

Traversing an undirected graph by the dfs algorithm

8 / 70

The DFS Algorithm

The DFS Algorithm
Animation

..

1

.

1

.

1

.

1

.

2

.

2

.

2

.

2

.

3

.

3

.

3

.

3

. 4. 4. 4.5.5.5.5. stack:. 4.
2

.

1

.

2

.

5

.

4

.

1

.

2

.

5

.

3

.

2

.

4

.

4

.
5

.
3

.

path:

.

4

.

2

.

1

.

5

.

3

Traversing an undirected graph by the dfs algorithm

8 / 70

The DFS Algorithm

The DFS Algorithm
Animation

..

1

.

1

.

1

.

1

.

2

.

2

.

2

.

2

.

3

.

3

.

3

.

3

. 4. 4. 4.5.5.5.5. stack:. 4.
2

.

1

.

2

.

5

.

4

.

1

.

2

.

5

.

3

.

2

.

4

.

4

.
5

.
3

.

path:

.

4

.

2

.

1

.

5

.

3

Traversing an undirected graph by the dfs algorithm

8 / 70

The DFS Algorithm

The DFS Algorithm
Animation

..

1

.

1

.

1

.

1

.

2

.

2

.

2

.

2

.

3

.

3

.

3

.

3

. 4. 4. 4.5.5.5.5. stack:. 4.
2

.

1

.

2

.

5

.

4

.

1

.

2

.

5

.

3

.

2

.

4

.

4

.
5

.
3

.

path:

.

4

.

2

.

1

.

5

.

3

Traversing an undirected graph by the dfs algorithm

8 / 70

The DFS Algorithm

The DFS Algorithm
Animation

..

1

.

1

.

1

.

1

.

2

.

2

.

2

.

2

.

3

.

3

.

3

.

3

. 4. 4. 4.5.5.5.5. stack:. 4.
2

.

1

.

2

.

5

.

4

.

1

.

2

.

5

.

3

.

2

.

4

.

4

.
5

.
3

.

path:

.

4

.

2

.

1

.

5

.

3

Traversing an undirected graph by the dfs algorithm

8 / 70

The DFS Algorithm

The DFS Algorithm
Animation

..

1

.

1

.

1

.

1

.

2

.

2

.

2

.

2

.

3

.

3

.

3

.

3

. 4. 4. 4.5.5.5.5. stack:. 4.
2

.

1

.

2

.

5

.

4

.

1

.

2

.

5

.

3

.

2

.

4

.

4

.
5

.
3

.

path:

.

4

.

2

.

1

.

5

.

3

Traversing an undirected graph by the dfs algorithm

8 / 70

The DFS Algorithm

The DFS Algorithm
Animation

..

1

.

1

.

1

.

1

.

2

.

2

.

2

.

2

.

3

.

3

.

3

.

3

. 4. 4. 4.5.5.5.5. stack:. 4.
2

.

1

.

2

.

5

.

4

.

1

.

2

.

5

.

3

.

2

.

4

.

4

.
5

.
3

.

path:

.

4

.

2

.

1

.

5

.

3

Traversing an undirected graph by the dfs algorithm

8 / 70

The DFS Algorithm

The DFS Algorithm
Animation

..

1

.

1

.

1

.

1

.

2

.

2

.

2

.

2

.

3

.

3

.

3

.

3

. 4. 4. 4.5.5.5.5. stack:. 4.
2

.

1

.

2

.

5

.

4

.

1

.

2

.

5

.

3

.

2

.

4

.

4

.
5

.
3

.

path:

.

4

.

2

.

1

.

5

.

3

Traversing an undirected graph by the dfs algorithm

8 / 70

The DFS Algorithm

The DFS Algorithm
Animation

..

1

.

1

.

1

.

1

.

2

.

2

.

2

.

2

.

3

.

3

.

3

.

3

. 4. 4. 4.5.5.5.5. stack:. 4.
2

.

1

.

2

.

5

.

4

.

1

.

2

.

5

.

3

.

2

.

4

.

4

.
5

.
3

.

path:

.

4

.

2

.

1

.

5

.

3

Traversing an undirected graph by the dfs algorithm

8 / 70

The DFS Algorithm

The DFS Algorithm
Animation

..

1

.

1

.

1

.

1

.

2

.

2

.

2

.

2

.

3

.

3

.

3

.

3

. 4. 4. 4.5.5.5.5. stack:. 4.
2

.

1

.

2

.

5

.

4

.

1

.

2

.

5

.

3

.

2

.

4

.

4

.
5

.
3

.

path:

.

4

.

2

.

1

.

5

.

3

Traversing an undirected graph by the dfs algorithm

8 / 70

The DFS Algorithm

The DFS Algorithm
Animation

..

1

.

1

.

1

.

1

.

2

.

2

.

2

.

2

.

3

.

3

.

3

.

3

. 4. 4. 4.5.5.5.5. stack:. 4.
2

.

1

.

2

.

5

.

4

.

1

.

2

.

5

.

3

.

2

.

4

.

4

.
5

.
3

.

path:

.

4

.

2

.

1

.

5

.

3

Traversing an undirected graph by the dfs algorithm

8 / 70

The DFS Algorithm

The DFS Algorithm
Animation

..

1

.

1

.

1

.

1

.

2

.

2

.

2

.

2

.

3

.

3

.

3

.

3

. 4. 4. 4.5.5.5.5. stack:. 4.
2

.

1

.

2

.

5

.

4

.

1

.

2

.

5

.

3

.

2

.

4

.

4

.
5

.
3

.

path:

.

4

.

2

.

1

.

5

.

3

Traversing an undirected graph by the dfs algorithm

8 / 70

The DFS Algorithm

The DFS Algorithm
Animation

..

1

.

1

.

1

.

1

.

2

.

2

.

2

.

2

.

3

.

3

.

3

.

3

. 4. 4. 4.5.5.5.5. stack:. 4.
2

.

1

.

2

.

5

.

4

.

1

.

2

.

5

.

3

.

2

.

4

.

4

.
5

.
3

.

path:

.

4

.

2

.

1

.

5

.

3

Traversing an undirected graph by the dfs algorithm

8 / 70

The DFS Algorithm

The DFS Algorithm — An Implementation

Next slides show a modified version of the program presented on the
previous lecture, which traverses an undirected graph using the dfs
algorithm. The algorithm operates on an adjacency list which is the
result of converting the adjacency matrix of the graph. Since the
graph is connected, the dfs terminates after visiting all its vertices,
but the program is ready to be used also for graphs which are not
connected.

9 / 70

The DFS Algorithm

The DFS Algorithm — An Implementation
Adjacency Matrix and Base Type of Adjacency List

1 #include<stdio.h>
2 #include<stdlib.h>
3 #include<stdbool.h>
4

5 typedef int matrix[5][5];
6

7 const matrix adjacency_matrix = {{0,1,0,0,1},
8 {1,0,1,1,1,},
9 {0,1,0,1,0,},

10 {0,1,1,0,1,},
11 {1,1,0,1,0,}
12 };
13

14 struct vertex {
15 int vertex_number;
16 bool visited;
17 struct vertex *next, *down;
18 } *start_vertex;

10 / 70

The DFS Algorithm

The DFS Algorithm — An Implementation
Adjacency Matrix and Base Type of Adjacency List

The beginning of the program presented in the previous slide differs
only by one detail from the version presented on the previous lecture.
The base type of the adjacency list has one additional field of bool
type which is used for marking the vertex as visited. In such a case
the field’s value is true, otherwise false. The value of the field has
a meaning only in the list of all vertices (the “vertical” list, which
is a part of the adjacency list).

11 / 70

The DFS Algorithm

The DFS Algorithm — An Implementation
The Queue Base Type and the Queue Pointers Structure

1 struct fifo_node {
2 int vertex_number;
3 struct fifo_node *next;
4 };
5

6 struct fifo_pointers {
7 struct fifo_node *head, *tail;
8 } path;

12 / 70

The DFS Algorithm

The DFS Algorithm — An Implementation
The Queue Base Type and the Queue Pointers Structure

The previous slide contains definitions of the base type of a fifo
queue and a structure that stores the head and tail pointers of the
queue. A global variable of the fifo_pointers type, named path,
is also declared in the 8th line. Each element of the queue stores
the number of a visited vertex. The queue as the whole serves for
storing a path which is the result of the dfs and which shows the
order in which the algorithm traversed the vertices of the graph,
starting from an initial vertex.

13 / 70

The DFS Algorithm

The DFS Algorithm — An Implementation
The enqueue() Function

1 void enqueue(struct fifo_pointers *fifo, int vertex_number)
2 {
3 struct fifo_node *new_node =
4 (struct fifo_node *)malloc(sizeof(struct fifo_node));
5 if(new_node) {
6 new_node->vertex_number = vertex_number;
7 new_node->next = NULL;
8 if(fifo->head==NULL)
9 fifo->head = fifo->tail = new_node;

10 else {
11 fifo->tail->next=new_node;
12 fifo->tail=new_node;
13 }
14 } else
15 fprintf(stderr,"No new element was created!\n");
16 }

14 / 70

The DFS Algorithm

The DFS Algorithm — An Implementation
The enqueue() Function

In the previous slide is shown a definition of the enqueue() function,
which creates a fifo queue and adds new elements to it. Since the
function is defined almost in the same way as on previous lectures,
it is not further discussed in details.

15 / 70

The DFS Algorithm

The DFS Algorithm — An Implementation
The dequeue() Function

1 void dequeue(struct fifo_pointers *fifo)
2 {
3 if(fifo->head) {
4 struct fifo_node *tmp = fifo->head->next;
5 free(fifo->head);
6 fifo->head=tmp;
7 if(tmp==NULL)
8 fifo->tail = NULL;
9 }

10 }

16 / 70

The DFS Algorithm

The DFS Algorithm — An Implementation
The dequeue() Function

The dequeue() function presented in the previous slide differs from
its counterpart, presented on the lecture about queues, in that it
returns no value, but only removes a single element from the head
of the fifo queue.

17 / 70

The DFS Algorithm

The DFS Algorithm — An Implementation
The remove_queue() Function

1 void remove_queue(struct fifo_pointers *fifo)
2 {
3 while(fifo->head)
4 dequeue(fifo);
5 }

18 / 70

The DFS Algorithm

The DFS Algorithm — An Implementation
The remove_queue() Function

The remove_queue() function calls in the while loop the dequeue()
function to remove the fifo queue. As an argument the former func-
tion takes an address of the queue pointers structure. It doesn’t
return any value. The while loop is repeated as long as the head
pointer has a value different than null.

19 / 70

The DFS Algorithm

The DFS Algorithm — An Implementation
The print_path() Function

1 void print_path(struct fifo_pointers fifo)
2 {
3 while(fifo.head) {
4 printf("%d ",fifo.head->vertex_number);
5 fifo.head = fifo.head->next;
6 }
7 puts("");
8 }

20 / 70

The DFS Algorithm

The DFS Algorithm — An Implementation
The print_path() Function

The print_path() function is a version of the print_queue() func-
tion modified to print the content of the fifo queue which stores
the path created by the dfs algorithm.

21 / 70

The DFS Algorithm

The DFS Algorithm — An Implementation
The create_vertical_list() Function

1 void create_vertical_list(struct vertex **start_vertex,
2 const matrix adjacency_matrix)
3 {
4 int i;
5 for(i=0; i<sizeof(matrix)/sizeof(*adjacency_matrix); i++) {
6 *start_vertex = (struct vertex *)
7 malloc(sizeof(struct vertex));
8 if(*start_vertex) {
9 (*start_vertex)->vertex_number = i+1;

10 (*start_vertex)->visited = false;
11 (*start_vertex)->down = (*start_vertex)->next = NULL;
12 start_vertex = &(*start_vertex)->down;
13 }
14 }
15 }

22 / 70

The DFS Algorithm

The DFS Algorithm — An Implementation
The create_vertical_list() Function

The create_vertical_list() function differs from its counterpart
from the previous lecture only in that it initializes (10th line) the
visited field of each node representing a vertex in the list of all
vertices.

23 / 70

The DFS Algorithm

The DFS Algorithm — An Implementation
The convert_matrix_to_list() Function

1 struct vertex *convert_matrix_to_list(const matrix adjacency_matrix)
2 {
3 struct vertex *start_vertex = NULL;
4 create_vertical_list(&start_vertex,adjacency_matrix);
5 if(start_vertex) {
6 struct vertex *horizontal_pointer = NULL, *vertical_pointer = NULL;
7 horizontal_pointer = vertical_pointer = start_vertex;
8 int i,j;
9 for(i=0; i<sizeof(matrix)/sizeof(*adjacency_matrix); i++) {

10 for(j=0; j<sizeof(matrix)/sizeof(*adjacency_matrix); j++)
11 if(adjacency_matrix[i][j]) {
12 struct vertex *new_vertex = (struct vertex *)malloc(sizeof(struct vertex));
13 if(new_vertex) {
14 new_vertex->vertex_number = j+1;
15 new_vertex->visited = false;
16 new_vertex->down = new_vertex->next = NULL;
17 horizontal_pointer->next = new_vertex;
18 horizontal_pointer = horizontal_pointer->next;
19 }
20 }
21 vertical_pointer = vertical_pointer->down;
22 horizontal_pointer = vertical_pointer;
23 }
24 }
25 return start_vertex;
26 }

24 / 70

The DFS Algorithm

The DFS Algorithm — An Implementation
The convert_matrix_to_list() Function

The function that converts an adjacency matrix into an adjacency
list also differs only by one detail from its counterpart presented on
the previous lecture. This detail is the initialisation of the visited
field of each newly created node (15th line).

25 / 70

The DFS Algorithm

The DFS Algorithm — An Implementation
The print_adjacency_list() Function

1 void print_adjacency_list(struct vertex *start_vertex)
2 {
3 while(start_vertex) {
4 printf("%3d:",start_vertex->vertex_number);
5 struct vertex *horizontal_pointer = start_vertex->next;
6 while(horizontal_pointer) {
7 printf("%3d",horizontal_pointer->vertex_number);
8 horizontal_pointer = horizontal_pointer->next;
9 }

10 start_vertex = start_vertex->down;
11 puts("");
12 }
13 }

26 / 70

The DFS Algorithm

The DFS Algorithm — An Implementation
The print_adjacency_list() Function

The print_adjacency_list() function is implemented in exactly
the same way as its counterpart presented on the previous lecture.

27 / 70

The DFS Algorithm

The DFS Algorithm — An Implementation
The remove_adjacency_list() Function

1 void remove_adjacency_list(struct vertex **start_vertex)
2 {
3 while(*start_vertex) {
4 struct vertex *horizontal_pointer=(*start_vertex)->next;
5 while(horizontal_pointer) {
6 struct vertex *next_horizontal =
7 horizontal_pointer->next;
8 free(horizontal_pointer);
9 horizontal_pointer = next_horizontal;

10 }
11 struct vertex *next_vertical = (*start_vertex)->down;
12 free(*start_vertex);
13 *start_vertex= next_vertical;
14 }
15 }

28 / 70

The DFS Algorithm

The DFS Algorithm — An Implementation
The remove_adjacency_list() Function

Also the remove_adjacency_list() function is implemented in the
same way as its counterpart from the previous lecture.

29 / 70

The DFS Algorithm

The DFS Algorithm — An Implementation
The find_vertex() Function

1 struct vertex *find_vertex(struct vertex *start_vertex,
2 int vertex_number)
3 {
4 while(start_vertex &&
5 start_vertex->vertex_number!=vertex_number)
6 start_vertex = start_vertex->down;
7 return start_vertex;
8 }

30 / 70

The DFS Algorithm

The DFS Algorithm — An Implementation
The find_vertex() Function

The find_vertex() is a helper function for the subroutine that
implements the dfs algorithm. Its task is to locate a node in the
list of all vertices (the “vertical” list) that represents a vertex of a
specified number. It takes as arguments the address of the starting
node of the adjacency list and number of the vertex to find. The
function iterates over the list of all vertices using the while loop
and the start_vertex pointer (lines no. 4–6) and tests if the node
currently pointed by the parameter stores the searched number. If
not, it goes to the next element in the list, otherwise the loop termi-
nates and the function returns the address of the found node that
represents the searched vertex. The function is prepared for receiv-
ing by the parameters a null value or a number of a nonexistent
vertex, although such a situation is very unlikely in the program.
Should it happen, the find_vertex() function will return the null
value.

31 / 70

The DFS Algorithm

The DFS Algorithm — An Implementation
The has_not_been_visited() Function

1 bool has_not_been_visited(struct vertex *start_vertex,
2 const struct vertex *vertex)
3 {
4 return !find_vertex(start_vertex,
5 vertex->vertex_number)->visited;
6 }

32 / 70

The DFS Algorithm

The DFS Algorithm — An Implementation
The has_not_been_visited() Function

The has_not_been_visited() function check if the vertex of a
given number is unvisited. It takes two arguments — the address of
the starting node of the adjacency list and the address of the node
that represents the examined vertex in the list of adjacent vertices
(one of the “horizontal” lists) of the currently visited vertex. The
has_not_been_visited() function calls the find_vertex() func-
tion to locate the node representing the adjacent vertex in the list of
all vertices (the “vertical” list). The latter function returns the ad-
dress of the searched element, which is directly used in the 5th line
of the described function for reading the value of the visited field
of the examined vertex. The has_not_been_visited() function
returns a negated value of the field.

33 / 70

The DFS Algorithm

The DFS Algorithm — An Implementation
The dfs() Function

1 void dfs(struct vertex *start_vertex, struct vertex *vertex,
2 struct fifo_pointers *fifo)
3 {
4 if(start_vertex && vertex) {
5 enqueue(fifo, vertex->vertex_number);
6 vertex->visited = true;
7 while(vertex) {
8 vertex = vertex->next;
9 if(vertex &&

10 has_not_been_visited(start_vertex,vertex))
11 dfs(start_vertex,find_vertex(start_vertex,
12 vertex->vertex_number),fifo);
13 }
14 }
15 }

34 / 70

The DFS Algorithm

The DFS Algorithm — An Implementation
The dfs() Function

The dfs() function, as its name suggests, implements the dfs algo-
rithm. It doesn’t return any value and takes three arguments. The
first one is the address of the starting node of the graph’s adjacency
list. The second one is an address of the initial vertex, from which
the function begins traversing the graph. The last argument is an
address of the fifo queue pointers structure. In the queue the path
generated by the function is stored. In the 4th line the function
checks if the addresses of vertices passed by its parameters are dif-
ferent than null. If so, then the function adds to the fifo queue
a new element that stores the number of the vertex represented by
a node pointed by the vertex parameter (5th line). Next, it marks
the vertex as visited by assigning the true value to the visited field
of the node (6th line). Then, inside the while loop, the function
assigns to the vertex pointer an address stored in the next field of
the node currently pointed by that pointer (8th line).

35 / 70

The DFS Algorithm

The DFS Algorithm — An Implementation
The dfs() Function

If the address is different than null, then it means that vertices
adjacent to the currently visited vertex exist and the vertex pointer
points to a node in the adjacent vertices list that represents the
first of them. The function checks if the vertex exists and hasn’t
been yet visited in the lines no. 9 and 10. If both conditions are
fulfilled then the function invokes itself recursively for the adjacent
vertex. As the second argument it takes this time the result of
the find_vertex() function, which returns the address of the node
representing the adjacent vertex in the list of all vertices of the
graph. (the “vertical” list). After the dfs() function returns from
the recursive call, a next iteration of the while loop is performed.
If another unvisited adjacent vertex exists, which is represented in
the list of neighbours of the current vertex, then the dfs() function
is again called recursively for the adjacent vertex.

36 / 70

The DFS Algorithm

The DFS Algorithm — An Implementation
The visit_all_vertexes() Function

1 void visit_all_vertexes(struct vertex *start_vertex)
2 {
3 struct vertex *vertex = start_vertex;
4 while(vertex) {
5 if(!vertex->visited) {
6 struct fifo_pointers path;
7 path.head = path.tail = NULL;
8 dfs(start_vertex,vertex,&path);
9 print_path(path);

10 remove_queue(&path);
11 }
12 vertex = vertex->down;
13 }
14 }

37 / 70

The DFS Algorithm

The DFS Algorithm — An Implementation
The visit_all_vertexes() Function

The visit_all_vertexes() function is called after the dfs() func-
tion terminates. It checks if all the vertices of the graph have been
visited and it calls the dfs() function for those of them that haven’t.
The function returns no value, but takes one argument which is the
address of the starting node of the adjacency list. A local pointer
named vertex is declared in the 2nd line of the function, which is
initialised with the address stored in the start_vertex parameter.
Although the parameter passes by the value and the function could
use it for iterating the list of all vertices without consequences for
the argument passed by the parameter, it is necessary to use another
pointer for that purpose, because the address the start_vertex pa-
rameter stores is used many times in the function’s body.

38 / 70

The DFS Algorithm

The DFS Algorithm — An Implementation
The visit_all_vertexes() Function

In the while loop the function iterates the list of all vertices of the
graph (the “vertical” list) using the vertex pointer and checks if
any of them is not yet visited (line no. 4). If so, then in the 7th
line the dfs() function is invoked for the unvisited vertex. The
address of the fifo queue pointers structure, which is declared in
the 5th line and initialised in the 6th line, is passed as the last ar-
gument of the dfs() function recursive call. In other words the
visit_all_vertexes() function uses its own local fifo queue. Af-
ter the dfs() function terminates the content of the queue is dis-
played on the screen and the queue is removed, allowing the queue
pointers structure to be used again for creating another instance of
the queue in case some unvisited vertices are still left in the graph.
The while loop terminates after each node in the list of all vertices
of the graph has been checked, which means that the whole graph
is traversed.

39 / 70

The DFS Algorithm

The DFS Algorithm — An Implementation
The main() Function

1 int main(void)
2 {
3 start_vertex = convert_matrix_to_list(adjacency_matrix);
4 if(start_vertex) {
5 print_adjacency_list(start_vertex);
6 puts("Please enter the number of the initial vertex:");
7 int vertex_number = 0;
8 scanf("%d",&vertex_number);
9 dfs(start_vertex,find_vertex(start_vertex,vertex_number), &path);

10 puts("The DFS traversing result:");
11 print_path(path);
12 remove_queue(&path);
13 visit_all_vertexes(start_vertex);
14 remove_adjacency_list(&start_vertex);
15 }
16 return 0;
17 }

40 / 70

The DFS Algorithm

The DFS Algorithm — An Implementation
The main() Function

Comparing to the program presented in the previous lecture, the
main() function has additional lines starting from no. 6 until no.
13. In the 6th line a message is displayed to the user asking her
or him to enter the number of a graph’s vertex from which the dfs
algorithm should start traversing the graph. The number is read
from the keyboard (8th line) and stored in a local variable named
vertex_number. Next the dfs() function is called. The second
argument of the function — the address of the node in the list of
all vertices that represents the initial vertex — is returned by the
find_vertex() function. The path generated by the dfs() function
is displayed on the screen with an adequate message (lines no. 10
and 11), and then the program removes the queue where the path
is stored (12th line). In the 13th line the main() function calls
the visit_all_vertexes() function to visit all the not yet visited
vertices of the graph.

41 / 70

The BFS Algorithm

The BFS Algorithm
Theoretical Introduction

The bfs algorithm, just like the dfs algorithm, traverses a graph.
The main difference between those two algorithms is that the bfs
uses a fifo queue instead of a stack to store the discovered vertices.
When visiting a current vertex the algorithm adds all unvisited ver-
tices adjacent to this vertex to the queue. After marking the current
vertex as visited the bfs algorithm removes the first discovered ver-
tex from the head of the queue and visits it as the next. All adjacent
vertices of a given vertex are visited first, hence the name of the al-
gorithm: Breadth-First Search. It is usually implemented in an
iterative form (using a loop). Its time-complexity is O(V + E).

42 / 70

The BFS Algorithm

The BFS Algorithm
An Animation

The next slide shows an animation of the working of the bfs al-
gorithm for an undirected graph — the same graph that has been
used for illustrating the working of the dfs algorithm. In relation to
the previous animation in the next one instead of the stack a fifo
queue is used, which is shown at the bottom of the slide. All other
elements of the animation are the same as for the dfs animation.

43 / 70

The BFS Algorithm

The BFS Algorithm
Animation

..

1

.

1

.

1

.

1

.

2

.

2

.

2

.

2

.

3

.

3

.

3

.

3

.

3

.

4

.

4

.

4

.

5

.

5

.

5

.

5

.fifo queue:. 4. 2. 3. 5. 1.

path:

.

4

.

2

.

3

.

5

.

1

Traversing an undirected graph by the bfs algorithm

44 / 70

The BFS Algorithm

The BFS Algorithm
Animation

..

1

.

1

.

1

.

1

.

2

.

2

.

2

.

2

.

3

.

3

.

3

.

3

.

3

.

4

.

4

.

4

.

5

.

5

.

5

.

5

.fifo queue:. 4. 2. 3. 5. 1.

path:

.

4

.

2

.

3

.

5

.

1

Traversing an undirected graph by the bfs algorithm

44 / 70

The BFS Algorithm

The BFS Algorithm
Animation

..

1

.

1

.

1

.

1

.

2

.

2

.

2

.

2

.

3

.

3

.

3

.

3

.

3

.

4

.

4

.

4

.

5

.

5

.

5

.

5

.fifo queue:. 4. 2. 3. 5. 1.

path:

.

4

.

2

.

3

.

5

.

1

Traversing an undirected graph by the bfs algorithm

44 / 70

The BFS Algorithm

The BFS Algorithm
Animation

..

1

.

1

.

1

.

1

.

2

.

2

.

2

.

2

.

3

.

3

.

3

.

3

.

3

.

4

.

4

.

4

.

5

.

5

.

5

.

5

.fifo queue:. 4. 2. 3. 5. 1.

path:

.

4

.

2

.

3

.

5

.

1

Traversing an undirected graph by the bfs algorithm

44 / 70

The BFS Algorithm

The BFS Algorithm
Animation

..

1

.

1

.

1

.

1

.

2

.

2

.

2

.

2

.

3

.

3

.

3

.

3

.

3

.

4

.

4

.

4

.

5

.

5

.

5

.

5

.fifo queue:. 4. 2. 3. 5. 1.

path:

.

4

.

2

.

3

.

5

.

1

Traversing an undirected graph by the bfs algorithm

44 / 70

The BFS Algorithm

The BFS Algorithm
Animation

..

1

.

1

.

1

.

1

.

2

.

2

.

2

.

2

.

3

.

3

.

3

.

3

.

3

.

4

.

4

.

4

.

5

.

5

.

5

.

5

.fifo queue:. 4. 2. 3. 5. 1.

path:

.

4

.

2

.

3

.

5

.

1

Traversing an undirected graph by the bfs algorithm

44 / 70

The BFS Algorithm

The BFS Algorithm
Animation

..

1

.

1

.

1

.

1

.

2

.

2

.

2

.

2

.

3

.

3

.

3

.

3

.

3

.

4

.

4

.

4

.

5

.

5

.

5

.

5

.fifo queue:. 4. 2. 3. 5. 1.

path:

.

4

.

2

.

3

.

5

.

1

Traversing an undirected graph by the bfs algorithm

44 / 70

The BFS Algorithm

The BFS Algorithm
Animation

..

1

.

1

.

1

.

1

.

2

.

2

.

2

.

2

.

3

.

3

.

3

.

3

.

3

.

4

.

4

.

4

.

5

.

5

.

5

.

5

.fifo queue:. 4. 2. 3. 5. 1.

path:

.

4

.

2

.

3

.

5

.

1

Traversing an undirected graph by the bfs algorithm

44 / 70

The BFS Algorithm

The BFS Algorithm
Animation

..

1

.

1

.

1

.

1

.

2

.

2

.

2

.

2

.

3

.

3

.

3

.

3

.

3

.

4

.

4

.

4

.

5

.

5

.

5

.

5

.fifo queue:. 4. 2. 3. 5. 1.

path:

.

4

.

2

.

3

.

5

.

1

Traversing an undirected graph by the bfs algorithm

44 / 70

The BFS Algorithm

The BFS Algorithm
Animation

..

1

.

1

.

1

.

1

.

2

.

2

.

2

.

2

.

3

.

3

.

3

.

3

.

3

.

4

.

4

.

4

.

5

.

5

.

5

.

5

.fifo queue:. 4. 2. 3. 5. 1.

path:

.

4

.

2

.

3

.

5

.

1

Traversing an undirected graph by the bfs algorithm

44 / 70

The BFS Algorithm

The BFS Algorithm
Animation

..

1

.

1

.

1

.

1

.

2

.

2

.

2

.

2

.

3

.

3

.

3

.

3

.

3

.

4

.

4

.

4

.

5

.

5

.

5

.

5

.fifo queue:. 4. 2. 3. 5. 1.

path:

.

4

.

2

.

3

.

5

.

1

Traversing an undirected graph by the bfs algorithm

44 / 70

The BFS Algorithm

The BFS Algorithm
Animation

..

1

.

1

.

1

.

1

.

2

.

2

.

2

.

2

.

3

.

3

.

3

.

3

.

3

.

4

.

4

.

4

.

5

.

5

.

5

.

5

.fifo queue:. 4. 2. 3. 5. 1.

path:

.

4

.

2

.

3

.

5

.

1

Traversing an undirected graph by the bfs algorithm

44 / 70

The BFS Algorithm

The BFS Algorithm
Animation

..

1

.

1

.

1

.

1

.

2

.

2

.

2

.

2

.

3

.

3

.

3

.

3

.

3

.

4

.

4

.

4

.

5

.

5

.

5

.

5

.fifo queue:. 4. 2. 3. 5. 1.

path:

.

4

.

2

.

3

.

5

.

1

Traversing an undirected graph by the bfs algorithm

44 / 70

The BFS Algorithm

The BFS Algorithm
Animation

..

1

.

1

.

1

.

1

.

2

.

2

.

2

.

2

.

3

.

3

.

3

.

3

.

3

.

4

.

4

.

4

.

5

.

5

.

5

.

5

.fifo queue:. 4. 2. 3. 5. 1.

path:

.

4

.

2

.

3

.

5

.

1

Traversing an undirected graph by the bfs algorithm

44 / 70

The BFS Algorithm

The BFS Algorithm — An Implementation

The next slides present a version of the program demonstrated ear-
lier, which uses the bfs algorithm instead of dfs for traversing a
graph. Since the source code of both programs is very similar, only
those elements that have changed are described.

45 / 70

The BFS Algorithm

The BFS Algorithm — An Implementation
Adjacency Matrix and Base Type of Adjacency List

1 #include<stdio.h>
2 #include<stdlib.h>
3 #include<stdbool.h>
4

5 typedef int matrix[5][5];
6

7 const matrix adjacency_matrix = {{0,1,0,0,1},
8 {1,0,1,1,1},
9 {0,1,0,1,0},

10 {0,1,1,0,1},
11 {1,1,0,1,0}};
12

13 struct vertex
14 {
15 int vertex_number;
16 bool visited;
17 struct vertex *next, *down;
18 } *start_vertex;

46 / 70

The BFS Algorithm

The BFS Algorithm — An Implementation
The Queue Base Type and the Queue Pointers Structure

1 struct fifo_node
2 {
3 int vertex_number;
4 struct fifo_node *next;
5 };
6

7 struct fifo_pointers
8 {
9 struct fifo_node *head, *tail;

10 } path_fifo, discovered_fifo;

47 / 70

The BFS Algorithm

The BFS Algorithm — An Implementation
The Queue Base Type and the Queue Pointers Structure

Please note, that in relation to the previous program, an additional
variable of the name discovered_fifo is created. It is a structure
of pointers for the queue of vertices that are discovered and visited
in the next iteration of the algorithm.

48 / 70

The BFS Algorithm

The BFS Algorithm — An Implementation
The enqueue() Function

1 void enqueue(struct fifo_pointers *fifo, int vertex_number)
2 {
3 struct fifo_node *new_node = (struct fifo_node *)
4 malloc(sizeof(struct fifo_node));
5 if(new_node) {
6 new_node->vertex_number = vertex_number;
7 new_node->next = NULL;
8 if(fifo->head==NULL)
9 fifo->head = fifo->tail = new_node;

10 else {
11 fifo->tail->next=new_node;
12 fifo->tail=new_node;
13 }
14 } else
15 fprintf(stderr,"No new element was created!\n");
16 }

49 / 70

The BFS Algorithm

The BFS Algorithm — An Implementation
The dequeue() Function

1 int dequeue(struct fifo_pointers *fifo)
2 {
3 int vertex_number = -1;
4 if(fifo->head) {
5 struct fifo_node *tmp = fifo->head->next;
6 vertex_number = fifo->head->vertex_number;
7 free(fifo->head);
8 fifo->head=tmp;
9 if(tmp==NULL)

10 fifo->tail = NULL;
11 }
12 return vertex_number;
13 }

50 / 70

The BFS Algorithm

The BFS Algorithm — An Implementation
The dequeue() Function

The dequeue() function, unlike its counterpart from the earlier pro-
gram, returns the number of the vertex represented by the element
removed from the queue. If the queue is empty the function returns
-1.

51 / 70

The BFS Algorithm

The BFS Algorithm — An Implementation
The remove_queue() Function

1 void remove_queue(struct fifo_pointers *fifo)
2 {
3 while(fifo->head)
4 dequeue(fifo);
5 }

52 / 70

The BFS Algorithm

The BFS Algorithm — An Implementation
The print_path() Function

1 void print_path(struct fifo_pointers fifo)
2 {
3 while(fifo.head) {
4 printf("%d ",fifo.head->vertex_number);
5 fifo.head = fifo.head->next;
6 }
7 puts("");
8 }

53 / 70

The BFS Algorithm

The BFS Algorithm — An Implementation
The create_vertical_list() Function

1 void create_vertical_list(struct vertex **start_vertex,
2 const matrix adjacency_matrix)
3 {
4 int i;
5 for(i=0; i<sizeof(matrix)/sizeof(*adjacency_matrix); i++) {
6 *start_vertex = (struct vertex *)
7 malloc(sizeof(struct vertex));
8 if(*start_vertex) {
9 (*start_vertex)->vertex_number = i+1;

10 (*start_vertex)->visited = false;
11 (*start_vertex)->down = (*start_vertex)->next = NULL;
12 start_vertex = &(*start_vertex)->down;
13 }
14 }
15 }

54 / 70

The BFS Algorithm

The BFS Algorithm — An Implementation
The convert_matrix_to_list() Function

1 struct vertex *convert_matrix_to_list(const matrix adjacency_matrix)
2 {
3 struct vertex *start_vertex = NULL;
4 create_vertical_list(&start_vertex,adjacency_matrix);
5 if(start_vertex) {
6 struct vertex *horizontal_pointer = NULL, *vertical_pointer = NULL;
7 horizontal_pointer = vertical_pointer = start_vertex;
8 int i,j;
9 for(i=0; i<sizeof(matrix)/sizeof(*adjacency_matrix); i++) {

10 for(j=0; j<sizeof(matrix)/sizeof(*adjacency_matrix); j++)
11 if(adjacency_matrix[i][j]) {
12 struct vertex *new_vertex = (struct vertex *)malloc(sizeof(struct vertex));
13 if(new_vertex) {
14 new_vertex->vertex_number = j+1;
15 new_vertex->visited = false;
16 new_vertex->down = new_vertex->next = NULL;
17 horizontal_pointer->next = new_vertex;
18 horizontal_pointer = horizontal_pointer->next;
19 }
20 }
21 vertical_pointer = vertical_pointer->down;
22 horizontal_pointer = vertical_pointer;
23 }
24 }
25 return start_vertex;
26 }

55 / 70

The BFS Algorithm

The BFS Algorithm — An Implementation
The print_adjacency_list() Function

1 void print_adjacency_list(struct vertex *start_vertex)
2 {
3 while(start_vertex) {
4 printf("%3d:",start_vertex->vertex_number);
5 struct vertex *horizontal_pointer = start_vertex->next;
6 while(horizontal_pointer) {
7 printf("%3d",horizontal_pointer->vertex_number);
8 horizontal_pointer = horizontal_pointer->next;
9 }

10 start_vertex = start_vertex->down;
11 puts("");
12 }
13 }

56 / 70

The BFS Algorithm

The BFS Algorithm — An Implementation
The remove_adjacency_list() Function

1 void remove_adjacency_list(struct vertex **start_vertex)
2 {
3 while(*start_vertex) {
4 struct vertex *horizontal_pointer=(*start_vertex)->next;
5 while(horizontal_pointer) {
6 struct vertex *next_horizontal =
7 horizontal_pointer->next;
8 free(horizontal_pointer);
9 horizontal_pointer = next_horizontal;

10 }
11 struct vertex *next_vertical = (*start_vertex)->down;
12 free(*start_vertex);
13 *start_vertex= next_vertical;
14 }
15 }

57 / 70

The BFS Algorithm

The BFS Algorithm — An Implementation
The find_vertex() Function

1 struct vertex *find_vertex(struct vertex *start_vertex,
2 int vertex_number)
3 {
4 while(start_vertex &&
5 start_vertex->vertex_number!=vertex_number)
6 start_vertex = start_vertex->down;
7 return start_vertex;
8 }

58 / 70

The BFS Algorithm

The BFS Algorithm — An Implementation
The has_not_been_visited() Function

1 bool has_not_been_visited(struct vertex *start_vertex,
2 struct vertex *vertex)
3 {
4 return !find_vertex(start_vertex,
5 vertex->vertex_number)->visited;
6 }

59 / 70

The BFS Algorithm

The BFS Algorithm — An Implementation
The bfs() Function

1 void bfs(struct vertex *start_vertex, struct vertex *vertex,
2 struct fifo_pointers *path_fifo, struct fifo_pointers *discovered_fifo)
3 {
4 if(start_vertex && vertex) {
5 enqueue(discovered_fifo, vertex->vertex_number);
6 while(discovered_fifo->head) {
7 int vertex_number = dequeue(discovered_fifo);
8 vertex = find_vertex(start_vertex,vertex_number);
9 if(has_not_been_visited(start_vertex,vertex)) {

10 struct vertex *next_vertex = vertex->next;
11 while(next_vertex) {
12 enqueue(discovered_fifo, next_vertex->vertex_number);
13 next_vertex = next_vertex->next;
14 }
15 vertex->visited = true;
16 enqueue(path_fifo, vertex->vertex_number);
17 }
18 }
19 }
20 }

60 / 70

The BFS Algorithm

The BFS Algorithm — An Implementation
The bfs() Function

The bfs() function implements the traversing of the graph with the
use of the bfs algorithm. It returns no value but takes four argu-
ments — an address of the starting node of the adjacency list, an
address of the initial vertex from which it starts traversing the graph,
an address of the pointers structure of the queue where the path gen-
erated by the algorithm is stored and an address of a pointers struc-
ture of the queue for storing the discovered vertices. The function
checks in the 4th line if the addresses passed to it by the parameters
are different than null. If so, that it stores in the discovered_fifo
queue the number of the vertex stored in the node pointed by the
vertex parameter (5th line) and starts the outer while loop, which
is repeated as long as the queue of discovered vertices is not empty
(6th line).

61 / 70

The BFS Algorithm

The BFS Algorithm — An Implementation
The bfs() Function

Inside this loop the first element of the discovered_fifo queue is
removed (7th line). The number stored in it and assigned to the
vertex_number variable is then used by the find_vertex() func-
tion to find an address of the node in the list of all vertices of the
graph, that represents this vertex. The address is assigned to the
vertex pointer. In the 9th line the function checks if the vertex is
still unvisited. If so, then to the local pointer named next_vertex
is assigned the address stored in the next field of the node that rep-
resents the vertex. If the next_vertex pointer has a value different
than null then it means, that there is an nonempty list of vertices
adjacent to the vertex. In the inner while loop (lines no. 11–14)
the bfs() function iterates over the list and stores the numbers of
the adjacent vertices in the discovered_fifo queue. After the in-
ner loop terminates, but still in the outer loop, the bfs() function
marks the current vertex as visited and stores its number in the
path_fifo queue. 62 / 70

The BFS Algorithm

The BFS Algorithm — An Implementation
The bfs() Function

The bfs() function terminates when all vertices reachable from the
initial vertex are visited. The path generated by the function is
stored in the path_fifo queue.

63 / 70

The BFS Algorithm

The BFS Algorithm — An Implementation
The visit_all_vertexes() Function

1 void visit_all_vertexes(struct vertex *start_vertex)
2 {
3 struct vertex *vertex = start_vertex;
4 while(vertex) {
5 if(!vertex->visited) {
6 struct fifo_pointers path;
7 struct fifo_pointers discovered;
8 path.head = path.tail = discovered.head =
9 discovered.tail = NULL;

10 bfs(start_vertex, vertex, &path, &discovered);
11 print_path(path);
12 remove_queue(&path);
13 remove_queue(&discovered);
14 }
15 vertex = vertex->down;
16 }
17 }

64 / 70

The BFS Algorithm

The BFS Algorithm — An Implementation
The visit_all_vertexes() Function

The visit_all_vertexes() function differs from its counterpart
from the previous program in that it invokes the bfs() function
instead of the dfs() function (9th line) and it uses two fifo queues.
The pointers structure of the second queue is declared in the 7th line
and initialised in the 8th and 9th lines. The queue is passed to the
bfs() function and used for storing the discovered vertices. Then
it is removed in the 13th line.

65 / 70

The BFS Algorithm

The BFS Algorithm — An Implementation
The main() Function

1 int main(void)
2 {
3 start_vertex = convert_matrix_to_list(adjacency_matrix);
4 if(start_vertex) {
5 print_adjacency_list(start_vertex);
6 puts("Please enter the number of the initial vertex:");
7 int vertex_number = 0;
8 scanf("%d",&vertex_number);
9 bfs(start_vertex,find_vertex(start_vertex,vertex_number),

10 &path_fifo, &discovered_fifo);
11 puts("The BFS traversing result:");
12 print_path(path_fifo);
13 remove_queue(&path_fifo);
14 remove_queue(&discovered_fifo);
15 visit_all_vertexes(start_vertex);
16 remove_adjacency_list(&start_vertex);
17 }
18 return 0;
19 }

66 / 70

The BFS Algorithm

The BFS Algorithm — An Implementation
The main() Function

The main() function underwent two modifications in relation to its
counterpart from the earlier program. Instead of the dfs() function
it calls the bfs() function and passed to it, as the forth argument,
the address of the discovered_fifo queue. Moreover, an invo-
cation of the remove_queue() function for this queue is added to
the main() function source code, to remove it from the computer
memory (14th line).

67 / 70

Summary

Summary

The bfs and dfs algorithms can be applied either to the connected
or unconnected undirected graphs or strongly connected or uncon-
nected directed graphs. As it has been mentioned at the beginning
of the lecture, the algorithms are basis for many other graph algo-
rithms, also other graph traversing algorithms, like the Best–First
Search or A∗ algorithm. Initially the bfs and dfs algorithms were
applied for the Artificial Intelligence problems, but with time they
become used in many other applications.

68 / 70

The End

Questions

?

69 / 70

The End

The End

Thank You For Your Attention!

70 / 70

	Introduction
	The DFS Algorithm
	The BFS Algorithm
	Summary

