
.

.

Fundamentals of Programming 2
Binary Search Trees (bst) — Part One

Arkadiusz Chrobot

Department of Computer Science

May 21, 2019

1 / 55

.

Outline

Introduction

Definitions

Implementation
Base Type and Root Pointer
Adding a Node
Traversing a Binary Tree
Showing the Construction of the BST
Removing All Nodes From Binary Tree

Summary

2 / 55

.

Introduction

Trees are nonlinear abstract data structures used for representing hierarchically
ordered data. They are a special case of other data structures that will be
discussed in future lectures. Those structures are called graphs. The Binary
Search Tree can be considered a tree with a specific order of elements (nodes).
Trees and graphs in computer science are implementations of mathematical
concepts. Therefore, some definition from mathematics related to the trees
are introduced in the next slides.

3 / 55

.

Definitions
Tree

A tree is a set T of one or more elements called nodes or vertexes satisfying
the following conditions:

▶ there is one special node called root,
▶ the rest of the nodes are partitioned into m ≥ 0 disjoint sets T1, . . . , Tm,

which are also trees. The trees T1, . . . , Tm are called subtrees of the
root.

4 / 55

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Definitions
Degree of Node

The number of subtrees of a single tree node is called a degree. The nodes
with degree higher than zero are called internal nodes or inner nodes. The
nodes with degree equal zero are called external nodes or leafs.

..degree=3.

degree=2

.

degree=0

.

degree=0

.

degree=0

.

degree=1

.

degree=0

5 / 55

.

Definitions
Level of Node

The level of a node is defined recursively: the root has a level equal 0 and
the level of each other node is higher by one than the level of the root in a
smallest subtree that includes the node.

..level=0.

level=1

.

level=2

.

level=2

.

level=1

.

level=1

.

level=2

6 / 55

.

Definitions
Ordered Trees

If the order of the subtrees in a tree does matter then the tree is an ordered
tree.

7 / 55

.

Definitions
The Hight of the Tree

The tree hight is the maximal level of its nodes plus one.

8 / 55

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Definitions
Binary Tree

A binary tree is a finite set of nodes, which either is empty of it consists of
the root node and two disjoint binary trees called the left and right subtrees.
Therefore, the degree of each node in a binary tree doesn’t exceeds two. If the
left and/or right subtree of a given node is not empty, then the root of that
subtree is called a descendant (or a child) of the given node, while the node
is called an ancestor (or a parent) of that root. Interesting fact: according to
the introduced definitions the binary tree is not a tree, because it can have no
elements and the tree has to have at least one element.

9 / 55

.

Definitions
Differences Between Trees and Trees

If it is assumed that the figures in the slide show binary trees, then they are
two different binary trees, otherwise those figures show the same tree.

..node 1.

node 2

..node 1.

node 2

10 / 55

.

Definitions
Full and Complete Binary Tree

If a binary tree of a given height has all possible nodes, then it is called a full
binary tree. If a binary tree of a given height has all possible nodes on every
level, except possibly a few on the last one, it is called a complete binary tree.

........

The Full Binary Tree

.......

The Complete Binary Tree

It’ worth to mention that in computer science the trees are drawn with the
root up.

11 / 55

.

Definitions
The BST

Binary Search Tree (bst) is applied for implementing data structures called
dictionaries in which every value is identified by a unique key. In the BST the
keys are ordered according to the following rule:
Key Order in the BST
Let x be a node in the BST. If y is a node in the left subtree of the x node
then key(x) ≥ key(y). If y is node in the right subtree of x node then
key(x) ≤ key(y).
Peter Braß1 calls the BSTs the first model of search trees.

1Peter Brass “Advanced Data Structures”, Cambridge University Press, Cambridge, 2008
12 / 55

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Implementation

The implementation is discussed with the use of a BST that stores key–
value pairs, where the key is an ascii code of character and the value is
the character. The definition of the BST allows the key of a given node
to be repeated in the left or right subtree of that node. Unfortunately, this
complicates the implementation of adding a new node to the tree. Thus, some
compromise has to be made. Some computer scientists think that keys in the
BST should not repeat, others claim that the keys may repeat, but those that
do should be placed always on the left or always on the right side of the node
that stores the same key. The first approach seems to be plausible, but may
cause problems when the BST is for example applied for storing personal data,
where the surname of the person is the key. The aforementioned Peter Braß
proposes to allow the keys to repeat, but store the values only in the tree
leaves. In the lecture yet another approach is taken — the keys are allowed
to repeat and each node stores a value.

13 / 55

.

Implementation

Just like other data structures the binary trees can be implemented with the
use of arrays or as dynamically allocated data structures. In the lecture the
latter approach is discussed. Similarly as for lists and other the like structures
the base type of BST (the data type of a single node) and operations for the
tree have to be defined. As for the operations, in the lecture are only defined
adding a new node to the BST, printing the content of the tree and removing
all nodes from the BST. The printing operation utilizes several binary tree
traversing algorithms and can also visualise the structure of the tree on the
screen. According to the definition that is introduced in the lecture an empty
binary tree is an existing tree, so formally there is no operation of removing
or creating a binary tree (also a BST). The operation of removing a single
node from a tree is complicated and it will be discussed in the next lecture,
together with some other additional operations.

14 / 55

.

Implementation
Header Files

1 #include<stdlib.h>
2 #include<time.h>
3 #include<curses.h>
4 #include<locale.h>

15 / 55

.

Implementation
Header Files

Aside for header files that are also included in programs discussed in the previ-
ous lectures, there are also included the curses.h and locale.h files. Some
of the functions declared in the curses.h header file are used for printing
the content of the tree on the screen in a way that shows the shape of the
BST. The time() function declared in the time.h header file is applied for
initializing the prng, that is used for generating keys and values added to the
BST.

16 / 55

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Base Type and Root Pointer

1 struct tree_node
2 {
3 int key;
4 char value;
5 struct tree_node *left_child, *right_child;
6 } *root;

17 / 55

.

Base Type

The definition of BST base type resembles the definition of doubly linked
list, but the pointer fields serve a different purpose. The left_child field
points the left child of the node and thus the whole left subtree of the node
in general, the right_child field points the right child of the node and in
result the whole right subtree of the node. If the node is a leaf then both
pointer fields have the null value. If the node has only one child then only
one of those fields has such a value. There are implementations of the BST
where a third pointer field is used. The field points to the parent of the node.
The only node that stores null value in such a field is the root. The key and
value fields are used for storing, respectively, the key and related with the
key value. In the previous slide also a global variable named root is declared.
The variable is a pointer to the root node of the tree.

18 / 55

.

BST Operations

Some of the operations for the BST can be implemented in a simple way
both as recursive and iterative functions, others are usually implemented only
as recursive functions. The definitions of the iterative counterparts of the
latter functions would be complicated and at most as efficient as the recursive
functions. In the lecture both iterative and recursive implementations of a
given operation are presented, whenever both of them are easy to create. The
description starts with the operation of adding a node to the BST.

19 / 55

.

Adding a Node — Recursive Approach

1 void add_node(struct tree_node **root, int key, char value)
2 {
3 if(*root==NULL)
4 {
5 *root = (struct tree_node *)
6 malloc(sizeof(struct tree_node));
7 if(*root) {
8 (*root)->key = key;
9 (*root)->value = value;

10 (*root)->left_child = (*root)->right_child = NULL;
11 }
12 } else
13 if((*root)->key >= key)
14 add_node(&(*root)->left_child,key,value);
15 else
16 add_node(&(*root)->right_child,key,value);
17 }

20 / 55

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Adding a Node — Recursive Approach

The add_node() function doesn’t return any value, but has three parameters.
The first one is a pointer to a pointer. It is used for passing an address of
the root pointer or, when the function is called recursively, an address of one
of the children of the currently visited node. The key is passed by the second
parameter and by the third is passed the value. The pair (the key and the
value) is stored in the new node of the BST. The function checks if the value
of the pointer pointed by the root pointer is null, after it is called. If it
is the first (non–recursive) call of the function and the condition is fulfilled
then the tree is empty and the function adds the first node to it. Therefore,
the function allocates memory for the node (lines no. 5 and 6) and initializes
fields of the node (lines 8, 9 and 10). Please observe, that both pointer fields
get the null value. If the condition in the 3rd line is not fulfilled then the tree
already has some nodes. In that case the function performs the statement in
the 13th line, i.e. check the relation between the key stored in a visited node
and the one that should be assigned in the new node.

21 / 55

.

Adding a Node — Recursive Approach

If the key in the visited node is greater or equal to the new key, then the
add_node() function calls itself for the left child of the node, which is also
the root of its left subtree. Thus, all values with the key equal to the key of
the visited node are stored in the left subtree of the node. If the condition
in the 13th line is not satisfied, then the function is invoked recursively for
the right child of the visited node. Please note, that in both cases the first
argument of the function is the address of the appropriate pointer field, hence
the field can be modified by subsequent instances of the function, if needed.
The function stops invoking itself when one of its instances is invoked for a
pointer field that has a value of null. In that case the instance creates a new
node of the BST by performing statements (lines no. 4–11), in the same way
as it is described in the previous slide and terminates.

22 / 55

.

Adding a Node — Recursive Approach

After the new node is created the other instances of the add_node() also
terminate. There is an animation in the next slide that shows how the nodes
containing the following keys: 4, 2, 1, 3 and 5 are added to the BST.

23 / 55

.

Adding a Node

..4.

2

.

1

.

3

.

5

24 / 55

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Adding a Node — Iterative Approach

1 void add_node(struct tree_node **root, int key, int value)
2 {
3 while(*root!=NULL) {
4 if((*root)->key>=key)
5 root = &(*root)->left_child;
6 else
7 root = &(*root)->right_child;
8 }
9 *root = (struct tree_node *)

10 malloc(sizeof(struct tree_node));
11 if(*root) {
12 (*root)->key = key;
13 (*root)->value = value;
14 (*root)->left_child = (*root)->right_child = NULL;
15 }
16 }

25 / 55

.

Adding a Node — Iterative Approach

It shows up that the iterative version of add_node() function is as simple as
its recursive counterpart. The prototype of the function is the same. The first
element of its body is the while loop (lines no. 3–8). If the tree is empty
the loop will perform no iteration. If it already has nodes then the relation
between the key in a visited node and the new key is tested inside the loop. If
the key in the node is greater or equal to the new key then the address of the
pointer field that points to the left child of the node is assigned to the root
pointer to a pointer (5th line), otherwise the address of the pointer field that
points to the right child of the node is assigned to the root parameter (7th
line). If one of the fields has a null value then the loop terminates. Next,
the new node is created (line no. 9 and 10) and its address is assigned to field
pointer pointed by the root parameter. Should the while loop terminate
without performing a single iteration, the address of the new node would be
assigned to the root pointer — the node would become the root of the BST.
The fields of the new node are initialized (lines no. 12–14).

26 / 55

.

Traversing the Binary Tree

There are three recursive algorithms that make it possible to traverse a binary
(in fact any) tree:
1. in–order,
2. pre–order,
3. post–order.

In all the algorithms it is assumed that the left subtree is traversed first and
the right subtree is traversed next.

27 / 55

.

Traversing a Binary Tree
In–order Algorithm

The in–order algorithm for traversing a binary tree is defined as follows:
1. traverse the left subtree,
2. visit the root,
3. traverse the right subtree.

The algorithm is usually implemented in a form of a recursive function. The
next slide contains a definition of a function that applies the algorithm for
printing the keys stored in a BST. There is also a figure that shows an example
of such a tree and a result of traversing the tree with the use of the algorithm.

28 / 55

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Traversing a Binary Tree
In–order Algorithm

1 void print_inorder(struct tree_node *root)
2 {
3 if(root) {
4 print_inorder(root->left_child);
5 printf("%d ",root->key);
6 print_inorder(root->right_child);
7 }
8 }

..2.

1

.

3

The Result

1, 2, 3

29 / 55

.

Traversing a Binary Tree
Pre–order Algorithm

The pre–order algorithm for traversing a binary tree is defined as follows:
1. visit the root,
2. traverse the left subtree,
3. traverse the right subtree.

This algorithm is also usually implemented in a from of recursive function.
The difference between the in–order and pre–order algorithm is that in the
latter the root is visited first and then both of the subtrees. In the next slide
is defined a function that applied the algorithm for printing the keys stored
in a BST. There is also a part of the slide that illustrates how the algorithm
is applied for an example BST and what is the result of traversing the tree
with the use of the pre–order algorithm — just like in the case of the in–order
algorithm.

30 / 55

.

Traversing a Binary Tree
Pre–order Algorithm

1 void print_preorder(struct tree_node *root)
2 {
3 if(root) {
4 printf("%d ",root->key);
5 print_preorder(root->left_child);
6 print_preorder(root->right_child);
7 }
8 }

..2.

1

.

3

The Result

2, 1, 3

31 / 55

.

Traversing a Binary Tree
Post–order Algorithm

The post–order algorithm for traversing a binary tree is defined as follows:
1. traverse the left subtree,
2. traverse the right subtree,
3. visit the root.

It is usually implemented in a form of a recursive function, just like the two
previously discusser algorithms. In the algorithm the subtrees are visited first,
then the root. The next slide presents an example implementation of the algo-
rithm together with a figure that illustrates how the algorithm can be applied
to an example tree — just like in cases of previously discussed algorithms.

32 / 55

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Traversing a Binary Tree
Post–order Algorithm

1 void print_postorder(struct tree_node *root)
2 {
3 if(root) {
4 print_postorder(root->left_child);
5 print_postorder(root->right_child);
6 printf("%d ",root->key);
7 }
8 }

..2.

1

.

3

The Result

1, 3, 2

33 / 55

.

Printing the Content of a Binary Tree

The functions presented in the previous slides display on the screen only the
keys stored in the BST, using a given binary tree traversing algorithm. The
next slides contain definitions of functions that print the whole content of
the tree nodes, i.e. the key - value pairs. The functions use to this end
respectively: the in–order, pre–order and post–order algorithm. Each key -
value pair is printed in a separate line of the screen.

34 / 55

.

Printing the Content of a BST — In–order Algorithm

1 void print_inorder(struct tree_node *root)
2 {
3 if(root) {
4 print_inorder(root->left_child);
5 printw("key: %4d, value: %4c\n",
6 root->key,root->value);
7 print_inorder(root->right_child);
8 }
9 }

35 / 55

.

Printing the Content of a BST — Pre–order Algorithm

1 void print_preorder(struct tree_node *root)
2 {
3 if(root) {
4 printw("key: %4d, value: %4c\n",
5 root->key,root->value);
6 print_preorder(root->left_child);
7 print_preorder(root->right_child);
8 }
9 }

36 / 55

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Printing the Content of a BST — Pre–order Algorithm

1 void print_postorder(struct tree_node *root)
2 {
3 if(root) {
4 print_postorder(root->left_child);
5 print_postorder(root->right_child);
6 printw("key: %4d, value: %4c\n",
7 root->key,root->value);
8 }
9 }

37 / 55

.

Arithmetic Expression Tree

Tree traversing algorithms have many others applications than just printing the
content of BST or other binary tree. For example, a binary tree may represent
an arithmetic expression, like 2 · 3. The operator of such an expression could
be stored in the root of the tree, and the leaves may represent the arguments.
In result the construction of the tree determines what operation is performed
on which arguments. Such a tree is called an arithmetic expression tree.
If the tree is traversed using the in–order algorithm then the result will be
the arithmetic expression in the Infix Notation. If however, the pre–order
algorithm is applied then the resulting expression will be in Polish Notation.
Finally, if the post–order algorithm is applied to this tree, then the expression
will be in Reversed Polish Notation. The next slides contain images that
show the described operations. The arithmetic expressions represented by the
arithmetic expression tree can be much more complex than the one presented
in the lecture.

38 / 55

.

Arithmetic Expression Tree
..*.

2

.

3

In–order Algorithm Result

2 * 3

Pre–order Algorithm Result

* 2 3

Post-order Algorithm Result

2 3 *

39 / 55

.

Showing the Construction of the BST

It would be interesting to print the content of the BST in a way that would
show the construction of the tree. To this end the capabilities enabled by the
curses library are applied. The subsequent levels of the BST2 are separated
from each other by two lines of the screen, to make the construction of the
tree more visible. The algorithm applied for this task is the pre-order tree
traversing algorithm, because it starts with the root and roots of subtrees,
which have to be printed first. Since printing pairs of a key and a value could
deteriorate the visibility of the tree construction, two functions are presented
that print separately the keys and the values.

2A single level of the tree include all existing nodes that have the same level.
40 / 55

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Showing the Construction of the BST — Printing Values

1 void print_values(struct tree_node *root, int x, int y,
2 unsigned int distance)
3 {
4 if(root) {
5 mvprintw(y,x,"%4c",root->value);
6 print_values(root->left_child,x-distance,y+2,distance/2);
7 print_values(root->right_child,x+distance,y+2,distance/2);
8 }
9 }

41 / 55

.

Showing the Construction of the BST — Printing Values

The print_values() function has four parameters. The first one is a pointer
used for passing the address of the root of the BST or addresses of its subtrees.
Next two parameters are used for passing the coordinates where the value of
the currently visited node should be displayed. By the last parameter is passed
the half of the distance between two sibling nodes. It is taken into account
by the function even if only one of the nodes exists. The function checks
first if it is invoked for an existing node of the tree (4th line). If so, then it
prints the value stored in the node in a place on the screen determined by the
coordinates passed to the function. Next, it it calls itself recursively for the left
and then the right child of the node. Please note, how the value of the forth
parameter is applied in the argument of the recursive calls. For the left child
it is subtracted from the horizontal coordinate of the parent of the node, and
for the right child it is added to the same coordinate. The vertical coordinate
is increased by 2, while the distance between descendants is halved.

42 / 55

.

Showing the Construction of the BST — Printing Keys

1 void print_keys(struct tree_node *root, int x, int y,
2 unsigned int distance)
3 {
4 if(root) {
5 mvprintw(y,x,"%4d",root->key);
6 print_keys(root->left_child,x-distance,y+2,distance/2);
7 print_keys(root->right_child,x+distance,y+2,distance/2);
8 }
9 }

43 / 55

.

Showing the Construction of the BST — Printing Keys

The function that prints keys of the BST is defined almost in the same way as
the function that prints values. The only difference is in the statement from
the 5th line, where instead of the value field the key field is printed.

44 / 55

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Removing All Nodes From Binary Tree

1 void remove_tree_nodes(struct tree_node **root)
2 {
3 if(*root)
4 {
5 remove_tree_nodes(&(*root)->left_child);
6 remove_tree_nodes(&(*root)->right_child);
7 free(*root);
8 *root = NULL;
9 }

10 }

45 / 55

.

Removing All Nodes From Binary Tree

The function that removes all the nodes from a binary tree uses the post–order
algorithm for traversing the tree, so there is no danger that the recursive calls
of the function would receive addresses of nonexistent fields. Since all nodes
are removed from the tree, the root pointer has to store the null value after
the function terminates. That’s why in the 8th line the function assigns the
value to the variable pointed by the root parameter. The statement also
assigns the null value to each of pointer fields of tree nodes, before they are
deleted. Owing to the applied algorithm, the function removes nodes from
the tree starting with leaves and finishing with the root.

46 / 55

.

The main() Function
First Part

1 int main(void)
2 {
3 if(setlocale(LC_ALL,"")==NULL) {
4 fprintf(stderr,"The language settings exception!\n");
5 return -1;
6 }
7 if(!initscr()) {
8 fprintf(stderr,"The curses library initialization error!\n");
9 return -1;

10 }
11 int i;
12 srand(time(0));
13 for(i=0;i<10;i++) {
14 int key = 0; char value = 0;
15 value='a'+rand()%('z'-'a'+1);
16 key = (int)value;
17 add_node(&root,key,value);
18 }

47 / 55

.

The main() Function
First Part

In the first part of the main() function the curses library and the PRNG are
initialized and then ten nodes that stores lowercase letters of Latin alphabet
are added to the BST (lines no. 13–18).

48 / 55

.

Notes

.

Notes

.

Notes

.

Notes

.

.

The main() Function
Second Part

1 printw("Data in the tree (in-order):\n");
2 print_inorder(root);
3 refresh();
4 getch();
5 erase();
6 printw("Data in the tree (post-order):\n");
7 print_postorder(root);
8 refresh();
9 getch();

10 erase();
11 printw("Data in the tree (pre-order):\n");
12 print_preorder(root);
13 refresh();
14 getch();
15 erase();

49 / 55

.

The main() Function
Second Part

In the second part of the main() function the content of the BST is dis-
played on the screen with the use of the discussed tree traversing algorithms.
After each of the functions implementing the aforementioned algorithms is
performed the program stops until the user presses any key on the keyboard.
After that content of the screen is cleared and another function is performed.

50 / 55

.

The main() Function
Third Part

1 printw("The construction of the BST (values):");
2 print_values(root,COLS/2,1,20);
3 refresh();
4 getch();
5 erase();
6 printw("The construction of the BST (keys):");
7 print_keys(root,COLS/2,1,20);
8 refresh();
9 getch();

10 erase();
11 remove_tree_nodes(&root);
12 if(endwin()==ERR) {
13 fprintf(stderr,"The endwin() function exception!\n");
14 return -1;
15 }
16 return 0;
17 }

51 / 55

.

The main() Function
Third Part

In the third part of the main() function definition the values and keys stored
in the BST nodes are displayed on screen in a way that shows the construction
of the tree. Please note the coordinates of the first displayed node, i.e. the
root of the tree. The vertical coordinate is 1, which means that the data
from the node are displayed in the second line of the screen. The value of the
horizontal coordinate is cols/2, where cols is a constant defining the number
of columns in the screen. It means that the value or the key is displayed in
the half length of the screen. That way the construction of the BST should
be more visible, but the overall effect depends on the actual content of the
nodes. Just like in the second part, the program stops after each function
terminates and waits for the user to press any key on the keyboard. Then the
content of the screen is cleared and the next function is performed. After the
keys are printed all the nodes are removed from the BST, the curses library
is finalized and the program terminates.

52 / 55

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Summary

The properties of the BST will be closely discussed in the next lecture. It is
however worth to mention now, that the trees (not only BSTs or binary trees)
are flexible data structures which are applied in compilers (the aforementioned
arithmetic expression trees or syntax trees in general), operating systems (for
example the CFS and CFQ algorithms used by Linux kernel), computer graph-
ics (for example the bsp trees) and in many other programs ranging from
the bookkeeping applications to the artificial intelligence software. For many
issues trees are the most effective data structures.

53 / 55

.

Questions

?

54 / 55

.

The End

Thank You For Your Attention!

55 / 55

.

.

Notes

.

Notes

.

Notes

.

Notes

	Introduction
	Definitions
	Implementation
	Base Type and Root Pointer
	Adding a Node
	Traversing a Binary Tree
	Showing the Construction of the BST
	Removing All Nodes From Binary Tree

	Summary

