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Introduction

Graphs is Computer Science are data structures that have many applications.
Before graphs have been applied in algorithms they were used in mathematics,
where they had been introduced by Swiss mathematician Leonard Euler. It
happened while he was solving the problem of the Seven Bridges of Königsberg
at the same time defining a new branch of mathematics called topology. In
contemporary mathematics graphs are an object of study for graph theory, set
theory and overall for discrete mathematics.
Before the applications and ways of representing graphs as data structures
is presented, some of the mathematical definitions associated with graphs is
introduced in the lecture. Unfortunately, there is no common terminology in
graph theory, so some of the definitions may be formulated a little differently
in other learning materials.

3 / 42

.

Graph Theory
Directed Graph

A directed graph or a digraph G is defined as a pair (V, E), where V is
a finite set, which elements are vertices of the graph G, and E is a binary
relation in V and E ⊆ V × V. The set V is called a set of vertices for short
and the E set is a set of edges of the graph G. Its elements are called edges.
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Graph Theory
Undirected Graph

An undirected graph is a graph which E set is unordered. It means that an
edge is a set {u, v} where u, v ∈ V and u ̸= v. The edge is denoted as (u, v).
The pairs (u, v) and (v, u) specify the same edge. There are no loops (edges
that join a vertex with itself) in the undirected graphs.
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Graph Theory
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(b) An undirected graph

Examples of graphs
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Graph Theory
Types of the Edge

In the directed graph G = (V, E) the edge (u, v) is an outgoing edge from
the vertex u and an incoming edge to the vertex v. In the undirected graph
the edge (u, v) is called incident on vertices u and v or that it joins u and v.
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Graph Theory
Neighbourhood

A vertex v is an adjacent vertex to the vertex u, or is a neighbour of the
vertex u, in a graph G = (V, E) if those vertices are connected by a (v, u)
edge. In a directed graph the adjacency relation doesn’t have to be symmetric.
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Graph Theory
Vertex Degree

The degree of a vertex in an undirected graph is the number of edges incident
on the vertex. In a directed graph the out-degree of a vertex is the number of
its outgoing edges and the in-degree of a vertex is the number of its incoming
edges. In the directed graph the degree of a vertex is a sum of its in-degree
and out-degree.
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Graph Theory
Path

A path (route) of the length k from the vertex u to the vertex u′ in the
graph G = (V, E) is a sequence of vertices ⟨v0, v1, v2, . . . , vk⟩ so that u = v0,
u′ = vk and (vi−1, vi) ∈ E for i = 1, 2, . . . , k. The length of the path is the
number of the edges in it. The path has vertices v0, v1, v2, . . . , vk and edges
(v0, v1), (v1, v2), . . . , (vk−1, vk). If there is a path from the vertex u to the
vertex u′, then the u′ vertex is reachable from the u vertex along the path p.
A path is called a simple path if all the vertices in the path are different.
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Graph Theory
Cycles

A path ⟨v0, v1, v2, . . . , vk⟩ is a cycle if v0 = vk. A cycle is a simple cycle if
additionally all of its vertexes are different. A loop is a cycle of the length 1.
The digraph that has no loops or parallel edges (appearing more then once) is
called a simple graph. A graph that has no cycles is called an acyclic graph.
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Graph Theory
Connectedness

An undirected graph is connected if there exists a path between any two
vertices of the graph. A digraph is a strongly connected if any two vertices
in the graph are reachable one from the other.
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Graph Theory
Isomorphism

Two graphs G = (E, V) and G′ = (V′, E′) are isomorphic if there exists a
bijective mapping f : v Ï v′, so that if the edge (u, v) ∈ E, then (f(u), f(v)) ∈
E′. The property of the graphs means that every undirected graph can be
changed in its directed version by changing every undirected edge into two
directed ones. The directed graph can be changed in its undirected version by
changing every directed edge into undirected one and removing loops.
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Graph Theory
Dense and Sparse Graphs

An undirected graph is a dense graph if every pair of its vertices is connected
by an edge. The number of edges in such a graph is equal to

(n
2

)
, where n is

the number of edges in the graph. A graph that has only a small fraction of
the number of vertices in a dense graph is called a sparse graph.
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Graphs as Data Structures

There are two basic ways of representing graphs in computer memory: the
adjacency matrix and the adjacency list. The adjacency list can implemented
as a list of lists or as an array of pointers to lists. The adjacency matrix
is a statically or dynamically allocated two-dimensional array. The rows and
columns in such a matrix represents the vertices of a graph. If two vertices are
connected by an edge, then in the element of the adjacency matrix located
at the intersection of the column and the row associated with vertices is
stored a number 1, otherwise there is stored the 0 number. The next slides
show a directed and undirected graphs and adjacency matrices and lists that
represents them.
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Representations of Undirected Graph
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Representations of Undirected Graph

On the left side in the previous slide is an diagram of an undirected graph. In
the middle of the slide is its adjacency matrix and on the right side is located
the adjacency list in a from of a list of lists. The characters / inside elements
of the adjacency list denote pointer fields that store a value of null. Please
observe, that the adjacency matrix is symmetrical along its main diagonal,
thus A = AT where A is the adjacency matrix. Since the adjacency matrix is
equal to its transposed self, then a memory space can be saved by storing the
values of the elements of only the upper or lower triangular matrix.
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Representations of Directed Graph
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Representations of Directed Graph

Similarly as in the case of the undirected graph, in the previous slide are shown
respectively (from left to right): the diagram of a directed graph, its adjacency
matrix and its adjacency list. The adjacency matrix is still a square matrix,
but its not symmetrical. Please also note, that the graph has a single edge
that is a loop. In the adjacency matrix the loop is represented by the one
number in the element located at the intersection of the sixth row and sixth
column.
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Representations of Graphs
Summary

Statistically, the adjacency list is the most frequently used representation of
graphs in Computer Science. It’s implemented either as a list of lists or an
array of lists. Each element of such an array or a list (the vertical list in
drawings from previous slides) corresponds to one of the graph’s vertices and
points to the list of its neighbours i.e. adjacent vertices. The order of the
vertices on the latter list has no meaning. The sum of all neighbours lists for a
directed graph is |E| and for an undirected graph is 2·|E|, where |E| means the
cardinality of the set of edges. Thus, the space complexity of the adjacency
list is O(V+E), while the space complexity of the adjacency matrix is Θ(V2).
Both representations can be applied to express either weighted or unweighted
graphs. In the latter case the space required for storing the matrix can be saved
by using a bitwise matrix, which stores the values of its elements in single bits.
However the operations on such a matrix are more time-consuming than on a
regular matrix.
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Representations of Graphs
Summary

The adjacency matrices are more suitable for the problem of checking the
existence of an edge between two vertices or for adding or removing an edge
in a graph with fixed number of vertices. On the other hand the adjacency
lists are more useful for traversing the graph (the majority of graph algorithms
performs such an operation) or finding the degree of vertices. Also they are
better than the adjacency matrices in representing small or sparse graphs.
Adjacency matrices are a better choice for representing dense graphs.
Both representations are interchangeable, i.e. the adjacency matrix can be
converted into adjacency list and the other way. Next slides contain the source
code of a program, that converts the adjacency matrix of the undirected graph,
presented on previous slides, into an adjacency list.
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Graphs as Data Structures
Adjacency Matrix and Base Type for the Adjacency List

1 #include<stdio.h>
2 #include<stdlib.h>
3

4 typedef int matrix[5][5];
5

6 const matrix adjacency_matrix = {{0,1,0,0,1},
7 {1,0,1,1,1},
8 {0,1,0,1,0},
9 {0,1,1,0,1},

10 {1,1,0,1,0}};
11

12 struct vertex
13 {
14 int vertex_number;
15 struct vertex *next, *down;
16 } *start_vertex;
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Graphs as Data Structures
Adjacency Matrix and Base Type for Adjacency List

In the program are used functions defined in stdio.h and stdlib.h header
files. A data type for the adjacency matrix (a two-dimensional square array of
25 elements) is defined in the 4th line. An adjacency matrix for an undirected
and unweighted graph is created in lines 6–10. The base data type for the
adjacency list (the list of lists) is defined in the lines 12–16. The down pointer
field is used for linking the elements in a list of all vertices (the “vertical
list”) and the next pointer field is used for building the list of neighbours
of a vertex (the “horizontal lists”). Additionally, in the 16th line is declared
the start_vertex pointer that points an element of the adjacency list, that
represents the starting vertex1. The pointer is a global variable, so its initial
value is null.

1It is the top left element in the pictures from the previous slides.
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Graphs as Data Structures
The create_vertical_list() Function

1 void create_vertical_list(struct vertex **start_vertex,
2 const matrix adjacency_matrix)
3 {
4 int i;
5 for(i=0; i<sizeof(matrix)/sizeof(*adjacency_matrix); i++) {
6 *start_vertex = (struct vertex *)
7 malloc(sizeof(struct vertex));
8 if(*start_vertex) {
9 (*start_vertex)->vertex_number = i+1;

10 (*start_vertex)->down = (*start_vertex)->next = NULL;
11 start_vertex = &(*start_vertex)->down;
12 }
13 }
14 }
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Graphs as Data Structures
The create_vertical_list() Function

The create_vertical_list() function creates the “vertical” list, i.e. the
list of all vertices in the graph. It doesn’t return any value. By the first
parameter of the function is passed the address of the start_vertex pointer.
The parameter is also used in the function’s body for different purposes. By
the second parameter is passed the adjacency matrix. The passing by constant
is applied in the case, because the content of the matrix is not changed inside
the function. The “vertical” list is created inside the for loop. The number
of iterations of this loop is defined by the number of graph’s vertices given by
the number of rows in the adjacency matrix. The latter number is calculated
by dividing the size of the matrix data type by the size of a single row (in the
case of the two-dimensional array, dereferencing the pointer to the array gives
access to a single row of the matrix).
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Graphs as Data Structures
The create_vertical_list() Function

In the for loop of the function the memory for subsequent elements of the
“vertical” list is allocated. If the allocation is successful, then in the field
vertex_number of the new element is stored the number of a vertex (the value
of the loop counter is incremented by one, because the vertices are numerated
starting from one, and the rows of matrix are indexed starting from zero), both
pointer fields are initialised (10th line) and finally the address of the element’s
down pointer field is assigned to the start_vertex pointer (11th line). It
makes it possible to avoid writing a separated code for handling the case in
which the first element of the list is created. After the loop terminates the
pointer points the down field of the last element.
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Graphs as Data Structures
The convert_matrix_to_list() Function

1 struct vertex *convert_matrix_to_list(const matrix adjacency_matrix)
2 {
3 struct vertex *start_vertex = NULL;
4 create_vertical_list(&start_vertex,adjacency_matrix);
5 if(start_vertex) {
6 struct vertex *horizontal_pointer = NULL, *vertical_pointer = NULL;
7 horizontal_pointer = vertical_pointer = start_vertex;
8 int i,j;
9 for(i=0; i<sizeof(matrix)/sizeof(*adjacency_matrix); i++) {

10 for(j=0; j<sizeof(matrix)/sizeof(*adjacency_matrix); j++)
11 if(adjacency_matrix[i][j]) {
12 struct vertex *new_vertex = (struct vertex *)malloc(sizeof(struct vertex));
13 if(new_vertex) {
14 new_vertex->vertex_number = j+1;
15 new_vertex->down = new_vertex->next = NULL;
16 horizontal_pointer->next = new_vertex;
17 horizontal_pointer = horizontal_pointer->next;
18 }
19 }
20 vertical_pointer = vertical_pointer->down;
21 horizontal_pointer = vertical_pointer;
22 }
23 }
24 return start_vertex;
25 }
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Graphs as Data Structures
The convert_matrix_to_list() Function

The convert_matrix_to_list() function converts the adjacency matrix to
the adjacency list. As a result it returns the address of the element of the list
that represents the starting vertex and as an argument it takes the adjacency
matrix. The matrix is passed by constant. The function has a local pointer
variable named start_vertex, which is initialised with the null value. The
function creates the “vertical” list by calling the create_vertical_list()
function (4th line). If the list is successfully created, which is tested in the
5th line, then the function starts iterating over all elements of the matrix with
the use of the two for loops. However, before it happens, two local pointers
(horizontal_pointers and vertical_pointer) are declared and initialized
(lines no. 6 and 7). The former is used for traversing the “horizontal” lists
and the latter for traversing the “vertical” list.
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Graphs as Data Structures
The convert_matrix_to_list() Function

The outer for loop iterates over the rows of adjacency list and the internal one
over the columns. The value of the column’s index incremented by one is the
number of a graph vertex, which is potentially adjacent to the vertex specified
by the row index. In the internal for loop the function checks if the value of
the current element of matrix in different than zero (11th line). If so, then a
new element of the list of list is created which represents the adjacent vertex
(12th line). If the node is created successfully then a number of the vertex is
stored in it (14th line) and its pointer fields are initialized (15th line). Finally,
the node is added to the list of neighbours (the “horizontal” list) of current
vertex (lines no. 16 and 17). In the last operation, the horizontal_pointer
variable is used, which points to the last (initially also the first) element of
the list of the adjacent vertices.
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Graphs as Data Structures
The convert_matrix_to_list() Function

After the internal for loop terminates, the address of the next node on the
“vertical” list (the list of all vertices) is assigned to the vertical_pointer
variable (20th line). The same address is also stored in the horizontal_pointer
variable. After both loops terminate the function returns the address of the
starting vertex and also terminates.
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Graphs as Data Structures
The print_adjacency_list() Function

1 void print_adjacency_list(struct vertex *start_vertex)
2 {
3 while(start_vertex) {
4 printf("%3d:",start_vertex->vertex_number);
5 struct vertex *horizontal_pointer = start_vertex->next;
6 while(horizontal_pointer) {
7 printf("%3d",horizontal_pointer->vertex_number);
8 horizontal_pointer = horizontal_pointer->next;
9 }

10 start_vertex = start_vertex->down;
11 puts("");
12 }
13 }
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Graphs as Data Structures
The print_adjacency_list() Function

The function from the previous slide displays the content of the adjacency list
on the screen in a form, that is presented in the figures illustrating this data
structure. It doesn’t return any value but takes as an argument the address of
the node in the adjacency list that represents the starting node. There are two
while loops in the body of the function. The outer one iterates over the list
of all vertices (the “vertical” list) and the inner one iterates over the lists of
adjacent vertices (provided they are not empty). The outer loop is performed
under the condition (3rd line) that the value of the start_vertex pointer is
not null. If the condition is fulfilled, then the number of the vertex stored
in the first node of the list of all vertices is displayed (4th line) and then the
pointer to the list of adjacent vertices, declared in the 5th line is initialised. If
its value is also different than null, then the internal while loop is performed
(6th line).
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Graphs as Data Structures
The print_adjacency_list() Function

In the internal loop the numbers of vertices from the adjacent vertices list are
printed (7th line). The horizontal_pointer variable is used for traversing
the list. The addressed of the subsequent nodes of the list are assigned to the
pointer in the subsequent iterations of the loop (8th line). After the internal
loop terminates the address of the next node of the “vertical” list is assigned
to the start_vertex pointer in the outer loop (10th line) and the cursor is
moved to the next line on the screen (11th line).

33 / 42

.

Graphs as Data Structures
The remove_adjacency_list() Function

1 void remove_adjacency_list(struct vertex **start_vertex)
2 {
3 while(*start_vertex) {
4 struct vertex *horizontal_pointer = (*start_vertex)->next;
5 while(horizontal_pointer) {
6 struct vertex *next_horizontal =
7 horizontal_pointer->next;
8 free(horizontal_pointer);
9 horizontal_pointer = next_horizontal;

10 }
11 struct vertex *next_vertical = (*start_vertex)->down;
12 free(*start_vertex);
13 *start_vertex= next_vertical;
14 }
15 }
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Graphs as Data Structures
The remove_adjacency_list() Function

The remove_adjacency_list(), which removes the adjacency list from the
computer memory is written similarly to the function described in the previous
slide. Just like the print_adjacency_list() function it doesn’t return any
value, but it has a parameter which is a pointer to a pointer to the adjacency
list. Also two while loops are performed in the function body. In the outer
one, if the adjacency list is not empty (3rd line) the declared in the 4th
line horizontal_pointer variable is initialised. If its value is different than
null then the inner while loop is performed. In the loop the list of the
vertices adjacent to the vertex represented by the node currently pointed by
the start_vertex pointer is deleted by freeing the memory allocated to its
nodes.
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Graphs as Data Structures
The remove_adjacency_list() Function

Deleting the nodes is performed according to the algorithm applied in the
singly linked list for the same task, i.e. first, the address of the next node of
the adjacent vertices list is assigned to the next_horizontal pointer (6th
and 7th lines). Next, the node pointed by horizontal_pointer variable is
deleted (8th line) and the address stored in the next_horizontal pointer
is assigned to the former pointer (9th line). After the whole list of adjacent
vertices is removed, the node from the list of all vertices (the “vertical” list),
that represents the vertex with which the vertices in the “horizontal” list were
adjacent, is removed in the outer loop. The algorithm of deleting the node is
the same as for the nodes of the adjacent vertices list. First, the address of the
next vertex in the list is assigned to the next_vertical pointer (11th line).
Then memory allocated to the node pointed by the start_vertex pointer is
freed (12th line) and the address stored in the next_vertical is assigned to
the former pointer (13th line).
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Graphs as Data Structures
The remove_adjacency_list() Function

After both while loops terminate the removing of the adjacency list from the
computer memory is completed and the value of the pointer to the list (the
start_vertex variable) is null.
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Graphs as Data Structures
The main() Function

1 int main(void)
2 {
3 start_vertex = convert_matrix_to_list(adjacency_matrix);
4 if(start_vertex) {
5 print_adjacency_list(start_vertex);
6 remove_adjacency_list(&start_vertex);
7 }
8 return 0;
9 }
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Graphs as Data Structures
The main() Function

In main() function the convert_matrix_to_list() function is used for
converting the adjacency matrix to the adjacency list (3rd line). If the list is
not empty, what is checked in the 4th line, then its content is printed with the
use of the print_adjacency_list() function and then it is removed from
the computer memory by the remove_adjacency_list() function. After
that the main() function returns 0 and terminates, which means that also
the program terminates.
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Applications of Graphs

Graphs are a simple formalism that can be applied to many problems. Usually
the issues involve the need of expressing some kind of relations. An example of
such an issue is analysis of social networks. Beside that the graphs are used for
modeling electric circuits, VLSI electronic integrated circuits, land, water and
air routes systems and telecommunication networks. The vital advantage of
using the graphs in Computer Science is that there are many ready-to-use and
effective algorithms associated with those data structures. More information
about the issue can be found in the “Introduction to Algorithms” book by
T. H. Cormen, Ch. E. Leiserson and R. Rivest or in the “The Algorithm Design
Manual” by Steven S. Skiena.
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Questions

?
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The End

Thank You For Your Attention!

42 / 42

.

.

.

Notes

.

Notes

.

Notes

.

Notes


	Introduction
	Graph Theory
	Graphs as Data Structures
	Applications of Graphs

