
.

.

Fundamentals of Programming 2
The Quicksort and Heapsort Algorithms

Arkadiusz Chrobot

Department of Computer Science

June 4, 2019

1 / 60

.

Outline

Introduction

Quicksort

Heapsort

Summary

2 / 60

.

Introduction

Today lecture is about two sorting algorithms, which are associated with pre-
viously discussed topic: the “divide and conquer” method, recursion and trees.
The first of the algorithms is the Quicksort, the second one is the Heapsort.

3 / 60

.

Introduction

Before those algorithms are described, the functions and other element of
the source code are introduced that are common for all presented during the
lecture programs.

4 / 60

.

Notes

.

Notes

.

Notes

.

Notes



.

.

Introduction
Header Files and Array Type

1 #include<stdio.h>
2 #include<stdlib.h>
3 #include<time.h>
4

5 typedef int int_array_type[10];

5 / 60

.

Introduction
Header Files and Array Type

The results of the programs are displayed on the screen and created with
the use of the PRNG, hence the header files shown in the previous slide are
included in the program. Also an array type is introduced that defines an array
of 10 elements of the int type (5th line).

6 / 60

.

Introduction
The fill_array() Function

1 void fill_array(int_array_type array)
2 {
3 int i;
4 srand(time(0));
5 for(i=0;i<sizeof(int_array_type)/sizeof(array[0]);i++)
6 array[i] = -10+rand()%21;
7 }

7 / 60

.

Introduction
The fill_array() Function

The job of the function presented in the previous slide is to fill an array with
integers ranging from −10 to 10. Those numbers are chosen randomly. The
array is passed by the parameter of int_array_type type, which is defined
at the beginning of the program. Using the type the number of element of
the array can be calculated by dividing the size of the type by the size of the
array’s first element (5th line). Such an expression is applied in the condition
of the for loop.

8 / 60

.

Notes

.

Notes

.

Notes

.

Notes



.

.

Introduction
The print_array() Function

1 void print_array(int_array_type array)
2 {
3 int i;
4 for(i=0;i<sizeof(int_array_type)/sizeof(*array);i++)
5 printf("%d ",array[i]);
6 printf("\n");
7 }

9 / 60

.

Introduction
The print_array() Function

The print_array() function displays the content of the array, passed to it
by its parameter, on the screen and moves the cursor to the next line on the
screen. It differs from the functions that do the same task and are used in
programs from the previous lectures by several details. The first one is the
type of the parameter, which is defined at the beginning of the program with
the use of the typedef keyword. The second one is the printf() function
used for moving the cursor to the next line after the for loop terminates.
The argument for the function call is a string that contains only the new line
character (6th line). The last detail is the expression used as a condition for
the loop. It is very similar to the one used in the fill_array() function, but
the first element of the array is accessed with the use of the pointer instead
of the notation with the square brackets (4th line).

10 / 60

.

Introduction
The swap() Function

1 void swap(int *first, int *second)
2 {
3 int temporary = *first;
4 *first = *second;
5 *second = temporary;
6 }

11 / 60

.

Introduction
The swap() Function

The definition of the swap() function has been described many times in pre-
vious lectures. It swaps the values of two variables and in the programs from
today lecture it is used for exchanging values of the elements of an array.

12 / 60

.

Notes

.

Notes

.

Notes

.

Notes



.

.

Quicksort

The Quicksort algorithm was developed by the British computer scientist
C.A.R. Hoare and is one of the most efficient sorting algorithms. Although
its worst-case time complexity is Θ(n2), where n is the number of element,
the average and best-case complexity is Θ(n · log2(n)). The constant hidden
by the asymptotic notation are small. The Quicksort is an in-place algorithm,
but its space complexity is O(n). Its a consequence of the fact, that it is a
recursive algorithm implemented in a form of a recursive subroutine, hence it
intensively uses the stack. It can be implemented as an iterative subroutine,
but its a complex task and the iterative implementation isn’t more effective
than the recursive one. The Quicksort performs an unstable sorting.

13 / 60

.

Quicksort and “Divide and Conquer”

The Quicksort algorithm can be analysed using the “Divide and Conquer”
method:

Divide: The A[p . . . r] array is partitioned (values of its elements are
swapped) into two nonempty parts A[p . . . q] and A[q+1 . . . r],
such that a value of each element in A[p . . . q] is not greater
than the value of any element in A[q + 1 . . . r]. The q index is
determined by a partitioning subroutine.

Conquer: The two parts: A[p . . . q] and A[q+1 . . . r] are sorted by recur-
sive invocations of the Quicksort algorithm.

Merge: Since the Quicksort is in-place algorithm, no additional actions
are required to merge the sorted parts: the whole A[p . . . r]
array is already sorted.

14 / 60

.

Quicksort
The quicksort() Function

1 void quicksort(int_array_type array, int low, int high)
2 {
3 if(low<high) {
4 int partition_index = partition(array,low,high);
5 quicksort(array, low, partition_index);
6 quicksort(array, partition_index+1, high);
7 }
8 }

15 / 60

.

Quicksort
The quicksort() Function

The quicksort() function corresponds to the Conquer step in the presented
on the previous slide analysis with the use of “Conquer and Divide” method.
It doesn’t return any value, but has three parameters. The first one is used
for passing the array. By the second and third parameter are passed the
indices that determine the part of the array that has to be sorted. Initially,
for example when the quicksort() function is called in the main() function,
the part is just the whole array. Inside the body of the quicksort() function
the first index (low) is compared with the last index (high). If the former
is less than the latter then there is a part of the array that still needs to be
sorted. Otherwise the function terminates. If the condition in the 3rd lined is
satisfied then the partition() function is invoked that sorts the given part
of the array and determines the point where it is partitioned in two smaller
parts. Next, the quicksort() function is called twice, for each of the new
parts separately.

16 / 60

.

Notes

.

Notes

.

Notes

.

Notes



.

.

Quicksort
The quicksort() Function

The first part is sorted by an instance of the quicksort() function that deals
with elements of the array that have indices raging from the first index (low)
to the partition index (partition_index), including both of them. The
second part consists of elements with indices raging from the partition index
(excluding) to the last index (high) including. The partition() function is
defined in the program before the quicksort() function, but in the slides it
is described after the latter.

17 / 60

.

Quicksort
The partition() Function

1 int partition(int_array_type array, int low, int high)
2 {
3 int pivot = array[low];
4 int i = low-1, j = high+1;
5

6 while(i<j) {
7 while(array[--j]>pivot)
8 ;
9 while(array[++i]<pivot)

10 ;
11 if(i<j)
12 swap(&array[i],&array[j]);
13 }
14 return j;
15 }

18 / 60

.

Quicksort
The partition() Function

The partition() function corresponds to the Divide step in the analysis
with the use of “Divide and Conquer” method. It has three parameters, which
have the same meaning as the parameters of the quicksort() function. The
partition() function returns a number, which is an index that determines
the partition point of the currently sorted part of an array into two smaller
parts. In the 3rd line of the function is declared and initialised a variable
named pivot, that stores so-called pivot value which determines how the
part of the array is sorted. In the function, the value of the first element of
the sorted part of the array is assumed as the pivot value (line no. 3). In the
4th line of the function are declared and initialised two variables that are used
for indexing the sorted part of the array from the beginning (the i variable)
and from the end (the j variable). Please note, that initially both indices
determine elements that are outside the sorted part of the array.

19 / 60

.

Quicksort
Funkcja partition()

The outer while loop (6th line) is repeated as long as the the value of the
i index is smaller than the value of the j index, or in other words, until the
indices “meet” or “miss” each other. Inside the loop are performed two other
while loops. The first one (lines no. 7 and 8) traverses the given part of an
array starting from the end toward the beginning and searches for an element
that has a value equal to or smaller than the pivot value. The second internal
loop (lines no. 9 and 10) traverses the same part of the array but from the
beginning to the end and searches for an element with a value greater than
or equal to the pivot value. Please note, how these loops are written. The
searching takes place inside the condition statement of the loops. The pre-
increment and pre-decrement operators are applied to the indices to avoid
accessing elements of the array that are outside of the sorted part or even
accessing outside the array itself.

20 / 60

.

Notes

.

Notes

.

Notes

.

Notes



.

.

Quicksort
The partition() Function

After both internal loops terminate, the function performs the conditional
statement (11th line) to check whether the i index is smaller than the j
index. If so, then the order of the values in the elements associated with the
indices is incorrect, and they have to switch the places. If not, then the outer
loop terminates and the j index determines a partition point for the sorted
part of the array, hence the index is returned by the function (14th line).
In the next slide is a call tree that illustrates how the quicksort() func-
tion sorts an array that has a seven elements that store natural numbers. In
the upper part of the tree it is shown which actions are performed by the
quicksort() function and which by the partition() function. In the bot-
tom part of the tree no such description is given, to keep the drawing more
legible.

21 / 60

.

Quicksort

..

8 4 3 10 1 5 9
i j

5 4 3 10 1 8 9
i j

5 4 3 1 10 8 9
j i

.

5 4 3 1
i j

1 4 3 5
j i

.

1 4 3
j
i

.

1
j
i

.

4 3
i j

3 4
j i

.

3
j
i

.

4
j
i

.

5
j
i

.

10 8 9
i j

9 8 10
j i

.

9 8
i j

8 9
j i

.

8
j
i

.

9
j
i

.

10
j
i

.

pa
rt

it
io

n

.

pa
rt

it
io

n

.

pa
rt

it
io

n

.

quicksort

.

quicksort

.

quicksort

22 / 60

.

The main() Function

1 int main(void)
2 {
3 int_array_type array;
4 fill_array(array);
5 print_array(array);
6 quicksort(array,0,
7 sizeof(int_array_type)/sizeof(*array)-1);
8 print_array(array);
9 return 0;

10 }

23 / 60

.

The main() Function

In the main() is defined an array of the int_array_type type (3rd line) which
is then initialised with the use of the fill_array() function and sorted with
the help of the quicksort() function. Aside for the array the function takes
indices as arguments, hence the second argument of the function is 0 (the
index of the first element). The third one is the number of elements in the
array decremented by one. The number of elements is calculated using the
same expression as in the print_array() function. After the quicksort()
function terminates the content of the sorted array is displayed on the screen
and the main() function also terminates, returning the 0 value.

24 / 60

.

Notes

.

Notes

.

Notes

.

Notes



.

.

Other Versions

There are several variants of the Quicksort algorithm that can be implemented
in a different way than the one presented earlier. The other frequently used
implementation of the Quicksort algorithm is described in the next slides. It’s
not as effective as the previously described one, but many computer scientists
think its more legible, easier to create and less prone to contain mistakes.

25 / 60

.

Quicksort
The quicksort() Function — Second Version

1 void quicksort(int_array_type array, int low, int high)
2 {
3 if(low<high) {
4 int partition_index = partition(array,low,high);
5 quicksort(array, low, partition_index-1);
6 quicksort(array, partition_index+1, high);
7 }
8 }

26 / 60

.

Quicksort
The quicksort() Function — Second Version

There is only one detail that differentiates the definition of the quicksort()
function presented in the previous slide from the one described earlier. The
part of the array that is sorted by the first recursive invocation of the function
doesn’t include the element determined by the partition_index (5th line).

27 / 60

.

Quicksort
The partition() Function — Second Version

1 int partition(int_array_type array, int low, int high)
2 {
3 int pivot = array[low], middle = low, i;
4

5 for(i=low+1; i<=high; i++)
6 if(array[i]<pivot) {
7 middle++;
8 swap(&array[middle],&array[i]);
9 }

10 swap(&array[low],&array[middle]);
11 return middle;
12 }

28 / 60

.

Notes

.

Notes

.

Notes

.

Notes



.

.

Quicksort
The partition() Function — Second Version

In this implementation of the partition() function only one iteration state-
ment is used and this time it is the for loop. Just like in the previous version a
few local variables are declared first. The pivot variable has the same purpose
as in the previous version. The middle variable is an index that eventually
will determine the element of sorted part of the array in which the pivot value
should be stored. The i variable is the loop counter and simultaneously the
variable used for indexing the array. The concept of this implementation of
the partition() function is as follows: the values in the sorted part of the
array should be so rearranged that the values lesser than the pivot value ought
to be moved to the left and the greater to the right. Since as the pivot value
is chosen the value of the first element of the sorted part of the array then
all the other elements should have values greater or equal to the pivot value.
If not, then the lesser values should be moved to the left. The rest of the
function takes care of it.

29 / 60

.

Quicksort
The partition() Function — Second Version

Please note the for loop. It iterates over all elements of the sorted part,
except the first one. Hence, the i index is initialised with a value greater by
one than the value of the low parameter. The loop terminates when the loop
counter reaches a value grater than the value of the high parameter. Inside
the loop, the conditional statement (6th line) checks if the current element
of the sorted part of the array stores a value which is less than the pivot
value. If so, than the value of the middle index is incremented by one and
the value of element determined by this index is swapped with the value of the
element determined by the i index. After the loop terminates the value of the
first element of the sorted part of the array is swapped with the value of the
element determined by the middle index (10th line). After that the function
returns the middle index as a point of partitioning for the sorted part of the
array.

30 / 60

.

Quicksort
The qsort() Function

The Quicksort algorithm is so effective, that the creators of the C language
decided to define as a part of its standard library the qsort() function that
implements it. Its prototype is in the stdlib.h header file. The function
doesn’t return any value but has four parameters. The first one, of the void
* type, is used for passing the array to be sorted, by the second one, the
number of elements in the array is passed and by the third one the size of a
single element. The last, forth, parameter is a function pointer that points to
a function that compares values of the elements. Its prototype should be as
follows:

int compare(const void *, const void *);
By the parameters are passed pointers to the compared elements of the array.
If the value of the first one is greater than the value of the second one then
the function ought to return a positive integer number. Otherwise it should
return a negative integer number. If the values are equal, the function should
return 0.

31 / 60

.

Quicksort
Funkcja qsort()

The way, the qsort() is defined allows it to sort an array of any number and
type of elements.
The next slides present the definition of a function that compares two elements
of an array of elements of the int type and show how the qsort() function
can be invoked.

32 / 60

.

Notes

.

Notes

.

Notes

.

Notes



.

.

Quicksort
The compare_int() Function

1 int compare_int(const void *first, const void *second)
2 {
3 return *(int *)first - *(int *)second;
4 }

33 / 60

.

Quicksort
The compare_int() Function

The definition of the compare_int() function is short. It has two pointer
parameters named first and second. The body of the function is basically
one statement, in which both pointers are first casted on the int * type, then
they are dereferenced and the values pointed by those pointers are subtracted
from each other. If the result is a negative number, than the first value is
smaller than the second one. If the result is positive than the first value is the
greater one. If the result is zero, then they are equal. The result is returned
before the function terminates.

34 / 60

.

Quicksort
The main() Function

1 int main(void)
2 {
3 int_array_type array;
4 fill_array(array);
5 print_array(array);
6 qsort((void*)array,
7 sizeof(int_array_type)/sizeof(array[0]),
8 sizeof(array[0]),compare_int);
9 print_array(array);

10 return 0;
11 }

35 / 60

.

Quicksort
The main() Function

The lines no. 6, 7 and 8 contain the invocation of the qsort() function. As
the first argument is passed the pointer to the sorted array. It is casted on
the void * type. The next passed argument is the number of element of
the array, calculated with the use of the same expression which is also applied
in the fill_array() function. The size of the first element of the array
is passed as the third argument. It can be any element of the array — all
have the same size, however the C language standard guarantees that the first
element of the array always exists. The pointer to (name) the function that
compares elements of the array is passed as the last argument.

36 / 60

.

Notes

.

Notes

.

Notes

.

Notes



.

.

Heap

The word heap has two meanings in the computer science. It can mean a part
of the program memory, where the dynamically allocated variables are created
or a binary tree, which has a shape of the full binary tree, or the complete
binary tree, and which satisfies the heap property. If the heap is the complete
binary tree, then the missing nodes in the last level have to be on the right.
The heap is usually not implemented in the form of a dynamically allocated
data structure but its mapped on an array in such a way, that the key of the
node is the index of the array’s element and the value of the node is the value
of the element. The root is always mapped to the first element of the array.
Assuming that the indices of the array start from 1 and that the index denotes
an index in the array of an internal node of the heap then the index of its left
child can be calculated using the expression 2 · index and the right child with
the use of the expression 2 · index + 1. The parent of any node of the heap,
except the root can be calculated using the expression index/2, where “/”
denotes the integer division.

37 / 60

.

Heap

The indices of the arrays in the C language start from 0. If such a value is
substituted for index then the expressions from the previous slide give incorrect
results. There are two solutions for this problem. Either the first element of
the array has to be always omitted or the expressions have to be accordingly
transformed. In the presented discussion the second possibility is chosen.
Thus, the expression for calculating the index of the parent becomes (index+
1)/2. The index of the left child is calculated using the following expression:
2 · index+1 and for calculating the index of the right child such an expression:
2 · index+2 can be applied. In the next slide is an illustration of the heap and
its mapping into an array which indices start from zero (so-called zero-based
array).

38 / 60

.

Heap

..16.
0

.

14

.

1

.

8

.

3

.

2

.

7

.

4

.

8

.

7

.

4

.

1

.

9

.

10

.

2

.

9

.

5

.

3

.

6

.

16

.

0

.

14

.

1

.

10

.

2

.

8

.

3

.

7

.

4

.

9

.

5

.

3

.

6

.

2

.

7

.

4

.

8

.

1

.

9

39 / 60

.

Heap

The presented heap is called max-heap. The heap property for such a heap
is defined as follows: A[parent(i)] ≥ A[i], which means that the value of a
parent of any node is always greater or equal to the value of the node. The
A letter signifies an array. There are also min-heaps for which the property
is defined as A[parent(i)] ≤ A[i]. For the rest of the lecture the max-heaps
are applied. The relation between the heap and the array in which the heap is
mapped is given by the following expression: length(heap) ≤ lenght(array),
where length is the number of the elements of the array or the heap. The
discussed expression means that not all of the array elements have to be part
of the heap.

40 / 60

.

Notes

.

Notes

.

Notes

.

Notes



.

.

Heapsort

The heaps can be applied for building so-called priority queues, but in the
lecture their application in the array sorting algorithm, closely related to the
selection sort algorithm, is investigated. The algorithm is called the Heapsort
and just like the Quicksort it performs unstable sorting. When compared with
the latter, the Heapsort is slower, but still it is one of the most effective sorting
algorithms. Its time complexity for all possible cases is O(n · log2(n)). The
Heapsort can be implemented in a recursive (the one is demonstrated in the
lecture) or in an iterative form.
The next slides show definitions of functions that calculate indices of the right
and left child of a node (the calculation of the parent’s index is not applied
in this algorithm). Then the function that reestablishes the heap property is
presented, the function that builds the heap and finally, a function that sorts
the array.

41 / 60

.

Heapsort
The get_left_child_index() Function

1 static inline int get_left_child_index(int index)
2 {
3 return (index << 1) + 1;
4 }

42 / 60

.

Heapsort
The get_left_child_index() Function

The function shown in the previous slide calculates the index of the heap
node’s left child. To speed up the calculations the bitwise shift left operator
is applied instead of the regular multiplication operation. It’s possible because
the index of the node is multiplied by 2. Additionally, in the function definition
is used the inline keyword which means that the function should be expanded
like a macro or optimized in other way by the compiler.

43 / 60

.

Heapsort
The get_right_child_index() Function

1 static inline int get_right_child_index(int index)
2 {
3 return (index << 1) + 2;
4 }

44 / 60

.

Notes

.

Notes

.

Notes

.

Notes



.

.

Heapsort
The get_right_child_index() Function

The function presented in the previous slide calculates the index of the heap
node’s right child. The function differs from the previous one only by its name
and the applied expression.

45 / 60

.

Heapsort
The heapify() Function

1 void heapify(int_array_type array, int index, unsigned int size)
2 {
3 int left = get_left_child_index(index),
4 right = get_right_child_index(index),
5 largest = index;
6 if(left<=size)
7 if(array[left]>array[index])
8 largest = left;
9 if(right<=size)

10 if(array[right]>array[largest])
11 largest = right;
12 if(largest!=index) {
13 swap(&array[index],&array[largest]);
14 heapify(array,largest,size);
15 }
16 }

46 / 60

.

Heapsort
The heapify() Function

The heapify() function is the basic subroutine in the implementation of
the Heapsort algorithm. Its task is to restore the heap property. The function
doesn’t return any values but has three parameters. The first one is for passing
the array with a mapped heap, in which the heap property is violated. The
second one is for passing an index of a node that possibly violates the property.
By the last parameter the length of the heap is passed. In the function’s body
the indices of the left and right child of the node are calculated and stored in
local variables named left and right (lines no. 3 and 4). To the largest
local variable is assigned the index of the node that possibly violated the heap
property (5th line). This variable is used for storing the index of the node
from the three aforementioned (the node that likely violates the property and
its two children) that has the greatest value. Initially it is assumed that this
is the node determined by the index parameter and that the heap property is
not violated.

47 / 60

.

Heapsort
The heapify() Function

Next the function checks if the left child of the node exists, i.e. if its index
stored in the left variable is within the length of the heap (6th line). If so, it
then check if the value of this child is greater than the value of the node (7th
line). If also this condition is satisfied then the index of the child is assigned to
the largest variable. Similarly, in the 8th line the function checks if the right
child of the node exists. If so, then the function checks if its value is greater
than the value of the node currently determined by the largest variable. In
this line it can be the node determined by the index parameter or its left
child. If the value of the right child is grater than the value of that node then
the index of this child is assigned to the largest variable (11th line). Thus,
after the statement in the 11th line is performed in the largest variable is
stored the index of the node that has the greatest value of the following three:
the node that likely violates the heap property and its two children.

48 / 60

.

Notes

.

Notes

.

Notes

.

Notes



.

.

Heapsort
The heapify() Function

In the 12th line the function checks if the value of largest variable is different
than the value of the index parameter. If not, then the heap property is not
violated and the function terminates. If so, then the function swaps the values
of the nodes determined by the index and largest variables (13th line). This
however can violate the heap property in the bottom part of the heap, i.e. it
can be violated in the subtree where the node determined by the largest
index is a root. Thats why, the heapify() function calls itself recursively for
that node (14th line).

49 / 60

.

Heapsort
The build_heap() Function

1 void build_heap(int_array_type array)
2 {
3 int i;
4 const int number_of_elements =
5 sizeof(int_array_type)/sizeof(*array);
6 for(i=number_of_elements/2;i>=0;i--)
7 heapify(array,i,number_of_elements-1);
8 }

50 / 60

.

Heapsort
The build_heap() Function

The build_heap() function creates a heap in an array that is to be sorted. It
uses to this end the previously described heapify() function. The build_heap()
function doesn’t return any value but takes one argument, which is the array
inside which it creates the heap. A constant that describes the number of el-
ements in the array is defined in the 4th and 5th lines. The heap is created in
the for loop. Please note, that the loop iterates elements of the array starting
in the middle upward. The question arises, why the second (bottom) part of
the array is not covered by the loop? The function assumes that the length of
the heap is equal to the length of the array. It means that the elements that
belong to the aforementioned part of the array are the leaves of the heap (or
in other words are a single element heaps). The function assures that those
elements will also be included in the heap by applying the heapify() function
for the first part of the array — the latter function will take care about it.

51 / 60

.

Heapsort
The heapsort() Function

1 void heapsort(int_array_type array)
2 {
3 int last_index = sizeof(int_array_type)/sizeof(*array)-1;
4 int i;
5

6 build_heap(array);
7 for(i=last_index;i>0;i--){
8 swap(&array[0],&array[i]);
9 heapify(array,0,--last_index);

10 }
11 }

52 / 60

.

Notes

.

Notes

.

Notes

.

Notes



.

.

Heapsort
The heapsort() Function

The heapsort() function sorts the array. It doesn’t return any value, but
takes as the argument an array that is to be sorted. In the function body is
declared and initialised the last_index variable. Its value is the index of the
last element of the array belonging to the heap that also specifies the length
of the heap. First, the function creates the heap in the array by invoking
the build_heap() function and then, in the for loop iterates over the array
starting from the last element (initially it is also the last node of the heap) and
finishing on the second element. In each of the iterations it swaps the value of
the first element of the array with the element determined by the loop counter
(the i variable), and then it restores the heap property starting with the first
element of the array. What is the purpose for such steps? The greatest value
in the heap is in its root, which is mapped into the first element of the array.
In the sorted in ascending order array this value should be stored in the last
element. Thus the elements should exchange values (8th line).

53 / 60

.

Heapsort
The heapsort() Function

This modification can however violate the heap property. That’s why the
heapsort() function calls the heapify() function for the first element of
the array. But this time, the last element of the array is excluded from the
heap, because now it has the correct value. In each subsequent iteration of the
for loop the length of the heap is decremented by one and the first element
of the array (the root of the heap) exchanges its value with the node of the
heap specified by the i index. After the loop terminates the array is finally
sorted.

54 / 60

.

Heapsort
The main() Function

1 int main(void)
2 {
3 int_array_type array;
4 fill_array(array);
5 print_array(array);
6 heapsort(array);
7 print_array(array);
8 return 0;
9 }

55 / 60

.

Heapsort
The main() Function

The only difference in the main() function between the example program
demonstrating the Quicksort and the Heapsort algorithms is that the latter
calls the heapsort() instead of the quicksort() function (6th line). As an
argument the array to be sorted is passed to the former function.

56 / 60

.

Notes

.

Notes

.

Notes

.

Notes



.

.

Summary

Both described algorithms for sorting arrays belong to the most efficient in
this category, but in the best and average case the Quicksort is slightly better.
However, the worst-case time complexity for the latter algorithm is Θ(n2) and
that happens when the array is already sorted. In this case the algorithm
partitions the array into two part, one of them having only one element and
the other consisting of the rest of the elements of the original part of the array.
The best partitions are those that result in two parts that have equal (with the
respect to one element) number of elements. To avoid the worst case a several
randomly chosen elements of the array can exchange their values. There is
no guarantee that those changes don’t sort in result the array, but they are
likely to disturb the order of the values if the array is already sorted. Other
solution to the wost-case scenario is to chose the pivot value randomly from
all the values in the sorted part of the array. However, none of the methods
make it certain that the worst case doesn’t happen.

57 / 60

.

Summary

The Heapsort algorithm has the advantage over the Quicksort algorithm that
the recursion can be totally eliminated from its implementation. Hence, it can
save the memory in the call stack. The space complexity of the algorithm can
be constant1.
Statistically the Quicksort algorithm appears to be more frequently used than
the Heapsort, but in some applications it is better to use the latter one.
An example of such applications are remote services, which need to sort the
received data. If the Quicksort algorithm was used in such services then they
would be vulnerable to the Denial of Service (DoS) attacks. The attackers
would only need to provide specially prepared input data for the services.

1Such implementations of the Heapsort algorithm are for example described in the fol-
lowing books: Jon Bentley, “Programming Pearls” and A. V. Aho, J. E. Hopcroft and
J. D. Ullman, “Data Structures and Algorithms”.

58 / 60

.

Questions

?

59 / 60

.

The End

Thank You For Your Attention!

60 / 60

.

Notes

.

Notes

.

Notes

.

Notes


	Introduction
	Quicksort
	Heapsort
	Summary

