
Fundamentals of Programming 1
Algorithms for Linear Arrays

Arkadiusz Chrobot

Department of Information Systems

December 15, 2022

1 / 29



Outline

1 Introduction

2 Finding Minimum and Maximum Value in Unsorted Arrays

3 Linear Search

4 Sorting

5 Selection Sort

6 Binary Search

7 The Minimum and Maximum in a Sorted Array

2 / 29



Introduction

Introduction

In this lecture, several basic algorithms for linear arrays are introduced.
Particularly, the sorting and searching algorithms are discussed. They
are among the most frequently performed by computer systems and so
important, that D. E. Knuth has dedicated the entire third volume of
“The Art of Computer Programming” to them. Both operations may be
applied to many data structures, but in this lecture they are discussed
in the context of linear arrays.

3 / 29



Finding Minimum and Maximum Value in Unsorted
Arrays

Finding the Minimum Value
The Algorithm

Solving some problems may require finding the smallest value in an un-
sorted array. The algorithm for that task is quite simple:

1 Store the value of the first element of the array in a separate variable.
Assume, for now, that it is the minimum value.

2 Visit all other elements of the array, starting from the second one.
If the currently visited element has a value smaller than the one
stored in the variable, then store the value of the element in the
variable.

3 If all elements of the array has been visited, the minimal value is in
the variable.

4 / 29



Finding Minimum and Maximum Value in Unsorted
Arrays

Finding the Minimum Value
The Implementation

The function blow implements the algorithm described in the previous
slide. It searches for the minimum value in an array of the number of
elements given by the constant number_of_elements.
int find_min(int *array)
{

int min;
unsigned int i;
min=array[0];
for(i=1; i<NUMBER_OF_ELEMENTS; i++)

if(min>array[i])
min=array[i];

return min;
}

5 / 29



Finding Minimum and Maximum Value in Unsorted
Arrays

Finding the Maximum Value
The Implementation

The algorithm for finding the maximum value is basically the same as
for finding the minimum value. The only difference is the operator used
in the conditional statement — less than instead of greater than. The
function that implements the algorithm is named accordingly and so is
the variable inside the function, that stores the result.
int find_max(int *array)
{

int max;
unsigned int i;
max=array[0];
for(i=1; i<NUMBER_OF_ELEMENTS; i++)

if(max<array[i])
max=array[i];

return max;
}

6 / 29



Finding Minimum and Maximum Value in Unsorted
Arrays

Finding the Extremes
It is easy to spot, that in the case where both values (the minimum
and the maximum) are needed it would be better to search for both of
them simultaneously than look them up separately. The function below
realizes this idea. It passes the minimum and maximum values by the
min and max parameters.
void find_exterme_values(int array[], int *min, int *max)
{

unsigned int i;
*max = *min = array[0];
for(i=1; i<NUMBER_OF_ELEMENTS; i++) {

if(*min>array[i])
*min=array[i];

if(*max<array[i])
*max=array[i];

}
}

7 / 29



Linear Search

Linear Search
The Algorithm

The problem of locating a specific value in an array is very common.
There are many variants of this issue. Here, we are interested in finding
the first occurrence (starting from the first element) of the value in the
array. The algorithm is quite simple. It checks all elements of an array
one by one. If it finds the value in one of them it stops and returns the
index of that element. Otherwise, if it does not find such a value in any
of the elements, it returns a number, for example -1, indicating that the
array does not contain such a value. Such an algorithm is known as the
linear search algorithm.

8 / 29



Linear Search

Linear Search
The Implementation

Below is a function that implements the linear search algorithm.
int find_value_index(int array[], int value)
{

unsigned int i;
for(i=0; i<NUMBER_OF_ELEMENTS; i++) {

if(array[i]==value)
return i;

}
return -1;

}

9 / 29



Sorting

Sorting
Properties of Sorting

Many sorting algorithms have been invented, that got different proper-
ties. The internal sorting is applied to data that are stored in the main
memory, while in external sorting they are in the secondary storage.
Stable sorting preserves the relative order of the same values. For exam-
ple, let’s suppose that there are two 8s in the unsorted array marked 8′

and 8′′. If the sorting is stable, then after it is performed the 8′ still will
be before 8′′. In case of numbers, this property is of small value, but it
can be useful for more advanced data types. When an algorithm sorts a
data structure using only a constant amount of memory, it is called an
in-place (Lat. in situ) algorithm, and the operation is called an in-place
sorting. In the lecture only sorting of numbers is discussed, but other
values, like characters or strings of characters can also be sorted.

10 / 29



Sorting

Sorting
Example Algorithm

The sorting is discussed with the use of only one sorting algorithm that
operates on a linear array. It performs internal, in-place, but unstable
sorting. However, it can be modified in such a way, that it will sort in
a stable way. The efficiency of this algorithm is rather low — its time
complexity is expressed as a square of the number of elements of the
sorted array. The undeniable advantage of the algorithm is its simplic-
ity. In this lecture, a version of this method is discussed that sorts an
array in the non-descending order, but information on how to modify
the algorithm to reverse this order is also given.

11 / 29



Selection Sort

Selection Sort
Algorithm Description

The Selection Sort algorithm is quite simple. It is related to the algo-
rithm for finding a minimum value in an unsorted array. Selection sort is
based on the observation, that the first element in a sorted array should
store the minimum value. Therefore, the element holding such a value
has to be located and if it is not the first element, its value should be
swapped with the value of the first one. Then the operation is repeated,
but this time with the exception of the first element of the array (start-
ing with the second), and so on. After sorting the last two elements the
whole array is sorted.

12 / 29



Selection Sort

Selection Sort
Simulation

The next slide contains a visualisation of sorting in a linear array of five
elements, containing some natural numbers with the use of the selection
sort algorithm. The orange arrow specifies the currently sorted element.
The violet arrow specifies the element that stores the smallest value and
belongs to the still unsorted part of the array. This part also includes
the currently sorted element. The latter is also marked by the dark gray
background. Those elements that are already sorted have a green back-
ground. The still unsorted elements have a red background. The steps
required to find the minimal value are not shown in the visualisation.
Those are the same as in the algorithm for finding the minimal value in
an unsorted array.

13 / 29



Selection Sort

Selection Sort
Simulation

15 32 8 16 4

14 / 29



Selection Sort

Selection Sort
Simulation

4 32 8 16 15

14 / 29



Selection Sort

Selection Sort
Simulation

4 32 8 16 15

14 / 29



Selection Sort

Selection Sort
Simulation

4 32 8 16 15

14 / 29



Selection Sort

Selection Sort
Simulation

4 8 32 16 15

14 / 29



Selection Sort

Selection Sort
Simulation

4 8 32 16 15

14 / 29



Selection Sort

Selection Sort
Simulation

4 8 32 16 15

14 / 29



Selection Sort

Selection Sort
Simulation

4 8 15 16 32

14 / 29



Selection Sort

Selection Sort
Simulation

4 8 15 16 32

14 / 29



Selection Sort

Selection Sort
Simulation

4 8 15 16 32

14 / 29



Selection Sort

Selection Sort
Simulation

4 8 15 16 32

14 / 29



Selection Sort

Selection Sort
Simulation

4 8 15 16 32

14 / 29



Selection Sort

Selection Sort
Implementation

void selection_sort(int array[])
{

int i,j;

for(i=0; i<NUMBER_OF_ELEMENTS-1; i++) {
int min = i;
for(j=i+1; j<NUMBER_OF_ELEMENTS; j++)

if(array[min]>array[j])
min = j;

if(min!=i)
swap(&array[min],&array[i]);

}
}

15 / 29



Selection Sort

Selection Sort
A Comment to the Implementation

The counter of the outer for loop specifies the element of the array that
should be sorted (just like the orange arrow in the visualisation). The
inner for loop searches for the smallest value in the part of the array to
the right of the currently sorted element. The algorithm is interested in
the location of the minimum value not in the value itself. In other words
it is interested in the index of the element that stores the value (the violet
arrow in the visualisation). If the min variable specifies different element
than the i variable, when the inner loop finishes, then the values of the
elements specified by both variables should be exchanged. It is done by
the swap() function, which was introduced in the previous lecture. If
the operator in the conditional statement is reversed then the array will
be sorted in a descending (non-ascending) order. The efficiency of the
algorithm can be improved by modifying it to sort the array “at both
ends” and search for the smallest and biggest value simultaneously.

16 / 29



Selection Sort

The swap() Function
A Different Implementation (Digression)

void swap(int *first, int *second)
{

if(first!=second) {
*first ^= *second;
*second ^= *first;
*first ^= *second;

}
}
The function presented above swaps values of two variables passed to it
by pointers, but without using an additional variable. It is made possible
by applying the ^ (xor) operator, which effect can be reversed. However,
if the address of the same variable is passed by both its parameters,
then the variable will be zeroed out. Hence, if the conditional statement
detects such a case, no action will be taken by the function.

17 / 29



Selection Sort

The swap() Function
A Different Implementation (Digression) — Continuation

The advantage of such an implementation of the swap() function is that
it uses a little less memory than the more common implementation.
However, it is less efficient and it cannot be applied to variables of the
float, double and more advanced data types. The function can also be
implemented with the use of some arithmetic operators, but it will still
undergo similar limitations.

18 / 29



Binary Search

Binary Search
Algorithm Description

It turns out, that searching for a given value in a sorted array can be
more efficient than performing the same operation on an unsorted array.
This, however requires a special algorithm that is called a binary search.
It consists of several steps. In the first one the middle element of the
array is located. If the array has an even number of elements then the
left to the middle element is assumed to be the one. Its value is compared
with the one that is desired. If they are the same the algorithm returns
the index of the element and finishes. However, if the value of the middle
element is greater than the desired value then it means that the latter can
only be in the part of the array that is located to the left of the middle
element. If the result of comparing those two values is the opposite, then
the desired value can only be in the part of the array located to the right
of the middle element. The algorithm repeats the steps for the chosen
part of the array.

19 / 29



Binary Search

Binary Search
Algorithm Description — Continuation

The algorithm repeats the steps until it locates the desired value or the
part of the array that needs to be checked becomes so small that it con-
tains no elements. In the latter case the desired valued does not occur in
the array. The algorithm always stops, because after every iteration it
halves the number of the elements of the array that need to be checked in
the next iteration. By contrast, the linear search algorithm reduces the
number of elements to search by one element in each iteration. There-
fore the binary search algorithm is much more efficient. The description
of the algorithm is simple, but implementing it can be challenging. Ac-
cording to Jon Bentley the algorithm was already known in 1946, but it
had not been correctly implemented until 1962.

20 / 29



Binary Search

Binary Search
Simulation

The next slide shows a visualization of the binary search algorithm for
a sorted array of six elements that contain natural numbers. The down
and up arrows specify the first and the last element of the part of the
array that needs to be checked in the next iteration. Initially, this area
contains the whole array, but in the subsequent iterations it becomes
smaller. The middle arrow specifies the middle element in the checked
part of the array. The desired value is in the circle on the left.

21 / 29



Binary Search

Binary Search
Simulation

down upmiddle

0

7

1

9

2

10

4

17

5

20

3

14

14

22 / 29



Binary Search

Binary Search
Simulation

down upmiddle

0

7

1

9

2

10

4

17

5

20

3

14

14

22 / 29



Binary Search

Binary Search
Simulation

down

up

middle

0

7

1

9

2

10

4

17

5

20

3

14

14

22 / 29



Binary Search

Binary Search
Implementation

int binary_search(int array[], int value)
{

int down=0, up=NUMBER_OF_ELEMENTS-1;
while(down<=up) {

int middle = down+((up-down)/2);
if(array[middle]==value)

return middle;
if(array[middle]<value) {

down = middle + 1;
continue;

}
if(array[middle]>value)

up = middle - 1;
}
return -1;

}
23 / 29



Binary Search

Binary Search
Comment to the Implementation

The variables that specify the beginning, the end and the middle of the
area of the array that needs to be checked have the same names as the
arrows in the simulation. The first line of the function that catches
the attention is the expression that locates the middle element. Why
the function does not calculate the average of the down and up instead?
Unfortunately, calculating the average of those two variables may lead
to the integer overflow in case of very large arrays (above one billion of
elements). The expression used in the function does not have such a
drawback. The second important part of the function is the detection of
the case when the desired value is not in the array. It is accomplished in
the condition of the loop, when the value of the down variable becomes
greater than the value of the up variable. It means that the area of the
array that needs to be checked contains no elements.

24 / 29



Binary Search

Binary Search
Comment to the Implementation — Continuation

The last interesting element of the implementation is an exclusion of
the middle element from the area that needs to be checked in the next
iteration. The element certainly does not contain the desired value and
leaving it in the search area can lead to errors. The continue keyword in
the second if statement prevents the condition in the third if statement
to be tested. If the condition in the second conditional statement is true
the condition in the next if statement is surely false and there is no
need to check it. If the desired value is not present in the array, the
function returns -1. If the desired value occurs many times in the array,
then the function always finds one of its occurrences, but not necessarily
the first one.

25 / 29



The Minimum and Maximum in a Sorted Array

The Minimum and Maximum in a Sorted Array

Finding the minimum and maximum becomes trivial in a sorted array.
If the values in the array are sorted in an ascending (non-descending)
order, the minimum is in its first element and the maximum in the last
one. If the values in the array are sorted in a descending (non-ascending)
order, the minimum is in the last element of the array and the maximum
is in the first one.

26 / 29



The End

Thanks

Many thanks to Grzegorz Łukawski, PhD and Leszek Ciopiński, MSc for
helping me to complete the Polish version of this slides.

27 / 29



The End

Questions

?

28 / 29



The End

The End

Thank You for Your attention!

29 / 29


	Introduction
	Finding Minimum and Maximum Value in Unsorted Arrays
	Linear Search
	Sorting
	Selection Sort
	Binary Search
	The Minimum and Maximum in a Sorted Array
	The End

