
Fundamentals of Programming 1
Introduction

Arkadiusz Chrobot

Department of Information Systems

October 6, 2022

1 / 41



Outline

1 Contact Information

2 Literature

3 Introduction

4 Algorithm

5 Computer System

6 Programming Languages

7 The C Language
Basics of the C Language
Comments
Constants
Variables and Types of Variables

2 / 41



Contact Information

Contact Information

Lecturer: Arkadiusz Chrobot, PhD
Room number: 3.23, D building
Office hours: Monday, 12:00 – 13:30

Phone: 41 34–24–185
E-mail: a.chrobot@tu.kielce.pl
www: https://achilles.tu.kielce.pl

3 / 41

https://achilles.tu.kielce.pl


Literature

Literature
Primary Literature

1 Brian W. Kernighan, Dennis M. Ritchie,“The C Programming
Language”, Second Edition, Prentice-Hall Inc., Upper Saddle
River, 2012

2 Stephen Prata, “C Primer Plus”, 6th Edition, Addison-Wesley,
Upper Saddle River, 2015

3 Zed A. Shaw, “Learn C the Hard Way: Practical Exercises
on the Computational Subjects You Keep Avoiding (Like C)”,
Addison-Wesley, Upper Saddle River, 2016

4 Paul Deitel, Harvey Deitel, ”C How to Program”, 8th Edition,
Pearson Education Inc., Hoboken, NJ, 2015

5 Jon Bentley, “Programming Pearls”, Addison-Wesley, Inc., Up-
per Saddle River, 2000

6 Alfred V. Aho, John E. Hopcroft, Jeffrey D. Ullman,“Data
Structures and Algorithms”, Addison-Wesley Inc., Upper Sad-
dle River, 1987

4 / 41



Literature

Literature
Advanced Literature

1 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest,
“Introduction to Algorithms”, 3rd edition, MIT Press, Cam-
bridge US, 2009

2 Donald E. Knuth, “The Art of Programming”, Vol. 1 – 4A,
Addison-Wesley Inc., Reading, Massachusetts, 2011

3 Robert Sedgewick, Kevin Wayne, “Algorithms”, 4th edition,
Addison-Wesley Inc., Reading, Massachusetts, 2011

4 Steven S. Skiena, “The Algorithm Design Manual”, Springer-
Verlang, London 2010

5 / 41



Literature

Literature
Webpages

1 Wikibooks: C Programing
2 The GNU C programming tutorial
3 Learning GNU C
4 The GNU C Library

6 / 41

https://en.wikibooks.org/wiki/C_Programming
https://www.linuxtopia.org/online_books/programming_books/gnu_c_programming_tutorial/index.html
https://www.linuxtopia.org/online_books/programming_books/learning_gnu_c/index.html
https://www.linuxtopia.org/online_books/programming_books/gnu_libc_guide/index.html


Introduction

Programming

Definition of Programming
Programming is a task of preparing a program for a computer system
that solves a given problem. It consists of the following steps:

1 building a model of the problem,
2 creating an algorithm,
3 writing the algorithm in a programing language,
4 removing syntax and logical errors (so called bugs).

7 / 41



Introduction

Computer Program

Definition of a Computer Program
A computer program is an algorithm that solves a specific problem
and is expressed (coded) in a programming language.

8 / 41



Algorithm

Algorithm

Definition of an Algorithm
An algorithm is a series of precise, well-defined activities necessary
to complete a given task.

9 / 41



Algorithm

Properties of an Algorithm

Finiteness: The algorithm has to end after a finite number of steps.
Procedures that possesses algorithm’s all properties ex-
cept for finiteness are called computational methods.

Definiteness: Each step of the algorithm has to be specified in a
strict, accurate and unambiguous way.

Input data: The algorithm has zero or more input data.
Output data: The algorithm yields one or more output data related

to the input data.
Effectiveness: The algorithm should not only complete in finite time,

but the time should be as short as possible.

10 / 41



Algorithm

Expressing the Algorithm

The algorithm can be expressed in a form understandable to a hu-
man or in a form understandable to a computer system.

11 / 41



Algorithm

Expressing the Algorithm
Problem Description

Euclid’s Algorithm for finding the Greatest Common Divisor (GCD)
of two integer numbers.
The Problem
Given a two integer numbers M and N find their Greatest Common
Divisor, i.e. the largest positive integer number, that divides both
of them.

12 / 41



Algorithm

Expressing the Algorithm
Pseudocode

E1.[Finding the reminder] Divide M by N. Denote by R the
reminder. (0 ≤ R < N).
E2.[Is zero?] If R = 0 then stop. N is the answer.
E3.[Reduction] Assign N Ï M and R Ï N. Go back to the
step E1.

13 / 41



Algorithm

Expressing the Algorithm
Flowchart

start

Read M
and N

R Î M mod N

R = 0?

M Î N
N Î R

no Print N
yes

stop

14 / 41



Computer System

Computer System

Definition of a Computer System
A computer system is a device or a group of collaborating devices
that are capable of running a computer program.

15 / 41



Computer System

Types of Computer Systems

(a) Cluster (b) Personal
Computer

(c) Mobile
Device

(d)
Microcontroller

…and many, many others …

16 / 41



Computer System

Types of Computer Systems – Common Elements

Any computer system has at least two elements:
1 a Central Processing Unit (CPU),
2 a Memory.

Any computer “understands” binary code.

17 / 41



Programming Languages

Expressing the Algorithm – a Computer Program
Initially all computer programs (software) were written in machine
code, i.e. a series of binary (sometimes octal or hexadecimal) num-
bers. Next, assembly languages were introduced. In assembly lan-
guages each machine instruction is represented by a single mnemonic,
i.e. a short, easy to remember string of characters. Latter, a high-
level programming languages were developed. A program written
in such a language resembles a text in a natural language (usually
English). A single instruction in a high-level language can corre-
spond to many machine language instructions. Programs in high-
level languages have to be translated to the machine code by a spe-
cial program called a translator. There are two kinds of translators:
interpreters and compilers.
The activity of expressing an algorithm in a computer language is
called implementing and thus the program is sometimes referred
to as an implementation. A program written in assembly or high-
level language is called a source code. It’s version translated to the
machine code is known as an executable code. 18 / 41



Programming Languages

Abstraction

The evolution of programming languages is an example of apply-
ing an abstraction, which is a method of simplifying a problem by
highlighting its most important features and hiding the ones that
are unnecessary for solving it. Basically, programming is all about
using skilfully the abstraction.

19 / 41



The C Language

The C Language
Highlights

developed in 70. of 20th century,
high-level language with some low-level features,
supports an imperative, procedural paradigm of programming,
has a simple syntax that was also applied in many other pro-
gramming languages (Java, C++, C#, etc.),
one of the most popular programming languages according to
TIOBE rank (currently it’s no. 2),
it is compiled; there are many compilers for many computer
systems,
it is standardised (current standard version is ISO C17, but for
the lecture the ISO C99 will be used and a few non-standard
GNU C extensions).

20 / 41



The C Language Basics of the C Language

The Simplest Program

Listing 1: The simplest program in the C language

1 int main(void)
2 {
3 return 0;
4 }

21 / 41



The C Language Basics of the C Language

The “Hello, World!” Program

Listing 2: ”Hello, World!” in the C language

1 #include<stdio.h>
2

3 int main(void)
4 {
5 puts("Hello, World!");
6 return 0;
7 }

22 / 41



The C Language Comments

Comments

Comments in a source code are used for explaining the meaning of
particular parts of code. They are ignored by a compiler. This fea-
ture of comments is sometimes used by the programmers for tem-
porary excluding (commenting out) from the compilation process
excerpts of a code that are not yet finished. There are three types
of comments available in the C language. Comments of the first
type start with the /* and end with the */ characters. Such com-
ments can have many lines of text. A comment of the second type
starts with the // characters and ends with the end of line character.
Such a comment always has only one line of text. The comments
of the last type start with #if 0 and end with #endif preprocessor
directives (instructions).

23 / 41



The C Language Comments

Comments
Examples

Listing 3: Comments in the C language
1 /* This is a comment of the first type. Placing other comment of the same type inside
2 this comment is forbidden. */
3
4 /*
5 * It is also a comment of the fist type but in more readable
6 * form.
7 */
8
9 // This is a comment of the second type.

10 // Such a comment may be nested inside comments of
11 // other types.
12
13 #if 0
14 It is a comment of the third type.
15 This comment may have many lines of text.
16 /* It is even possible to place comments of the first type inside
17 comments of the third type. */
18 #endif

24 / 41



The C Language Comments

Cons and Pros of Using Comments

+ they help to understand code,

- they may indicate that the code they explain is not well written,
- changing the commented code makes the comment outdated,

+ may be used to temporary “switch off” parts of code that are
not yet finished.

25 / 41



The C Language Comments

Cons and Pros of Using Comments

+ they help to understand code,
- they may indicate that the code they explain is not well written,

- changing the commented code makes the comment outdated,
+ may be used to temporary “switch off” parts of code that are

not yet finished.

25 / 41



The C Language Comments

Cons and Pros of Using Comments

+ they help to understand code,
- they may indicate that the code they explain is not well written,
- changing the commented code makes the comment outdated,

+ may be used to temporary “switch off” parts of code that are
not yet finished.

25 / 41



The C Language Comments

Cons and Pros of Using Comments

+ they help to understand code,
- they may indicate that the code they explain is not well written,
- changing the commented code makes the comment outdated,

+ may be used to temporary “switch off” parts of code that are
not yet finished.

25 / 41



The C Language Constants

Constants

In the programming constants are used for naming values that are
time-invariant. There are two ways of defining constants in the C
language. The first one involves using so-called preprocessor macros.

Pattern
#define NAME VALUE

Example
#define GRAVITY 9.81

Names of constants are usually uppercased. Whenever the compiler
(the preprocessors) finds in the source code the gravity it replaces
it with the 9.81 value.

26 / 41



The C Language Variables and Types of Variables

Variable

A variable is a name given to a place where data is stored. From the
computer point of view the variable is a specific part of its memory.
Each variable has (beside the name) two attributes: a scope and a
type. The scope determines where it can be used in a program and
it is depended on the place in the source code where the variable
is declared. We are going to learn about the global variables first.
These are available in the whole program, starting from the place
where they are declared. The type determines the size of the variable
and the sort of information (data) it stores.

27 / 41



The C Language Variables and Types of Variables

Variable Declaration Pattern

Before a variable can be used in a program, it has to be declared
first.

type_of_variable variable_name;

Example

Listing 4: Example of variable declaration
1 #include<stdio.h>
2
3 unsigned int number_of_students;
4
5 int main(void)
6 {
7 return 0;
8 }

28 / 41



The C Language Variables and Types of Variables

Name of the Variable
Rules

A name is an identifier that allows a programmer to uniformly refer
to a variable (or any other element) in a source code. Every identifier
(also name of a variable) in the C language must adhere to the
following rules:

identifiers must be unique (there are some exceptions to the
rule),
identifiers must not start with a digit,
placing special characters which are neither letters nor digits
in the identifiers is not allowed, with the sole exception of the
underscore character (_),
the C language is case sensitive,
identifiers should contain only Latin letters,
a keyword cannot be used as an identifier (The keyword is a
part of the language, for example the int word).

29 / 41



The C Language Variables and Types of Variables

Name of the Variable
Recommendations

The rules presented on the previous slide are checked by the com-
piler. However there are some rules for creating identifiers that are
not verified by compiler, but form a convention which helps to make
the source code more legible. Below are presented some of them. Re-
member, the source code in more often read then written, so it is
worth to make it understable to wider group of programmers.

Identifiers should be readable.
Names of variables should contain at least one noun.
If the identifier contains more than one word, the words should
be build of lowercase letters and connected by underscores.
Single letter identifiers should not be used, except for some spe-
cific language constructions (for example: well-known mathe-
matical expressions, loops).

30 / 41



The C Language Variables and Types of Variables

Types of Variables
The Basic (Primitive) Types

Name Size (in bytes) Values
int 4 integer numbers
short int or short 2 integer numbers
long int or long 8 integer numbers
long long int or long long 8 integer numbers
char 1 characters or integer numbers
float 4 floating-point numbers
double 8 floating-point numbers
long double 12 floating-point numbers

One byte equals to 8 bits. Bit is the smallest unit of information
that can be processed by a computer (0 or 1). The C language
standard does not define the actual size of types of variables, but
describes how they relate to each other. The sizes in the table are
specific to a 64-bit PC computer.

31 / 41



The C Language Variables and Types of Variables

Binary Number System and Its Derivatives (Basics)

Decimal System
128(dec) = 1 · 102 + 2 · 101 + 8 · 100

32 / 41



The C Language Variables and Types of Variables

Binary Number System and Its Derivatives (Basics)

Decimal System
128(dec) = 1 · 102 + 2 · 101 + 8 · 100

Binary System
1001(bin) = 1 · 23 + 0 · 22 + 0 · 21 + 1 · 20 = 9(dec)

32 / 41



The C Language Variables and Types of Variables

Binary Number System and Its Derivatives (Basics)

Decimal System
128(dec) = 1 · 102 + 2 · 101 + 8 · 100

Binary System
1001(bin) = 1 · 23 + 0 · 22 + 0 · 21 + 1 · 20 = 9(dec)

Two’s Complement
(−5)(dec) Ñ 0101(bin) Ñ 1010(ocb) + 1 Ñ 1011(tcb)

32 / 41



The C Language Variables and Types of Variables

Types of Variables
Ranges of Integer Types for 64-bit Computers

Name Minimal value Maximal value
int -2 147 483 648 2 147 483 647
short int or short -32 768 32 767
long int or long −9 223 372 036 854 775 808 9 223 372 036 854 775 807
long long int or long long −9 223 372 036 854 775 808 9 223 372 036 854 775 807
char -128 127

33 / 41



The C Language Variables and Types of Variables

Types of Variables
Characters

Single characters, i.e. letters, digits and non-alphanumerics can be
stored in variables of the char type. Every value of the variable is
interpreted as an ascii (American Standard Code for Information
Interchange) value.

34 / 41



The C Language Variables and Types of Variables

Types of Variables
Specifiers

Specifiers are keywords of the C language that modify the meaning
of some types of variables. The specifier unsigned is used together
with the int and char types. It informs the compiler that it should
interpret the value stored in such a variable as a natural number. In
other words it changes an integer number type into a natural number
type. Complementary to the unsigned is the signed specifier, but
in the essence it does not do anything and is often omitted. The
long specifier doubles the size of the variable of int or double type.
The short specifier halves the size of a variable of int type.

35 / 41



The C Language Variables and Types of Variables

Types of Variables
Ranges of Natural Types for 64-bit Computers

Name Minimal value Maximal value
unsigned int or unsigned 0 4 294 967 295
unsigned short int or unsigned short 0 65 535
unsigned long int or unsigned long 0 18 446 744 073 709 551 615
unsigned long long int or unsigned long long 0 18 446 744 073 709 551 615
unsigned char 0 255

In the limits.h header file are defined constants for values of limits
for every integer and natural number type.

36 / 41



The C Language Variables and Types of Variables

Types of Variables
The void Type

The keyword void is a data type name, but not a variable type
name — all types of variables are data types, but not all data types
are types of variables. It means that it is impossible to declare a
variable of such a type. However, the keyword is useful in other
situations that will be discussed in latter lectures.

37 / 41



The C Language Variables and Types of Variables

Types of Variables
Floating-Point Numbers Types

Some real numbers cannot be accurately represented in the com-
puter memory. For that reason computer scientists created less
accurate but possible to fit into the memory representation of these
numbers that is called a floating-point number. It is based on sci-
entific notation, but the base is 2. In the computer memory the
numbers are stored in the following way. The most significant bit
determines the sign of the number. Some next bits store the signif-
icand (sometimes called incorrectly “mantissa”), the last part is for
storing an exponent. The significand (i.e. the fraction) is expressed
in a binary code in such a way, that the each consecutive bit, starting
from the left, has a negative base exponent (i.e. 2−1, 2−2, 2−3, . . .).
The number’s exponent is expressed in two’s complement. In the
C language floating-point numbers are stored in float, double and
long double types of variables. The difference between them is not
only in the total size of occupied memory but also in the sizes of the
parts for significand and the exponent. 38 / 41



The C Language Variables and Types of Variables

Types of Variables
Boolean Type

In the C language all values that are nonzero are interpreted as
logically true and all values that are equal zero are interpreted as
logically false. In the previous editions of the C language standards
there was no definition of a special type of variable for such values.
Starting from the ISO C99 standard there is such a type called
bool. It can be used in a program, provided that the stdbool.h
header file is included at the beginning of its source code like this:
#include<stdbool.h>. Variables of such a type can have one of
the two values true or false.

39 / 41



The C Language Variables and Types of Variables

Questions

?

40 / 41



The C Language Variables and Types of Variables

The End

Thank You for Your attention!

41 / 41


	Contact Information
	Literature
	Introduction
	Algorithm
	Computer System
	Programming Languages
	The C Language
	Basics of the C Language
	Comments
	Constants
	Variables and Types of Variables


