
Fundamentals of Programming 1
Enumerations and Linear Arrays

Arkadiusz Chrobot

Department of Information Systems

December 15, 2022

1 / 45

Outline

Data Abstraction

Enumerations

The typedef Keyword

Linear Arrays

Initialization of an Array

Basic Operations on Linear Array

2 / 45

Data Abstraction

Abstraction can be applied not only to statements but also to data.
The C programming language allows a programmer to create custom
data types specific to a problem that is to be solved. An example of
such a data type is the enumerated type.

3 / 45

Enumerated Types

An enumeration makes it possible to name characters or numbers that
belong to a subset of integers. In other words, the enumeration may
be considered as a set of constants. It has to have its data type. The
overall pattern for defining an enumerated type is as follows:

enum type_name {element_1=value, …, element_n};
Please note, that the name (identifier) of each element is written in
uppercases, just like names of constants. This is only a matter of con-
vention. Any name can be used, provided it is valid in the C language.
To each element of the enumerated type can be assigned a character
or an integer number. However, if no value is given to the elements by
the programmer, the compiler will assign to them successive numbers
of int type, starting from 0. It is also possible for the programmer to
assign the same value to more than one element, or to assign a value
only to one element or a selected group or groups of elements. The rest
of them will get default values.

4 / 45

Notes

Notes

Notes

Notes



Enumerated Types
Examples

enum names_of_days {MONDAY=0, TUESDAY=1, WEDNESDAY=2, THURSDAY=3,
FRIDAY=4, SATURDAY=5, SUNDAY=6};

In the above definition of an enumerated type an integer number is
assigned to each name of a day. The same definition can be written as
follows:
enum names_of_days {MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY,

SATURDAY, SUNDAY};

However, if a programmer wants the values of the days to start with 1
instead of 0 she or he should define the type like this:
enum names_of_days {MONDAY=1, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY,

SATURDAY, SUNDAY};

Each subsequent day, after Monday, gets a number greater by one than
its predecessor, i.e. TUESDAY=2, WEDNESDAY=3, etc.

5 / 45

Enumerated Types
Examples

If the programmer wants to distinguish the days of weekend, by assign-
ing them for example numbers 9 and 10, then she or he can do that
like this:
enum names_of_days {MONDAY=1, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY,

SATURDAY=9, SUNDAY};

The values can also be assigned to the elements in a descending or-
der:
enum directions {NORTH=3, WEST=2, EAST=1, SOUTH=0};

6 / 45

Enumerations

An enumeration (a variable of an enumerated type) may be declared
as local (also as a function’s parameter) or global. The overall pattern
for such a declaration is as follows:

enum name_of_enumerated_type name_of_variable;
Any element of its enumerated type can be assigned to the variable.
The enumeration may be applied as a loop counter in a for loop,
a selector in a switch statement, or it may be used in conditional
statements and in the condition-controlled loops.
Unfortunately, the C language implementation of enumerations is im-
perfect. They are only a facilitation for the programmer. The compiler
does not verify the correctness of using the enumerated type variables,
considering them to be of int type. Thus, it is possible to assign to an
enumeration any integer number. This can lead to many mistakes. The
C language makes it also possible to use the elements of enumerated
type as common constants and to define constants of enumerated type
with the use of the const keyword.

7 / 45

Enumerations
Examples

#include <stdio.h>

enum names_of_days {MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY, SUNDAY};

void print_message(enum names_of_days day)
{

switch(day) {
case MONDAY:
case TUESDAY:
case WEDNESDAY:
case THURSDAY:
case FRIDAY:

puts("Go to work!");
break;

default:
puts("Relax!");

}
}

int main(void)
{

enum names_of_days day;
for(day=MONDAY;day<=SUNDAY;day++)

print_message(day);
return 0;

}

8 / 45

Notes

Notes

Notes

Notes



Enumerations
Comment to the Example

In the program from the previous slide, a local enumerated type variable
is declared in the main() function. It is the day variable. Also in the
print_message() function a parameter of the same type and name is
declared. The variable in the main() function is used as a loop counter
and the one in the print_message() is applied as a switch selector.
It is worth noticing, that in the switch statement most of the cases are
empty, but it is not a mistake but an intended effect. That way, the
code for Friday is performed also for all other days, except for Saturday
and Sunday, and it is not repeated. The code for those two mentioned
days is performed in the default case.
There is no easy way to print an element of an enumeration. It is
however possible to display its numerical value with the use of printf()
function and the %d conversion specifier.

9 / 45

Enumerations
Examples

#include <stdio.h>

enum names_of_days {MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY=9, SUNDAY};

void print_message(enum names_of_days day)
{

switch(day) {
case MONDAY:
case TUESDAY:
case WEDNESDAY:
case THURSDAY:
case FRIDAY:

puts("Go to work!");
break;

default:
puts("Relax!");

}
}

int main(void)
{

enum names_of_days day;
for(day=MONDAY;day<=SUNDAY;day++)

print_message(day);
return 0;

}

10 / 45

Enumerations
Comment to the Example

A small change in the program, that assigns the value of 9 to the
Saturday element shows the imperfections of enumerations. The out-
put of the program suggests that the week has 11 days, most of them
free. The problem here is the day variable which is applied as a loop
counter. When the value of the counter is 4, what corresponds to the
Friday element, it is incremented in the next iteration of the loop to 5
which cannot be mapped to any element of the enumerated type, but
it is still a proper value, because for the program the day variable is
of the int type. In the C language the enumeration is only a simple
container for constants and should be used carefully.

11 / 45

The typedef Keyword

It is easy to forget that the declaration of an enumeration always starts
with the enum keyword. To avoid such an issue the typedef keyword
may be applied. It allows for giving the enumerated type a shorter
name:
typedef enum names_of_days {MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY=9, SUNDAY} days;

The variable of the type may now be declared like this:
days day = MONDAY;

Generally, the typedef keyword makes it possible to give an alternative
name to any data type including the predefined data types of the C
language. Therefore, it should be used carefully. Many programmers
advise against using it, since it can make the program difficult to read
by concealing the true types of variables.

12 / 45

Notes

Notes

Notes

Notes



Linear Arrays

One-dimensional arrays or simply the linear arrays are an example of a
data structure i.e. a variable that can store more than one value at the
same time. In case of arrays all these values are of the same type. The
picture below shows the construction of a linear array that can store
up to 8 integer numbers.

0
-7

1
7

2
10

3
-3

4
0

5
7

6
15

7
0

Arrays are build from elements. Numbers on the top of the array are
the indices that uniquely locate an element inside the array. In the
C language the indices are natural numbers. The first element of the
array always has an index of 0. The element is a single location in the
array that holds a single value. All indices are unique and form an
ascending sequence. The values of the elements may repeat and do not
have to be sorted. The array is sometimes called a vector.

13 / 45

Linear Arrays
Declaration

Just like other variables the array has to be declared before using. It
can be declared as global or local variable. The elements of the former
are initialized with zeros and the initial value of the elements of the
latter is unspecified. The overall pattern of declaration of an array is
as follows:

data_type array_name[number_of_elements];
An element of the array may be of any of the types that were already
introduced in the lecture. The arrays of characters have a special mean-
ing and they will be discussed separately in a future lecture. The name
(identifier) has to be legal in the C language. The number of elements,
also called the length of an array, determines how many elements will
have the array. It is given as a constant expression, like a literal or a
constant defined with the use of #define statement. According to the
ISO C99 standard, the number of elements has to be greater than zero.
The indices range stars from 0 and ends with number_of_elements-1.

14 / 45

Linear Arrays
Accessing the elements

It is worth noticing, that the array resembles the structure of RAM. In
order to read or modify the content of a single memory cell an address
has to be provided. Similarly, if a programmer wants to read or write
an element of an array she or he has to use its index. Referencing an
element of an array follows this pattern:

array_name[index]
In the C language the array name is equivalent to a pointer. Thus there
are three additional ways of referencing the element:

*(array_name+index)
*(index+array_name)
index[array_name]

The first two expressions use so-called pointers arithmetic. The most
frequently used way of accessing an array element is the one introduced
as first. The second one is also sometimes applied. The last two are
rarely used because they are less legible.

15 / 45

Linear Array
Array Size and Number of Elements

The size of an element (the number of bytes it occupies in memory) can
be acquired with the use of sizeof operator. The number of array’s
elements can be computed using the following expression:

sizeof(array_name)/sizeof(array_name[0])
The expression can be a little simplified with the use of the pointer
arithmetic:

sizeof(array_name)/sizeof(*array_name)
Unfortunately, both expressions and the sizeof operator give incorrect
results when the array is a function’s parameter. In this case it returns
the size of array’s single element. Fixing such an issue is possible and
it will be described latter.

16 / 45

Notes

Notes

Notes

Notes



Arrays And Functions
Passing to a Function

Functions make implementing operations on arrays easy. For the rest
of the lecture only single functions operating on arrays are presented,
instead of entire programs. Arrays can and should be passed by pa-
rameters to functions. The array parameter can be declared in the
same way as a regular array, although in a function’s list of param-
eters. An example of a program that uses such a parameter is given
in the next slide. The array is passed as an argument to the print()
function, when it is called in the main() function. To this end the
array’s name is put in the parentheses in the invocation of print().
This function displays the size of the array parameter. It is equal to
the size of pointer, and not the array. The compiler informs about that
by issuing a warning.

17 / 45

Arrays And Functions
Passing to a Function

#include<stdio.h>
#define NUMBER_OF_ELEMENTS 10

int array[NUMBER_OF_ELEMENTS];

void print(int array_parameter[NUMBER_OF_ELEMENTS])
{

printf("Size: %lu\n", sizeof(array_parameter));
}

int main(void)
{

print(array);
return 0;

}

18 / 45

Arrays And Functions
Passing to a Function

Number of elements in the array parameter is ignored. It means that
an array of any number of elements can be passed by a parameter
that, for example, has 10 elements specified in its definition, as long as
the data types of the array’s and parameter’s elements are compatible.
Therefore, the number of elements in the definition of array parameter
is usually omitted — the brackets are left empty. In the next slide
is included the same program as before, but without the number of
elements in the parameter.

19 / 45

Arrays And Functions
Passing to a Function

#include<stdio.h>
#define NUMBER_OF_ELEMENTS 10

int array[NUMBER_OF_ELEMENTS];

void print(int array_parameter[])
{

printf("Size: %lu\n", sizeof(array_parameter));
}

int main(void)
{

print(array);
return 0;

}

20 / 45

Notes

Notes

Notes

Notes



Arrays And Functions
Passing to a Function

An array may also be passed to the function with the use of a pointer
parameter. The data type of the pointer should be the same as the
data type of the elements of the array, or it should be void *. The
second data type means that the pointer can be assigned an address of
any variable, including an array. The next slide contains the modified
program from the previous slide, where the array is passed by a pointer.
Effectively, any array is always passed by a pointer, regardless of what
kind of parameter is used for that operation. It means that changing
a value of the parameter’s element results in the modification of the
value of the same element in the array passed as argument.

21 / 45

Arrays And Functions
Passing to a Function

#include<stdio.h>
#define NUMBER_OF_ELEMENTS 10

int array[NUMBER_OF_ELEMENTS];

void print(int *array_parameter)
{

printf("Size: %lu\n", sizeof(array_parameter));
}

int main(void)
{

print(array);
return 0;

}

22 / 45

Arrays And Functions
Passing to a Function

To determine, using the formulas introduced earlier, how many ele-
ments has an array passed to the function, we need to define an array
type with the use of the typedef keyword and then declare a param-
eter of this type. In that case, we can use the sizeof operator inside
the function, to get the size of the array. The argument of this opera-
tor should be the array type. This solution is applied in the program
presented in the next slide.

23 / 45

Arrays And Functions
Passing to a Function

#include<stdio.h>
typedef int int_array_type[10];
int_array_type array;

void print(int_array_type array_parameter)
{

printf("%lu\n",
sizeof(int_array_type)/sizeof(*array_parameter));

}

int main(void)
{

print(array);
return 0;

}

24 / 45

Notes

Notes

Notes

Notes



Arrays And Functions
Returning Array From Function

Arrays cannot be returned directly from a function, but their addresses
can, provided that the data type of the function’s returned value is
declared as an appropriate pointer. Addresses of local arrays, or any
other local variables must never be returned from a function, because
as soon as the function completes, the variables cease to exist. The
exception to this rule are local variables declared with the use of the
static keyword.

25 / 45

Arrays And Functions
Variable-Length Array

The ISO C99 standard has introduced variable-length arrays (vlas) to
the language. They are local arrays whose length is determined at a
runtime. Although that sounds like a good idea, it can also be a source
of many issues. If the number of the elements is too large, then the size
of the array will exceed the size of the call stack and that will result in
a program crash. The vlas cannot be initialized at the place of their
declaration, because their number of elements cannot be determined
at the time of compilation. For that reasons, vlas have been made
optional in the ISO C11 standard. A program that creates such an
array is included in the next slide. Since it doesn’t use this array, the
compiler issues a warning when it is compiled.

26 / 45

Arrays And Functions
Variable-Length Arrays

void create_vla(unsigned int number_of_elements)
{

if(number_of_elements>0 && number_of_elements<1000) {
int array[number_of_elements];

}
}

int main(void)
{

create_vla(100);
return 0;

}

27 / 45

Initialization of an Array
Initialized Array

The array may be initialized in the place of its declaration. To this end
an assignment operator has to be put after the closing bracket followed
by a list of values in curly braces. The values have to be separated
by commas. If there is provided less values in the list than the array
has elements then the last elements of the array will be initialized with
zeros. It is also possible to skip the number of elements when initializing
an array this way. The compiler will figure it out by the number of
provided initial values.
int main(void)
{

double fractions[] = {0.1, 0.2, 0.3};
double fractions_2[3] = {0.1, 0.2, 0.3};
return 0;

}

28 / 45

Notes

Notes

Notes

Notes



Initialized of an Array
Designated Initializers

The simplest way of initializing all elements of a local array with zeros
is demonstrated in the following code:
int main(void)
{

int array[100]={0};
return 0;

}
Starting with the ISO C99 standard the C language offers designated
initializers that make it possible to specify an element, or group of
elements, to which a given value has to be assigned.
int main(void)
{

int array[100]={[5]=2,[3]=1};
return 0;

}

29 / 45

Initialization of an Array
Initialization Made by User

The initial values for the array can be provided by user, during a pro-
gram run, with the use of a keyboard. It requires using a loop for
indexing the elements of an array and the scanf() function. An ele-
ment of the array is a single variable. Therefore its address should be
provided as the second argument of the scanf() call. The address is
obtained with the use of the address operator. An example:
int main(void)
{

int array[5];
unsigned int i;

for(i=0;i<5;i++)
scanf("%d",&array[i]);

return 0;
}

30 / 45

Initialization of an Array
Initialization with the Use of Indices

Using one of the two introduced ways of initializing arrays in case where
the array has huge number of elements could be cumbersome. Alterna-
tively, if the elements of the array are of int or compatible type, they
can be assigned the values of their indices:
int main(void)
{

int array[1000];
unsigned int i;
for(i=0;i<1000;i++)

array[i] = i;
return 0;

}
It is a simple way of initializing an array. However, the values of the
elements are unique and arranged in an ascending sequence, which is
not always desired.

31 / 45

Pseudorandom Number Generator

An array may be initialized with the use of a pseudorandom number
generator (PNG). It is an algorithm that generates numbers appearing
to be random. However, it can be statistically verified that they are not
truly random. This usually excludes their use in cryptography, but for
the purpose of this lecture they are sufficiently random. To distinguish
them from truly random numbers, they are called pseudorandom. The
algorithm uses an initial value called a seed and a mathematical formula
to generate such numbers.

32 / 45

Notes

Notes

Notes

Notes



Pseudorandom Number Generator
Using the PNG in the C Language

In the C language there are two functions, declared in the stdlib.h
header file, that are the implementation of the PNG. These are srand()
and rand(). The former takes as an argument an unsigned int num-
ber and makes it the seed for the PNG. The latter does not take any
argument and returns a pseudorandom int number ranging from 0 to
rand_max. The srand() function has to be called outside any loop.
The argument for the function may be the result of the time() func-
tion declared in the time.h header file. An argument for the latter
function can be null or zero.

33 / 45

Pseudorandom Number Generator
The PNG Usage

The PNG generates only natural numbers. If a pseudorandom natural
number is needed ranging from 0 to 9 (both inclusive) it can be chosen
with the following expression:
int x = rand()%10;
To choose numbers ranging from 1 to 10 (both inclusive) the expression
should be modified as follows:
int x = 1+rand()%10;
To pick integer numbers ranging from −10 to 10 (both inclusive), a
following expression can be applied:
int x = -10+rand()%21;
If a floating-point pseudorandom number is needed from the interval
of [-10,11) it could be chosen with the following expression:
double x = -10+rand()%21+rand()/(RAND_MAX+1.0);

34 / 45

Pseudorandom Number Generator
The PNG Usage

To pick a pseudorandom lowercase letter from the set of 26 lowercases
the following expression may be used:
char x = 'a'+rand()%26;

35 / 45

Array Initialization
Array Initialization with Pseudorandom Numbers

Below is defined a function that initializes an array of number_of_elements
elements with pseudorandom numbers ranging from 0 to 199 (both in-
clusive):
void fill_array_with_random_numbers(int array[])
{

srand(time(0));
int i;
for(i=0; i<NUMBER_OF_ELEMENTS; i++)

array[i]=rand()%200;
}
Please observe, that the number may not be unique.

36 / 45

Notes

Notes

Notes

Notes



Array Initialization
Shuffling

An array containing unique numbers arranged in an ascending order
may be created by assigning to each of its elements the value of the
element’s index. Such an array can be changed into an unsorted array
with unique numbers by applying the shuffle algorithm. The algorithm
generates a permutation of the values by visiting each of the elements
of the array, except for the last one, and swapping its value with other
(pseudo) randomly chosen element. The latter element is selected from
a set constituted of the yet not visited elements of the array and the
currently visited element. This algorithm is implemented with the help
of three functions that are described in the next slides.

37 / 45

Array Initialization
Shuffling — Swapping the Value of Elements

Below is defined a function that swaps the value of two variables. These
variables are passed to the function by pointers.
void swap(int *first, int *second)
{

int tmp;
tmp = *first;
*first = *second;
*second = tmp;

}

38 / 45

Array Initialization
Shuffling — Choosing an Element

The function presented in this slide chooses the index of an element
of the array, that belongs to the set consisting of the currently visited
element and the yet not visited elements. The index of the currently
visited element is passed to the function by the from parameter. The
number of elements of the array is determined by the length parame-
ter.
int choose(int from, const unsigned int length)
{

return from+rand()%(length-from);
}

39 / 45

Array Initialization
Shuffling — the Implementation

The function defined below shuffles the values in the array. Please
notice, that the choose() function is invoked in brackets. It means
that the value returned by the function is used as the index of the
element whose value is swapped with the value of the currently visited
element of the array. The index of the latter one is in the i variable.
void shuffle(int array[], const unsigned int length)
{

srand(time(0));
unsigned int i;
for(i=0;i<length-1;i++)

swap(&array[i],&array[choose(i,length)]);
}

40 / 45

Notes

Notes

Notes

Notes



Making Copy of Array

Two arrays of the same number and the same type of elements may be
copied with the use of a loop. However, the task may be accomplished
more efficiently using the memcpy() function. It is declared in the
string.h header file. The function takes three arguments. The first
one is the name of the destination array. The second one is the name
of the source array. The third one is the size of the copied (source)
array. Generally, the sizes of the arrays may differ. In that case the
destination array should be bigger than the source array. The value
returned by the memcpy() is usually ignored. Another useful function,
that is also declared in the string.h file, is memset(). It also takes
three arguments. The first one is the name of an array. The second one
is an int number that should be copied to all elements of the array.
The last argument is a size of the array. The memset() function could
be utilized to initiate elements of the array with the same value. It is
also a common practice to ignore the value returned by memset().

41 / 45

Printing the Values of Array’s Elements
An iterative statement, like the for loop, may be used for indexing and
successively visiting all elements of an array. Below is defined a function
that uses such a loop to display all values stored in an array.
void print_array(int array[], const unsigned int length)
{

unsigned int i;
for(i=0; i<length; i++)

printf("array[%u]: %d ",i,array[i]);
}
The values may also be displayed in a simplier manner:
void print_array(int array[], const unsigned int length)
{

unsigned int i;
for(i=0; i<length; i++)

printf(" %d ",array[i]);
}

42 / 45

Thanks

Many thanks to Grzegorz Łukawski, PhD and Leszek Ciopiński, MSc
for helping me to complete the Polish version of this slides.

43 / 45

Questions

?

44 / 45

Notes

Notes

Notes

Notes



The End

Thank You for Your attention!

45 / 45

Notes

Notes

Notes

Notes


	Data Abstraction
	Enumerations
	The typedef Keyword
	Linear Arrays
	Initialization of an Array
	Basic Operations on Linear Array

