
Fundamentals of Programming 1
Functions

Arkadiusz Chrobot

Department of Information Systems

November 25, 2022

1 / 61

Outline

Concepts of Procedural Programming

Functions

Local variables

Arguments

Recommendations

An Example

2 / 61

Procedural Programming

One of the principles of the procedural programming paradigm is a sim-
plification of a program. The simplification is obtained by partitioning
the source code into small units, each with a unique name. Those units
are organized into a hierarchy, which means that a unit may use other
units provided they are defined or declared ahead. This allows program-
mers to apply the Cartesian analysis method known from mathematics
to programming problems. Such a problem can be solved by dividing
it into small subproblems that are easy to solve. The solution of the
original problem is achieved by combining solutions of all those sub-
problems. The procedural programming paradigm also allows for using
an abstraction.

3 / 61

Abstraction
The abstraction in programming (and in other disciplines) is a process
of simplifying a problem by highlighting those parts of its definition
that are vital for its solution and hiding those which are not important.
Maps are an example of application of the abstraction:

(a) A satellite image (b) A map

Source: Google Maps

4 / 61

Notes

Notes

Notes

Notes

Functions

In the C language functions are an implementation of the concept of
subroutines. They allow the programmer to group and give a name to
the statements that together perform a specific task. Functions provide
a way for creating new statements, that are more suitable for solving a
given problem. Those statements are build on statements that already
exist in a programming language. In other words, functions make it
possible to use the abstraction. They also let programmers reuse the
code. Finally, a function may return a value, which makes it similar to
the mathematical concept of the same name.

5 / 61

Functions
Function Definition

The overall structure of a function definition is as follows:
returned_value_data_type function's_name(parameters_list)
{

…
}
The first line is called a prototype or a function’s header. It begins with
the declaration of the data type of the returned value, followed by a
function’s identifier (a name). After the name a list of parameters is
declared in the parentheses. The parameters are special variables that
allow the function to exchange data with other parts of the program.
The parameters list is followed by a block that is called a function’s
body or a text.

6 / 61

Functions
Returned Value

A function may return a value. For this purpose the return keyword
has to be used inside the function’s body. The keyword must be fol-
lowed by an expression whose value is returned. The expression may
be optionally enclosed in parentheses. It can be complex or very sim-
ple, like a single variable, a constant or even a literal. The value of
the expression has to be compatible with the data type of the returned
value, declared in the function’s header. The return keyword is also
an exit point for the function.

7 / 61

Functions
Function’s Call

To perform its task, the function has to be called (invoked) from within
a definition of another function, like for example the main() function1.
The invocation of a function is made by placing its name followed by
the parentheses in the code. If the function doesn’t have any param-
eters then the parentheses should be empty. Otherwise they ought
to contain arguments that are substituted for the parameters. There
should be as many arguments as parameters and the types of arguments
should be compatible with the types of corresponding parameters. Af-
ter the function exits (finishes its job) the flow of control returns to
the statement that follows the function’s call in the source code. If the
function returns a value, then the value may be assigned to a variable
of a compatible type. Such a function may also be called inside an
expression.

1Please notice, that I put the parentheses after the function’s name to
distinguish it in the text from the name of a variable or any other element of the
code.

8 / 61

Notes

Notes

Notes

Notes

Functions
The void Keyword Usage

A function is an implementation of an algorithm. Some algorithms do
not require input data, so functions that implement them need neither
arguments nor parameters. To indicate that the function has no pa-
rameters, inside its definition, the void keyword can be used in the list
of parameters. Some programmers tend to leave the list’s parentheses
empty. This is not the same as using the void keyword. It means
that the function can take an unspecified number of arguments. The
void keyword may also be used to indicate, that the function does not
return any value. In that case it should be applied as the return value
data type. The same keyword can be used to indicate that the pro-
gram should ignore the value returned by the function. To this end
it is placed in parentheses before a function call. It literally means
that the type of the value is cast to void. However, such a notation is
rarely used. It is sufficient to invoke the function without assigning its
returned value to any variable. This means that the program performs
the function for its side effects.

9 / 61

Functions
First Simple Example

#include<stdio.h>

int f1(void)
{

puts("I'm the f1() function and I return 5.");
return(5);

}

int variable_1, variable_2;

int main(void)
{

variable_1 = f1();
variable_2 = 5*f1();
(void) f1();
f1();
return 0;

}

10 / 61

Functions
Comment to the First Example

The f1() function in the program from the previous slide takes no
arguments but prints a message on the screen and returns 5. It is
invoked 4 times in the program. The first time its value is assigned to
the variable_1. The second time it is invoked in an expression. The
value the function returns is multiplied by 5 and the result is assigned
to the variable_2. In the last two calls the value returned by the
function is ignored, but the message is displayed on the screen. Please
notice, that the name of the function is very simple. This is sufficient
for the example, but in more advanced program a descriptive name
should be given to the function. Such an identifier should contain at
least one verb, to indicate what the function does. Please also notice,
that the value placed after the return keyword could be in parentheses
(the f1() function) or not (the main() function).

11 / 61

Functions
Second Simple Example

#include<stdio.h>

int f1()
{

puts("I'm the f1() function and I return 5.");
return(5);

}

int variable_1, variable_2;

int main(void)
{

variable_1 = f1(1,2,3,4,5,6,7);
variable_2 = 5*f1(variable_1, variable_2);
return 0;

}

12 / 61

Notes

Notes

Notes

Notes

Functions
Comment to the Second Example

The example shows the difference between a definition of a function in
which the list of parameters is empty and the one in which the list of
parameters contains the void keyword. In the former case the list of
parameters is seemingly empty, but it is possible to pass to the function
any number of arguments, that will never be used. That can lead to
possible errors.

13 / 61

Functions
Third Simple Example

#include<stdio.h>

void f2(void)
{

puts("I'm f2() function and I return nothing.");
}

int a;

int main(void)
{

f2();
/*a = f2();*/ // This is not allowed.
return 0;

}

14 / 61

Functions
Comment to the Third Example

In the third example a function is defined that returns no value. It
only prints a message on the screen. Such a function cannot be used
in an expression. Its value cannot be assigned to a variable, because it
simply does not exist.

15 / 61

Functions
Forth Simple Example

#include<stdio.h>

void f3(void)
{

puts("I'm the f3() function.");
return;
puts("I return nothing and I won't print this message.");

}

int main(void)
{

f3();
return 0;

}

16 / 61

Notes

Notes

Notes

Notes

Functions
Comment to the Forth Example

Strange as it may seem, it is possible to use the return keyword in a
function that returns nothing. However, it must be immediately fol-
lowed by a semicolon. In this case the return keyword simply termi-
nates the function. Any statements that follow it won’t be performed.

17 / 61

Functions
A Declaration of a Function

A declaration of a function consists only of its header and a semicolon
that follows. A function declared in such a way has to be defined in
other part of the program, but the declaration allows the programmer
to use the function before it is defined. The declaration of a function has
many applications. One of them is reversing the hierarchy of definitions
of functions. That makes it possible to read them in the more natural
”top-bottom” way. Such an effect can be achieved by declaring first
all the necessary functions and then defining the main() function and
the earlier declared functions. The function declaration can be applied
when the programmer wants to use a function, but for some reason
she/he cannot declare it before using.

18 / 61

Functions
A Declaration of a Function — An Example

#include<stdio.h>

void f4(void); //A function's prototype.

int main(void)
{

f4();
return 0;

}

void f4(void)
{

puts("I'm the f4() function and I was defined after the main() function.");
}

19 / 61

Local variables

Until now all variables that we used in programs have had a global
scope. The C programming language permits to declare variables inside
a function or even at the beginning of a block. Starting from the ISO
C99 standard, it lets the programmer to declare a variable just before
it should be used. It makes the program more legible. Applying in
the program local variables has many pros. Local variables allow for
better memory usage than the global ones. The former exist in memory
only when the function in which they are declared is performed. For
that reasons they are also known in the C language as the automatic
variables. Moreover, local variables are only visible in the block in
which they are declared, starting from the place of their declaration.
They are invisible outside the block, but the statements inside the block
can access all variables (and other elements of code) declared outside.

20 / 61

Notes

Notes

Notes

Notes

Local variables
Variable Shadowing

Local variables can be given the same names as the global variables or
even other local variables declared in different blocks. When there are
many variables declared in the program which have the same name,
in a specific block under that name is available only the one with the
nearest declaration. The others are outside the scope of that block.
This is called a variable shadowing. That also applies to the names of
all elements of a program and in that case it is called a name masking.
For example a local constant of the same name as global variable is
masking that variable.

21 / 61

Local Variables
Memory Allocation And Deallocation For Local Variables

The allocation and deallocation of the memory for a local variable hap-
pens automatically and, like in the case of global variables, is transpar-
ent to the programmer. The only thing she or he has to do is to declare
such a variable. However, the local variables exist only when the func-
tion in which they are declared is executed. This is possible because the
memory area of a program is divided into several parts. One of them
(a code segment) stores all the instructions that are to be executed
during a program run. The next one (a data segment) holds a place for
all global variables. Another one is a call stack segment. Whenever a
function is invoked, a stack frame also known as an activation record is
created on the call stack for this instance (invocation) of the function.
In the frame there is a place for local variables, parameters (which are
a form of local variables) and an address of return (the address of a
statement that should be performed after the function exits).

22 / 61

Local Variables
Memory Allocation And Deallocation For Local Variables

local variables

return address
parameters

Figure: Stack frame — a sketch

23 / 61

Local Variables
Memory Allocation And Deallocation For Local Variables

The call stack behaves according to the Last In First Out (lifo) rule.
When a function calls another function then a stack frame for the called
function is created on the top of the calling function’s activation record.
That frame is also destroyed before the calling function’s frame is re-
moved, what follows the order in which those functions complete. If the
calling function invokes another function then the area of the call stack
that was occupied by the stack frame of the previously called function
may be reused for the activation record of the newly called function. As
a consequence all local variables have an unspecified initial value and
they must be initialized by the programmer. If a variable is declared
inside a block that is a part of a function, the memory for that variable
is also allocated in the function’s stack frame.

24 / 61

Notes

Notes

Notes

Notes

Local Variables
Memory Allocation And Deallocation For Local Variables

#include<stdio.h>

void f2(void)
{
}

void f1(void)
{

f2();
}

int main(void)
{

f1();
return 0;

}

Stack frame for f2()

Stack frame for f1()

Stack frame for main()

The stack after program launch

25 / 61

Local Variables
Memory Allocation And Deallocation For Local Variables

#include<stdio.h>

void f2(void)
{
}

void f1(void)
{

f2();
}

int main(void)
{

f1();
return 0;

}

Stack frame for f2()

Stack frame for f1()

Stack frame for main()

The stack after invoking the f1()
function

25 / 61

Local Variables
Memory Allocation And Deallocation For Local Variables

#include<stdio.h>

void f2(void)
{
}

void f1(void)
{

f2();
}

int main(void)
{

f1();
return 0;

}

Stack frame for f2()

Stack frame for f1()

Stack frame for main()

The stack after invoking the
f2()function

25 / 61

Local Variables
Memory Allocation And Deallocation For Local Variables

#include<stdio.h>

void f2(void)
{
}

void f1(void)
{

f2();
}

int main(void)
{

f1();
return 0;

}

Stack frame for f2()

Stack frame for f1()

Stack frame for main()

The stack after the f2() has
completed

25 / 61

Notes

Notes

Notes

Notes

Local Variables
Memory Allocation And Deallocation For Local Variables

#include<stdio.h>

void f2(void)
{
}

void f1(void)
{

f2();
}

int main(void)
{

f1();
return 0;

}

Stack frame for f2()

Stack frame for f1()

Stack frame for main()

The stack after the f1() has
completed

25 / 61

Local Variables
Memory Allocation And Deallocation For Local Variables

#include<stdio.h>

void f2(void)
{
}

void f1(void)
{

f2();
}

int main(void)
{

f1();
return 0;

}

Stack frame for f2()

Stack frame for f1()

Stack frame for main()

The stack after the program ends

25 / 61

Local Variables
Memory Allocation And Deallocation For Local Variables

#include<stdio.h>

void f2(void)
{

int x = 1000000;
printf("x = %d\n", x);

}

void f1(void)
{

short int a;
short int b;
printf("a = %d\n", a);
printf("b = %d\n", b);

}

26 / 61

Local Variables
Memory Allocation And Deallocation For Local Variables

int main(void)
{

f2();
f1();
return 0;

}

27 / 61

Notes

Notes

Notes

Notes

Local Variables
Memory Allocation And Deallocation For Local Variables

Frame for f2()
x

0xF4240

Frame for main()

(a) For The f2() Function

Frame for f1()
b

0xF
a

0x 4240

Frame for main()

(b) For The f1() Function

Figure: How The Frames Are Created on The Stack

28 / 61

Local Variables
The static Keyword

Taking into the consideration the properties of local variables it is rec-
ommended to use them instead of the global variables whenever it is
feasible. The static keyword when applied to a local variable extends
its lifetime to the entire run-time of a program in which the variable
is declared. Moreover, that variable has an initial value of zero and is
still accessible only from within the function’s body. When one of the
function’s instances modifies the value of the variable, then the subse-
quent invocations will notice the modification. In other words, a local
variable declared with the static keyword has the characteristics of
both the local and the global variable.

29 / 61

Local Variables
An Example

#include<stdio.h>

void count_instances(void)
{

static unsigned int sum;
sum+=1;
printf("The function was invoked %d times.\n",sum);
int i;
for(i=0; i<5; i++) {

int i = 1;
printf("This \"i\" variable isn't a loop counter: %d\n",i);

}
}

int main(void)
{

count_instances();
count_instances();
return 0;

}

30 / 61

Direct Usage of Global Variables

Functions may directly reference global variables but it is not the best
practise. It has many disadvantages. Let’s try to answer the question:
what does the function invoked in the following code snippet do?

Invocation of add_numbers() Function
int sum = add_numbers();

Judging by its name, it adds some numbers. The type of the variable
to which is assigned the result of that function suggests that those
numbers are integers. However, we are unable to deduce how many
those numbers are, because they are stored in global variables. If we
wanted to use the function in another program we would have to copy
not only the definition of the function but also the declarations of global
variables used by the function. That’s only two of the disadvantages.

31 / 61

Notes

Notes

Notes

Notes

Parameters

To avoid issues described in the previous slide the parameters may be
applied. A parameter is a special local variable that allows the function
to exchange data with the rest of the program. A function may have
more than one parameter. The parameters must have different names
than the local variables declared directly in the function’s body (outside
of other blocks in the body). Each parameter may have a unique type
or the types may repeat. In the location of code where the function is
invoked the parameters must be substituted by arguments of compat-
ible types. There should be as many arguments as parameters. There
are three ways of passing an argument by a parameter. Parameters
make functions more universal.

32 / 61

Passing By Value

Parameters that pass arguments by value are declared similarly to reg-
ular variables, but in the parameters list of a function. Their declara-
tions are separated by commas. When more than one parameter of the
same type should be declared then the type of such a parameter must
be repeated in each declaration. All the declarations can be placed
in one line. The arguments passed by such parameters can be liter-
als, constants, local and global variables and even expressions. Those
parameters are input parameters. If a variable is passed by such a
parameter, then any modification made to the value of the parameter
inside a function body does not affect the value of the variable. It is
possible to use parameters that pass arguments by value together with
other kinds of parameters.

33 / 61

Passing By Value
An Example

#include <stdio.h>

void f5(int x, int y)
{

puts("Inside the function:");
printf("The value of \"x\" parameter before a change: %d\n", x);
x+=1;
printf("The value of \"x\" parameter after the change: %d\n", x);
printf("The value of \"y\" parameter: %d\n",y);

}

int main(void)
{

int a=3;
printf("The value of \"a\" variable before passing to f5() function: %d\n",a);
f5(a,2*a);
printf("The value of \"a\" variable after f5() function finishes: %d\n",a);
return 0;

}

34 / 61

Passing By Value
Comment to the Example

After running the program and reading all messages displayed on the
screen it can be noticed that modification of the x parameter had no
effect on the value of the a variable. Parameters and arguments that
are substituted by them may have the same names. Passing by value
in the example is equivalent to the following assignments:
int x = a;
int y = 2*a;

35 / 61

Notes

Notes

Notes

Notes

Passing By Constant

If for some reason the value of the parameter should not be modified in
the function then passing by constant may be applied. The declaration
of such a parameter is prefixed with the const keyword. The same
kinds of arguments may be passed by such a parameter as in the case of
passing by value. Parameters passing by constant may be used together
with parameters passing by value.

36 / 61

Passing By Constant
An Example

#include <stdio.h>

void f6(const int x)
{

printf("The value of \"x\" parameter: %d\n",x);
printf("The value of an expression with the \"x\" parameter: %d\n",x+1);
/* x+=1; */ // It is not allowed. It won't even compile.

}

int a = 3;

int main(void)
{

printf("The value of \"a\" variable before passing to the function: %d\n",a);
f6(a);
printf("The value of \"a\" variable after the function finishes: %d\n",a);
return 0;

}

37 / 61

Passing By Constant
Comment to the Example

As it might be expected, the value of the parameter is not modified
in the example. Passing by constant is equivalent to the following
assignment:
const int x = a;

38 / 61

Introduction to Pointers

Before a third way of passing argument by parameters will be intro-
duced we are going to learn about a new type of variable. Such a
variable is called a pointer. It is declared according to the following
pattern:

type_of_variable *name_of_variable;
The * (a star or an asterisk) is the only thing that differentiates pointer
declaration from the declaration of a regular variable. If we used the
sizeof operator to measure the size of such a variable we would learn
that it is always 4 bytes for 32-bit computers and 8 bytes for 64-bit
computer. In other words, its size is independent of the data type
used in its declaration. This is because, the pointer does not store a
value directly, but it stores an address of a variable, called the pointed
variable, that stores the value. The data type in the pointer declaration
determines what type of variables can be pointed by the pointer.

39 / 61

Notes

Notes

Notes

Notes

Introduction to Pointers

A neutral value of the pointer is defined by the null constant, however
newer editions of the C language standard allow programmers to use
0 in the place of this constant. To assign an address of a variable to
the pointer the address operator has to be applied. It is represented by
the & (an ampersand) symbol. To read a value of a variable pointed by
the pointer a dereference operator has to be applied. It is represented
by the * (a star or an asterisk) symbol. If the address stored in the
pointer should be displayed on the screen the "%p" conversion specifier
for the printf() function should be used. The address is displayed as
a hexadecimal number.

40 / 61

Introduction to Pointers
An Example

#include <stdio.h>

int main(void)
{

int *pointer = NULL;
int variable = 3;
pointer = &variable;
printf("The value of the pointed variable: %d\n",*pointer);
printf("The address stored in the pointer: %p\n",pointer);
variable++;
printf("The value of the pointed variable: %d\n",*pointer);
*pointer+=1;
printf("The value of the pointed variable: %d\n",variable);
return 0;

}

41 / 61

Introduction to Pointers
Comment to the Example

If we run and traced the program with the use of a debugger, we would
see that the value of the pointed variable can be both modified and
read with the use of the pointer. Please notice the difference between
reading the value of the pointer (the address that it stores) and the
value of the pointed variable.

42 / 61

Introduction to Pointers

For better understanding of the pointers let’s take a look at the very
simplified model of the Random Access Memory (ram) in which every
variable has the size of a single memory cell. The variables from the
example program could be placed in such a memory as follows:
addresses

0x0000
0x0001
0x0002
0x0003
0x0004
0x0005
0x0006

cells

0
3
0
0

0x0001
0
0

pointer

variable

43 / 61

Notes

Notes

Notes

Notes

Passing By Pointer

The pointers may be used as parameters of a function. Arguments
for such parameters may be only compatible pointers or addresses of
compatible variables acquired with the use of the address operator. The
pointer parameter is both input and output parameter. The function
may pass by the parameter results to the rest of the program. It means
that the function may return more than one value with the use of such
parameters. It is possible to use passing by pointer parameters together
with passing by value and passing by constant parameters.

44 / 61

Passing By Pointer
An Example

#include <stdio.h>

void f7(int *x)
{

puts("Inside the function:");
printf("The value of \"*x\" before a change: %d\n",*x);
*x+=1;
printf("The value of \"*x\" after the change: %d\n",*x);

}

int main(void)
{

int a = 3;
printf("The value of \"a\" variable before the f7() function call: %d\n",a);
f7(&a);
printf("The value of \"a\" variable after f7() function finishes: %d\n",a);
return 0;

}

45 / 61

Passing By Pointer
Comment to the Example

Please observe how the f7() functions is invoked and how the derefer-
ence operator * is used. In this example passing by pointer could be
replaced by passing by value and returning a result by the function.
However, such a replacement is not possible if a function returns more
than one value.

46 / 61

Pure Functions

The concept of a pure function is one of the principles of functional
programming. A pure function is a function that does not have any
side effects and only returns a single value (a result). It means that the
function does not change directly or indirectly the value of any global
variable (the global state). Such functions are very useful in concurrent
programming, when threads are applied, because that functions do not
affect the state of threads others than those which invoked them and
thus are safe to use in such cases.

47 / 61

Notes

Notes

Notes

Notes

Exit From a Function

A place in code where the function terminates is called an exit point.
The procedural paradigm requires that only one exit point exists in the
function. It means that the return keyword should be used only once in
the function body and in case of functions that do not return a value it
shouldn’t be used at all. However, it is common among C programmers
to disobey the rule, because using the return keyword multiple times
in function body makes it short, simpler, easier to understand and often
more efficient.

48 / 61

Recommendations

1. A function declaration should be short and legible.
2. A function should have a descriptive name containing a verb.
3. A function should have at least one parameter. On the other hand

it shouldn’t have too many parameters.
4. A function should do only one task described by its name.
5. Functions without parameters should be used scarcely.
6. A function should never use global variables directly.

The Unix programmers follow a convention of creating functions, that
is often applied by other programmers. By the convention a function
returns as a value an integer that indicates the state of completing the
function’s task. If it is zero, then the task was completed successfully.
If it is negative it indicates failure and the absolute value of the integer
usually identifies the exception that caused the problem. The function
passes its results with the help of pointer parameters.

49 / 61

Quadratic Equation — a Version With Functions
A Function That Takes Equation’s Coefficients From The User

#include<stdio.h>
#include<math.h>

void get_abc_coefficients(float *a, float *b, float *c)
{

puts("Please enter the coefficients of the quadratic equation:");
do {

printf("a= ");
scanf("%f",a);
if(*a==0.0)

puts("The vale of \"a\" coefficient mustn't be zero!");
} while(*a==0.0);
printf("b= ");
scanf("%f",b);
printf("c= ");
scanf("%f",c);

}

50 / 61

Quadratic Equation — a Version With Functions
Comment to the Function

The function is responsible for assigning to its parameters the values of
coefficients entered by the user. It does only this task. Please notice,
that inside the function the second argument passed to the scanf()
invocation is not prefixed with an ampersand. This is because, the
scanf() function takes as the second argument an address of a variable
and the parameters a, b and c are pointers that store such addresses.
Using the address operator in their cases would be an error, because
the operator would return addresses of the pointers instead of addresses
of variables pointed by them.
The included header files are not a part of the function, but their
presence is required to compile the whole program successfully.

51 / 61

Notes

Notes

Notes

Notes

Quadratic Equation — a Version With Functions
A Discriminant Calculating Function

float calculate_delta(float a, float b, float c)
{

return b*b-4*a*c;
}

52 / 61

Quadratic Equation — a Version With Functions
A Function Implementing the signum Operation

int signum(float number)
{

return (number<0) ? -1 : 1;
}

53 / 61

Quadratic Equation — a Version With Functions
A Function Calculating the q Coefficient

float calculate_q(float b, float delta)
{

return -0.5*(b+signum(b)*sqrt(delta));
}

54 / 61

Quadratic Equation — a Version With Functions
A Function Calculating a Single Root of the Quadratic Equation

float calculate_root(float a, float q)
{

return q/a;
}

55 / 61

Notes

Notes

Notes

Notes

Quadratic Equation — a Version With Functions
A Function Calculating Two Roots of the Quadratic Equation

void calculate_roots(float a, float c, float q, float *x1, float *x2)
{

*x1=q/a;
*x2=c/q;

}

56 / 61

Quadratic Equation — a Version With Functions
The main() function

int main(void)
{

float a=0.0,b=0.0,c=0.0;
get_abc_coefficients(&a,&b,&c);
float delta = calculate_delta(a,b,c);
if(delta==0.0) {

float q = calculate_q(b,delta);
printf("The equation has a single root %.10f\n",

calculate_root(a,q));
}
if(delta>0.0) {

float q = calculate_q(b,delta);
float x1=0.0, x2=0.0;
calculate_roots(a,c,q,&x1,&x2);
printf("The functions has two roots - x1:\
%.10f, x2: %.10f\n",x1,x2);

}
if(delta<0.0)

puts("The equation doesn't have real roots.");

return 0;
}

57 / 61

Quadratic Equation — a Version With Functions
Comment to the Example

Please notice, that one of the strings in the main() function is divided
into two with the use of the backslash (\) character. It’s a special
character that informs the compiler that those two strings are in re-
ality one. The program with the functions is longer than the original
program demonstrated in the previous lecture. However, it is easier
to understand. It is also easier to distinguish between the cases when
the quadratic equation has one root or two roots if the program is
partitioned into functions.

58 / 61

Thanks

Many thanks to Grzegorz Łukawski, PhD and Leszek Ciopiński, MSc
for helping me to complete the Polish version of these slides.

59 / 61

Notes

Notes

Notes

Notes

Questions

?

60 / 61

The End

Thank You for Your attention!

61 / 61

Notes

Notes

Notes

Notes

	Concepts of Procedural Programming
	Functions
	Local variables
	Arguments
	Recommendations
	An Example

