
Fundamentals of Programming 1
Libraries

Arkadiusz Chrobot

Department of Information Systems

January 20, 2023

1 / 57

Outline

Introduction

Libraries in the C Languages

Preprocessor Macros

The inline Functions

2 / 57

Libraries

The source code of large computer programs is usually divided into separate
files that are generally called translation units and in case of compiled
programming languages – compilation units. The objective of this partition
is twofold. It improves the legibility of the code by grouping elements of
program that serve the same purpose and it allows for reusing the code for
creating different software. The translation units that contain functions,
variables, data types and constants for using in many different program
are called libraries. They are not only a “containers” for elements of a
program, but also allow the programmer to manage the code, by deciding
which of the elements should be available outside the library and which
should be hidden inside.

3 / 57

Interface and Implementation of the Library

Elements of software which are gathered in a library and are available out-
side, for public use, create the library interface. Elements closed inside
the library form its implementation. To make this distinction possible a
programming language has to provide special mechanism for hiding the
code. To explain the necessity of separating an interface from an imple-
mentation, two points of view on the library structure have to be taken
into consideration. The first one in associated with the programmer who
uses the library. She or he wants the library to be easy to apply in her or
his code. The programmer wants also to have a clear information which el-
ements of the library she or he can use in her or his code and how. When a
new version of the library is released, perhaps with an extended interface or
changed implementation, the programmer’s software should compile with
this version of library without any modifications. The second point of view
is associated with the programmer who creates the library.

4 / 57

Notes

Notes

Notes

Notes



Interface and Implementation of the Library
Continued

She or he wants to have the possibility of introducing changes or correc-
tions to the library code, but she or he doesn’t want to make harder the job
of the programmer who uses the library by making her or him to modify her
or his program. To fulfill requirements of those two types of programmers
the elements of the library that are likely to stay the same in subsequent
versions should be made a part of library interface. If a function is such
an element then the way it is invoked must be the same in new releases
of the library. This means that the name of the function, the types, order
and even number of its parameters have to stay unchanged. The inter-
face is responsible for cooperation between the library and other units of
translation, so it can only be extended in next versions of library. It can-
not be rebuilt or narrowed down. The creator of the library should put all
the elements that are likely to change in next version in its implementa-
tion. Those elements decide about the internal workings of the library and
should be hidden to the programmer that uses the library.

5 / 57

Interface and Implementation of the Library
Continued

A similar strategy is followed by the car manufactures. In a new model
they try to preserve the layout of the elements necessary for controlling
the auto, like the steering wheel, clutch, gauges etc. while changing the
elements that decide about the performance or look of the car, like the
engine, gearbox, chassis, body, etc.

6 / 57

Libraries in the C Languages

The C language allows the programmers to create and use static and dy-
namic libraries. The former are included in the program during compilation.
The latter are loaded into the computer’s memory only when a program
references them, for example by calling one of the functions they contain.
A single dynamic library loaded in the memory may be shared by more than
one program.
The static and dynamic libraries are crated in the same way, but the way
of using the latter depends on the operating system. Therefore only the
static libraries are covered in the lecture.

7 / 57

Declaration and Definition of a Variable

For the seek of simplicity the introduction of a variable to the program
is called a declaration. In reality, if a variable is used only in a single
translation unit, then when declared it also defined. If a variable is used
in many translation files, then its declaration may be separated from its
definition. Moreover there can be many declarations of the variable, but
only one definition has to exist. The declaration is information for the
compiler, that a variable is defined in some other translation unit, but
is used in the file that contains the definition. The declaration, on the
other hand informs the compiler that it has to put in the output code
instructions that allocate the memory for the variable (i.e. literally create
it) and initialize it. The declaration of a variable starts with the extern
keyword and that’s basically what differentiates it from definition of the
variable. The declared variable must be defined somewhere in the program,
usually in another translation unit. Otherwise the program won’t compile.
The next slide presents an example in which a variable is declared and
defined in two separate compilation units.

8 / 57

Notes

Notes

Notes

Notes



Declaration and Definition of a Variable
Example

File 1: external.c

int foo;

File 2: program.c

#include<stdio.h>

extern int foo;

int main(void)
{

printf("%d\n",foo);
return 0;

}

9 / 57

Declaration and Definition of a Variable
Comment

The external.c file contains the definition of the foo variable, which is
used in the program.c file. Since it is a global variable, its initial value is
zero.

10 / 57

Static Variables

If the variable was to be global, but unavailable outside the translation unit
in which it is defined, its definition should be prefixed with the static key-
word. The keyword has been already introduced in the lecture on functions.
If it is used with a local variable it makes the variable persistent between
subsequent calls of the function where it is defined. Moreover, the initial
value of the variable (i.e. before the first call of the function) is zero. In
case of the global variables, the static keyword narrows down their scope
to file where they are declared. It is safe for the functions defined in the
same translation unit, to directly (i.e. without using parameters) reference
those variables, because no other code can influence the state of those
variables.

11 / 57

Declaration and Definition of Function

Similarly to variables also functions can be defined and declared in separate
translation units. The declaration of a function consist of its header ended
with a semicolon. It is also allowed to leave out the names of function’s
parameters. Only their types have to be present in the declaration. If a
function is defined in separate translation unit, then its declaration can be
prefixed with the extern keyword, however it is not mandatory. If the
function should be available only in the file where it is defined, then its
header should start with the static keyword. It can be concluded, that
the static keyword in the context of libraries allows for hiding details
of their implementation, which should be unavailable outside. The next
slide shows a declaration and definition of a single function placed in a two
different files.

12 / 57

Notes

Notes

Notes

Notes



Declaration and Definition of Function
Example

File 3: external_2.c

#include<stdio.h>

void print(int variable)
{

printf("%d\n",variable);
}

File 4: program_2.c

extern int foo;
extern void print(int);

int main(void)
{

print(foo);
return 0;

}

13 / 57

Declaration and Definition of Function
Comment

The print() function is defined in the external_2.c file. Because it calls
the printf() function, it is necessary to include the stdio.h header file in
this translation unit. The print() function is invoked in the program_2.c
translation unit, where the function is also declared. The code in the
aforementioned file references also the foo variable, which is defined in
the external.c file.

14 / 57

Header Files

Using variables and functions defined in different files requires repeating
their declarations in every translation unit where they are referenced or
invoked. This inconvenience can be mitigated by placing the declarations
in a header file. Such a file contains a source code, just like other transla-
tion unit, but its name has a different extension: .h. The header file may
contain declarations of functions and variables defined in at least one trans-
lation unit with the .c extension, but it shouldn’t contain their definitions
or any other statements that force the program to allocate memory. The
other “safe” statements beside declarations of files and variables are type
definitions (for structures, unions and enumerated types) and preprocessor
macros, which will be described in the lecture. The next slide presents an
example of a header file.

15 / 57

Header Files

File 5: header.h

#ifndef HEADER_H
#define HEADER_H

extern int foo;
extern void print(int);

#endif

16 / 57

Notes

Notes

Notes

Notes



Header Files
Comment

The exemplary header file contains declarations of a function and a variable
from the previous examples. They are surrounded by directives of prepro-
cessor that make sure that the declarations form the file will be placed in a
source code only once, even if the header file itself may be included many
times in the program. The #ifndef directive makes the preprocessor to
make some actions, provided that the marker that follows the directive is
not defined. The marker is called an include guard, macro guard or header
guard and it can be any legal identifier, but usually its definition in based
on the header file name, just like in the example. If the header guard is
not defined that the preprocessor copies all the code between the #ifndef
and #endif to the place in program where the header file is included. The
code contains the definition of the header guard. It resembles definition
of a constant but the value is missing so, only the name (the marker) is
defined. If the header file is included in the source code more than once
the preprocessor will detect the definition of the header guard and will take
no actions.

17 / 57

Header Files
Inclusion of a Header File to a Program

The inclusion of the header file to the file with the .c extension or other
header file is done by the preprocessor. It is a program that takes a part
in the compilation process by preparing the source code for the compiler.
If the header file doesn’t contain any macros, the preprocessor copies its
content to the file where it is included, provided it hasn’t been already
copied. The #include directive is used for including the header file in
other file with the source code. If the header file is in the preprocessor
default directory for header files, then the directive is followed by the name
of the file embraced by angle brackets. If the file is kept in the same
directory as the rest of program’s files, then its name should be embraced
by quotation marks instead of angle brackets. Providing its path could be
necessary if it is in other nonstandard directory. It is recommended that
the header file is included in the file containing the definitions of functions
and variables. It allows the compiler to check the validity of declarations
and definitions. If the latter file uses macros or types defined in the header
file, then the header file must be included.

18 / 57

Header Files
Inclusion of a Header File to a Program — Remark

An important conclusion should be drawn from the description of the
header file inclusion procedure: If the program doesn’t need any defini-
tion or declaration contained in a header file then the header file shouldn’t
be included in its source code. Otherwise the content of the file will only
increase the size of the executable output file. Next slide demonstrates the
usage of the header file in a program’s source code.

19 / 57

Header Files
Example

File 6: external2.c

#include<stdio.h>
#include"header.h"

void print(int variable)
{

printf("%d\n",variable);
}

20 / 57

Notes

Notes

Notes

Notes



Header Files

The previous slide contains the modified external_2.c file. A directive
is added that includes the header.h file. It is assumed that both files are
in the same directory. It is not necessary to include the header file into
the external_2.c file, but it allows the compiler to check compatibility
of declaration and definition of the function.

21 / 57

Header Files
Example

File 7: external.c

#include"header.h"

int foo;

22 / 57

Header Files
Comment

The previous slide contains modified version of external.c file. The in-
clusion of the header file in this case is also not necessary, but it also allows
the compiler to check the compatibility of the declaration and definition
of the variable.

23 / 57

Header Files
Comment

Plik 8: program2.c

#include"header.h"

int main(void)
{

print(foo);
return 0;

}

24 / 57

Notes

Notes

Notes

Notes



Header Files
Example

Header files along with related source files (the files with the .c extension
in names) form libraries. The program from the previous slide demonstrates
the usage of a static library. The included header file contains declarations
of the foo variable and the print() function defined in another source
file. Thus the main() function can use them as they would be declared in
the same translation unit as the function.

25 / 57

Libraries — Summary

A library in the C language consists of a header file and at least one source
file. The header file can contain definitions of macros and types as well as
declarations of functions and variables. The source files (already compiled
or not) contain the definitions of those functions and variables. It is also
possible to build a library consisting of only one source file and many header
files that at least contain definitions of function and variables declared in
the source file. Finally, a library with many header files related to many
source files is also possible.

26 / 57

Preprocessor Macros

The header files handling isn’t the only job of the preprocessor. It has its
own programming language, consisting of directives, which isn’t translated
to the machine language, but is used for controlling the compilation pro-
cess. Some of the directives of the processor have been already introduced
in the lecture. For example, the #define directive was often used to define
constants. Such constants are also a preprocessor macros. The names of
the constant used in the source code, are substituted by the preprocessor
with its value. However, the macros can be something else than simple
constant definitions. A macro can be a whole subroutine with its own
parameter list. When used in the program it is not called like a function,
but it is expanded, which means that its code is copied to the place in the
code where its name is listed together with its arguments. The advantage
of the macro over a function is that it does not require the program to
allocate a stack frame, so it saves the time and memory. The disadvantage
is that the preprocessor that expands the macro doesn’t check the validity
of the macro code, which may lead to hard to discover defects in the code.

27 / 57

Preprocessor Macros

Macros definitions are usually placed in header files, but it is also possible
to put them in source files. The second approach is used in all examples in
the lecture, to simplify the code of exemplary program. While expanding
the macro the preprocessor doesn’t check its validity. It only prepares the
source code for the compiler, which performs such an activity. This means
that if there is a syntax error, it will be discovered by the compiler in other
place in the source code than the definition of the macro. Thus it is more
difficult to discover bugs in macro than in a function. Also the macros are
more prone to convey logical errors to the code. The next slides present
a program containing a definition of a simple macro, which may cause
unexpected problems in some cases. The corrected version of the macro
will also be introduced.

28 / 57

Notes

Notes

Notes

Notes



Preprocessor Macros
Example

#include<stdio.h>

#define MULTIPLY(X,Y) X*Y

int main(void)
{

int a=2, b=3;
printf("The macro result: %d\n",MULTIPLY(a,b));
return 0;

}

29 / 57

Preprocessor Macros
Comment

A macro named multiply is defined in the program, which multiplies
arguments passed to it by the x and y parameters. The definition of the
macro does not contain a semicolon. It may however be necessary to used
it in the location of code where the macro is expanded. Please also observe
that the parameters of the macro don’t have the type specifications. The
names of the macro and parameters are capitalised, but it is only a matter
of convention. Most C programmers however follow it. In the example
the parameters of macro are substituted in the main() function by two
arguments – the a and b variables. The value of the former is 2, and the
latter 3. As expected the result of the macro is 6. A small modification of
the program’s code may lead to an incorrect result from the macro, which
is demonstrated in the next slide.

30 / 57

Preprocessor Macros
Example

#include<stdio.h>

#define MULTIPLY(X,Y) X*Y

int main(void)
{

int a=2, b=3;
printf("The macro result: %d\n",MULTIPLY(a+1,b-1));
return 0;

}

31 / 57

Preprocessor Macros
Comment

The modified version of the program will display 4 on the screen as a result.
The expected value is 6. The error is caused by the lack of arguments
evaluation when the macro is expanded. The x and y parameters in the
x*y expression are substituted by the a+1 and b-1 arguments, so the
macro is expanded to a+1*b-1 expression. Finally, when the program runs
the expression is evaluated to the 2+1*3-1 form and hence the wrong
result. To correct the defect each of the parameters should be embraced
by parentheses when applied in macro code. Unfortunately, this solution
fails if the arguments are of incompatible type with the expression (for
example they are strings). Such an error is detected by the compiler.

32 / 57

Notes

Notes

Notes

Notes



Preprocessor Macros
Example

#include<stdio.h>

#define MULTIPLY(X,Y) (X)*(Y)

int main(void)
{

int a=2, b=3;
printf("The macro result: %d\n",MULTIPLY(a+1,b-1));
return 0;

}

33 / 57

Preprocessor Macro

The preprocessor macros may contain more than one statement. Each of
the statements can be placed in a separate line of the source code, provided
that some additional requirements are met. If the macro has more than
two lines of code, then all the lines between the first and the last one have
to be ended with the backslash character: \. The backslash is used for
informing the preprocessor that a line of macro code is followed by another
one. Very often the code of the macro body is enclosed in a do…while()
loop that has 0 as a condition and isn’t ended with the semicolon. Such
a loop is executed only once. The loop allows the programmer to put a
semicolon after the macro expansion statement in the code wherever it
seems to be necessary.

34 / 57

Makra preprocesora
Przykład

#include<stdio.h>

#define SWAP(A,B) do {\
int tmp;\
tmp = (A);\
(A) = (B);\
(B) = tmp; \

} while(0)

#define PRINT(A,B,C) printf("%s: %d, %s: %d, %s: %d\n",#A,(A),#B,(B),#C,(C))

int main(void)
{

int a=2, b=3, c = 4;
if(a>b)

SWAP(a,b);
else

SWAP(a,c);
PRINT(a,b,c);
return 0;

}

35 / 57

Preprocessor Macros
Comment

The usage of the do…while(0) in the code of the swap macro makes
it possible to end its expansion statement twice – before and after the
else keyword in the conditional statement. There is also another macro
defined in the exemplary program. Its name is print and it displays names
and the values of the variables on screen. The names of the variables
substituted for the macro parameters are obtained with the use of # (the
hash) operator. For example the #a expression means that everything that
stands between the hash and the following comma will be converted to a
string. Processor has another such an operator denoted by double hashes:
##. This operator concatenates two strings (“glues” them together). Its
application is demonstrated in the next slide.

36 / 57

Notes

Notes

Notes

Notes



Processor Macros
Example

#include<stdio.h>

#define VARIABLE(SCOPE) int SCOPE##_variable

VARIABLE(global);

int main(void)
{

VARIABLE(local) = 6;
printf("global_variable: %d, local_variable: %d\n",

global_variable, local_variable);
return 0;

}

37 / 57

Preprocessor Macros
Comment

The variable macro is applied in the program to declare and define the
global_variable and the local_variable of the int type. Moreover,
the latter variable is also initialized. The code in not easy to follow, but it
demonstrates the usage of the ## operator.
If needed a definition of a macro may be excluded from the entire code or
a part of it with the use of #undef directive. It should be followed by the
name of the macro to exclude. The macro won’t be available for the code
that follows the directive.

38 / 57

Assertions

Macros are often used for finding defects and verifying the code. In the C
language there is a macro called assert defined in the assert.h header
file. It is an implementation of the assertion concept introduced to com-
puter science by Robert Floyd. The assertion is an expression that should
always true. The assertions are evaluated to check the correctness of some
parts of a code. For example, an assertion can be evaluated before and
after a loop or a function is performed. If the value of such assertion is
false, then there is at least one defect in the code that needs to be re-
moved. The assert macro takes one argument, which is an expression.
If the expression is false then the macro displays an appropriate message
and terminates the program. Usage of the macro is demonstrated in the
next slide.

39 / 57

Assertions
Example

#include<stdio.h>
#include<assert.h>

int main(void)
{

int i;
for(i=1;i<10;i++) {

assert(i<=5);
printf("%d%%%d=%d ",5,i,5%i);

}
return 0;

}

40 / 57

Notes

Notes

Notes

Notes



Assertions
Comment

In the example from the previous slide the assert macro is used for check-
ing if the divisor in the expression is not greater than the dividend. If the
macro recognizes that the condition is not met, it will display a message
and terminate the program. Please also observe the formatted string in the
printf() function call. It needs to display the reminder operator symbol
which is %. Because it is a special character in the formatted string, it has
to be doubled. That’s why the string looks complicated. The program-
mers tend to switch off assertions when they deliver the final version of
the program. While it is controversial it is worth to know how to do it. It
is sufficient to define a ndebug macro at the beginning of the program’s
main translation unit or as an option of the compiler. In the former case
the macro should be defined before the assert.h file is included. The
next slide contains an example explaining the usage of the macro.

41 / 57

Assertions
Example

#include<stdio.h>
#define NDEBUG
#include<assert.h>

int main(void)
{

int i;
for(i=1;i<10;i++) {

assert(i<=5);
printf("%d%%%d=%d ",5,i,5%i);

}
return 0;

}

42 / 57

Macros and Debugging

There are also other macros defined in the C language which may be useful
in the process of debugging a program. Using them don’t require including
any header files. Some of them are described here:

__date__ evaluated to the compilation date,
__time__ evaluated to the compilation time,
__file__ evaluated to the name of the compiled file,
__line__ evaluated to the line number in the compiled file.

43 / 57

Conditional Compilation

Some of the preprocessor directives allow for controlling the process of
compilation, i.e. they make it possible to decide whether some part of the
code should be compiled. Some of the directives are used in the code that
defined the header guard. The table describes more of them.

#ifdef Is similar to #ifndef. If the marker that follows it is
defined the preprocessor processes the statements that
follow the directive. If not, they are omitted.

#else It is similar to the else keyword in the conditional state-
ment.

#elif It combines the #else and #if statements.

Examples of the conditional compilation usage are show in the next slide.

44 / 57

Notes

Notes

Notes

Notes



Conditional Compilation
Example

#include<stdio.h>
#include<assert.h>

#ifndef NDEBUG
#define PRINT_VERBOSE(X) printf("The variable %s has a value of: %d\n",#X,(X))
#else
#define PRINT_VERBOSE(X)
#endif

int main(void)
{

int i;
for(i=1;i<10;i++) {

PRINT_VERBOSE(i);
assert(i<=5);
printf("%d%%%d=%d ",5,i,5%i);

}
return 0;

}

45 / 57

Conditional Compilation
Comment

A print_verbose macro is defined in the program, that displays a mes-
sage concerning a value of a specified variable. The information is valuable
in the process of debugging, should there be an error involving the variable.
However in the everyday usage of the program it is redundant. That’s why,
when the ndebug is defined, an empty definition of the print_verbose
macro is applied. The next slide contains an example of such a case.

46 / 57

Conditional Compilation
Example

#include<stdio.h>
#define NDEBUG
#include<assert.h>

#ifndef NDEBUG
#define PRINT_VERBOSE(X) printf("The variable %s has a value of: %d\n",#X,(X))
#else
#define PRINT_VERBOSE(X)
#endif

int main(void)
{

int i;
for(i=1;i<10;i++) {

PRINT_VERBOSE(i);
assert(i<=5);
printf("%d%%%d=%d ",5,i,5%i);

}
return 0;

}

47 / 57

Functions With a Variable Number of Arguments

The C languages allows for creating functions that take a variable number
of arguments. An example of such a function is printf(). The list of
such arguments is handled by preprocessor macros, which are defined in
the stdarg.h header file. To accept a variable number of arguments the
function has to be defined accordingly. Its parameter list has to contain at
least one regular parameter. A three dots (…) should be the last element
of this list. Those dots inform the compiler that they can be replaced by
any number of argument when the function is invoked. The dots cannot
be preceded by an array parameter.

48 / 57

Notes

Notes

Notes

Notes



Functions With a Variable Number of Arguments

The access to the additional arguments is provided by five macros. The first
one is the va_start macro which accepts two arguments on its own. The
first argument is a previously declared and defined variable of the va_list
type. It is a list of the additional arguments. The second argument of the
va_start macro is last regular parameter of the function. The va_start
macro initializes the va_list. The va_arg macro returns the value of
the function’s argument which type name is passed to the macro as its
second argument. The first argument of the macro is the list of additional
arguments. The va_end macro takes the list of additional arguments as its
only argument and signals that the processing of the list is finished by the
program. Finally, the va_copy macro is used when a copy of additional
arguments list is required. It takes two variables of the va_list type as
its arguments. The second one is the original list and in the first one the
copy of the list will be stored.

49 / 57

Functions With a Variable Number of Arguments
Example

#include<stdio.h>
#include<stdarg.h>

double average(unsigned int counter, ...)
{

va_list arguments_list;
int next=0, sum=0, i=counter;

if(counter==0)
return 0.0;

va_start(arguments_list, counter);
while(i--) {

next = va_arg(arguments_list,int);
sum += next;

}
va_end(arguments_list);
return (double)sum/counter;

}

50 / 57

Functions With a Variable Number of Arguments
Example

int main(void)
{

double result = average(5,1,2,3,4,5);
printf("The average is: %.2f\n",result);
return 0;

}

51 / 57

Functions With a Variable Number of Arguments
Comment

The average() function in the example counts the arithmetic average
of some integer numbers passed to the function as its arguments. Only
the first argument is passed to the function by a regular parameter. Its
value defines how many additional arguments the function has. It is not
required that the arguments should have the same type, but such a case
is demonstrated in the example program.

52 / 57

Notes

Notes

Notes

Notes



The inline Functions

The inline functions are an alternative for the preprocessor macros. Simi-
larly to them they could be expanded, but this time by the compiler, which
check the validity of such expansion. In other words the inline func-
tion is like a regular function, but is potentially expanded instead of being
invoked. Usage of such a function offers a better performance of the pro-
gram, but increases the size of the executable output file and the time
needed for compilation. It should be stated that the C language standard
doesn’t require the inline functions to be expanded at all. They should
only offer a better performance than the regular functions. It is sufficient
to add the static inline keywords at the beginning of the function’s
header to make it an inline function. An example of a program with an
inline function is presented on the next slide.

53 / 57

The inline Functions
Example

#include<stdio.h>

static inline void swap(int *first, int *second)
{

int tmp = *first;
*first = *second;
*second = tmp;

}

int main(void)
{

int a = 1, b = 2;
swap(&a,&b);
printf("a: %d, b: %d",a,b);
return 0;

}

54 / 57

Thanks

Many thanks to Grzegorz Łukawski, PhD and Leszek Ciopiński, MSc for
helping me to complete the Polish version of this slides.

55 / 57

Questions

?

56 / 57

Notes

Notes

Notes

Notes



The End

Thank You for Your attention!

57 / 57

Notes

Notes

Notes

Notes


	Introduction
	Libraries in the C Languages
	Preprocessor Macros
	The inline Functions
	The End

