
Software Engineering — Introduction

Arkadiusz Chrobot

Department of Computer Science, Kielce University of Technology

Kielce, October 7, 2020

1 / 28

Outline
Bibliography

Motto

Introduction
Definition
Genesis
Current Situation
Causes

Computer Science vs. Software Engineering
Features of Software
Programming Paradigms
Software Development Paradigms

Software Development
Model of the Software Development Process
Waterfall Model
Incremental Development
Formal Methods
Integration and Configuration
Agile Methods

Miscellaneous Topics
Software Engineering Methods
Software Development Costs
Computer-Aided Software Engineering
Challenges

Summary

2 / 28

Bibliography

Ian Sommerville,
Software Engineering,
Pearson Education Limited, USA, 2016, on-line:
http://iansommerville.com.

Pierre Bourque, Richard E. Fairley,
sewbok v3.0 Guide to the Software Engineering Body of Knowledge
IEEE Computer Society, USA, 2014.

Sungdeok Cha, Richard N. Taylor, Kyochul Kang,
Handbook of Software Engineering,
Springer Nature Switzerland AG, Cham, 2019.

Gerald O’Regan
Concise Guide to Software Engineering
Springer International Publishing AG, Cham, Switzerland, 2017.

…and many other will be presented in slides and on the website!

3 / 28

Motto

”If you look at software today, through the lens of the history of engineer-
ing, it’s certainly engineering of a sort — but it’s the kind of engineering
that people without the concept of the arch did. Most software today is
very much like an Egyptian pyramid with millions of bricks piled on top
of each other, with no structural integrity, but just done by brute force
and thousand of slaves.”
Alan Kay

4 / 28

Notes

Notes

Notes

Notes

http://iansommerville.com

Introduction

Software Engineering
“Software engineering is the application of a systematic, disciplined, quan-
tifiable approach to the development, operation, and maintenance of soft-
ware; that is, the application of engineering to software, and the study of
such approaches.”
ieee 610.2 definition

Software
Software — computer programs and associated documentation.

5 / 28

Software Crisis

In the 60ies of last century the third generation of computer systems had
been introduced to the market. That opened the possibility of developing
complex software, but it soon had become apparent that it is very diffi-
cult. Nobody had known how to successfully build complex, efficient and
reliable software. The majority of software projects ended with a disaster.
The situation had become known as the software crisis. To overcome the
problem in 1968 the nato organized a conference in Garmisch, Germany.
There the concept of software engineering was defined.

6 / 28

Results

The principles of developing software successfully are still unknown. The
overall situation in the software industry hasn’t improved significantly:
▶ nist estimates that in usa the annual financial loss caused by unsuc-

cessful software projects is about $60 billions,
▶ according to the Standish Group Chaos Report “…30% of all software

projects are canceled, nearly half come in over budget, 60% are con-
sidered failures by the organizations that initiated them, and 9 out of
10 come in late.”,

▶ Peter G. Neumann — ”Illustrative Risks to the Public in the Use of
Computer Systems and Related Technology”

7 / 28

Causes

Some of the causes:
▶ software projects are usually innovative,
▶ the product of software engineering is not physical,
▶ requirements in software projects change a lot,
▶ bad project management,
▶ „the exponents war”.

Sources:
Terence Parr
Why Writing Software Is Not Like Engineering
http://www.cs.usfca.edu/~parrt/doc/software-not-engineering.html

Chuck Allison
Code Quality
[This source is no longer available]

8 / 28

Notes

Notes

Notes

Notes

http://www.csl.sri.com/users/neumann/illustrative.pdf
http://www.csl.sri.com/users/neumann/illustrative.pdf
http://www.cs.usfca.edu/~parrt/doc/software-not-engineering.html

Computer Science vs. Software Engineering

Computer Science
How to create effective software? (algorithms, data structures, computa-
tional complexity, programming languages, programming paradigms.

Software Engineering
How effectively create software? (project management, methods of copping
with project complexity, software architecture, documentation, production
costs, testing, reliability, maintenance.

9 / 28

Features of Software

The features of “good” software:
▶ maintainability,
▶ reliability,
▶ effectiveness,
▶ usability.

10 / 28

Programming Paradigms

Some of the main programming paradigms:
1. imperative

1.1 procedural/structural (Pascal, C, Perl),
1.2 object-oriented (C++, Java),

2. declarative
2.1 functional programming (Erlang, lisp, JavaScript),
2.2 logic (Prolog).

11 / 28

Software Development Paradigms

There are several models of developing software. Some of them are:
▶ waterfall,
▶ incremental development,
▶ formal methods,
▶ integration and configuration,
▶ agile methods.

12 / 28

Notes

Notes

Notes

Notes

Software Development

The software development is a process of creating a product which is a
computer program (or computer programs). The course of this process
depends on the type of the created software, but in each case four main
phases can be found:

1. specification — easier for generic software and much harder in case of
custom software,

2. development,
3. validation,
4. evolution.

13 / 28

Model of the Software Development Process

A model of the process (or a paradigm) is a simplified description of the
process from a particular perspective. The models can be classified as
follows:
▶ workflow model,
▶ data flow model ,
▶ role activity model.

14 / 28

Waterfall Model

The Waterfall Paradigm is the oldest Software Development Life Cycle
model applied in Software Engineering. It was adopted from other engi-
neering disciplines. In this model there are five main activities that are
performed only once in the whole process: requirements analysis and def-
inition, system and software design, implementation and unit testing, in-
tegration and system testing and operation and maintenance. This model
organizes the work on software, but any change in requirements generates
a lot of costs — the process has to start from the beginning. It is appro-
priate for software projects that are a part of a larger engineering projects,
like for example space probe programs.

15 / 28

Incremental Development

In the Incremental Development the product (software) is build gradually.
First an initial version based on early specification is build and delivered
to users. After getting feedback form the users the development team
improves the product and the sends it back to them for further evaluation.
The process is repeated until a required system is build. The activities that
are common for all development models are interleaved in the Incremental
Development rather than separate. This approach to software building
can be combined with prototyping. The prototype can be crated as an
experimental implementation of new functionalities and then incorporated
to the main product or abandoned. In the latter case the prototype is build
only to specify or discover requirements. The Incremental Development
is suitable for projects in which requirements frequently change (in fact it
is true for most of the software projects). The resulting product better
responds to customer needs, but it internal structure may not be optimal.
The progress of development may be hard to follow.

16 / 28

Notes

Notes

Notes

Notes

Formal Methods

Formal Methods incorporate mathematical techniques into the software
development process. Requirements for the product are written in a for-
mal, strict specification language. The software is derived from its specifi-
cation and its correctness is verified with the use of mathematical proofs.
The resulting product is reliable and of high quality. Unfortunately, not
any type of software can be developed like this. Moreover, the develop-
ment is not always cost-effective. Nowadays Formal Methods are usually
used for safety-critical products.
Further readings:

Gerald O’Regan
Concise Guide to Formal Methods
Springer International Publishing AG, Cham, Switzerland, 2017

17 / 28

Formal Methods

“Ten years ago, researchers into formal methods (and I was the most
mistaken among them) predicted that the programming world would em-
brace with gratitude every assistance promised by formalisation to solve
the problems of reliability that arise when programs get large and more
safety-critical. Programs have now got very large and very critical —
well beyond the scale which can be comfortably tackled by formal meth-
ods. There have been many problems and failures, but these have nearly
always been attributable to inadequate analysis of requirements or inad-
equate management control. It has turned out that the world just does
not suffer significantly from the kind of problem that our research was
originally intended to solve.”

Tony Hoare in 1995

18 / 28

Integration and Configuration

The main idea behind this approach to software development is to reuse
components that have been created in previous projects, bought or are
available as open-source software. The development can be fast and cheap,
but usually some compromises regarding the software functionality have
to be made. It means that the resulting product may not exactly be what
the customer needs.

19 / 28

Agile Methods

In 2001 several software professionals created and signed the Agile Mani-
festo:
“ We are uncovering better ways of developing software by doing it and
helping others do it. Through this work we have come to value:
Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan
That is, while there is value in the items on the right, we value the items
on the left more.“
Source:

https://agilemanifesto.org/
The Manifesto is accompanied by Twelve Principles of Agile Software.

20 / 28

Notes

Notes

Notes

Notes

https://agilemanifesto.org/

Agile Methods

The Agile Manifesto and Agile Principles led to the creation of many soft-
ware development methodologies that are know as Agile Methods. Also
some already existing methods that fulfill the requirements of the Ag-
ile Manifesto and Agile Principles were classified as Agile. Among them
are: Lean Software Development, PDCA (Plan — Do — Check — Act),
Kanban, Extreme Programming (XP), Feature-Driven Development, Dy-
namic System Development Method, Crystal, Scrum. Those methods can
be wholly or partially combined with others, also those ”non-agile“. The
main goal of Agile Methods is to provide the customer with a working
product and reduce the amount of any additional work in the project. The
Agile Methods seem to be suitable for small projects with small teams and
with vague requirements. They do not scale well for bigger projects.

21 / 28

Software Engineering Methods

The Software Engineering not only defines the models of software develop-
ment process but also provides means (called Software Engineering Meth-
ods) that help to follow them. The methods allow software engineers to
build models of computer programs that constitute the specification of the
software. The UML (Unified Modeling Language), Object-Oriented or
Structural Analysis are examples of such means.

22 / 28

Software Development Costs

The overall costs of developing software depend on its type and the kind of
the development process applied. Generally, the most expensive phase is
the verification (testing), which takes up to 40% of the project budget and
in case of safety-critical software it can even reach 50% of total costs. But
more expensive than the development is the maintenance of the software
(its modification after the deployment).

23 / 28

Computer-Aided Software Engineering

To make the software development more efficient many tools was created,
including a software that helps build another software. Those programs
are commonly known as CASE — Computer-Aided Software Engineer-
ing. Those software tools can be split in two groups: UpCASE (project
management software, UML editors, etc.), and LowCASE (IDEs, code
repositories, software testing tools, and so on).

24 / 28

Notes

Notes

Notes

Notes

Challenges

The most important challenges of the modern software engineering are:
▶ legacy software,
▶ diversity of systems,
▶ delivery times,
▶ software quality (security, reliability, etc.).

25 / 28

Summary

The computer software becomes more and more complex. Also more and
more aspects of human life depends on it. We (as humanity) do not know
exactly how to develop reliable, efficient software. There are many fail-
ures in the short history of Software Engineering (recent example: mcas
software in Boeing 737-max), but also many successes (for example: the
Voyager space probes). Adhering to the principles of Software Engineering
doesn’t guarantee the success of the software project, but neglecting them
is the recipe for assured failure.
For entertainment:

Aaron Cummings,
Uptime 15,364 days - The Computers of Voyager,
https://www.youtube.com/watch?v=H62hZJVqs2o

26 / 28

Questions

?

27 / 28

The End

Thank You for Your attention!

28 / 28

Notes

Notes

Notes

Notes

https://www.youtube.com/watch?v=H62hZJVqs2o

	Bibliography
	Motto
	Introduction
	Definition
	Genesis
	Current Situation
	Causes

	Computer Science vs. Software Engineering
	Features of Software
	Programming Paradigms
	Software Development Paradigms

	Software Development
	Model of the Software Development Process
	Waterfall Model
	Incremental Development
	Formal Methods
	Integration and Configuration
	Agile Methods

	Miscellaneous Topics
	Software Engineering Methods
	Software Development Costs
	Computer-Aided Software Engineering
	Challenges

	Summary

