
Fundamentals of Programming 1
Sorting on Linear Arrays

Arkadiusz Chrobot

Department of Computer Science

November 30, 2020

1 / 36



Outline

1 Sorting

2 Selection Sort

3 Insertion Sort

4 Bubble Sort

5 Binary Search

6 The Minimum and Maximum in a Sorted Array

2 / 36



Sorting

Sorting

Data sorting (ordering) and data searching are among the most fre-
quently performed operations by computers. They are also the main
topic of the third volume of “The Art of Computer Programming” by
prof. Donald E. Knuth, which first edition was published in 70ties. In
the book the Author has written that if all computers were halted in the
same moment most of them would be stopped while performing sorting
and searching. This is also true today. The data that undergo sorting
may be stored in any data structure, but in this lecture only sorting on
a linear array will be discussed. As a result of sorting the data are in an
ascending (non-descending) or descending (non-ascending) order.

3 / 36



Sorting

Sorting
Properties of Sorting

There are many sorting algorithms, that have different properties. In
internal sorting all sorted data are stored in the main memory1, while in
external sorting they are in the secondary storage. In stable sorting the
relative order of the same values is maintained. For example if there are
two 10s in the unsorted array denoted by 10′ and 10′′ then after sorting
the 10′ still will be before 10′′ in the array. For numbers this property is
of less meaning, but in case of some more advanced data types it can be
useful. When an algorithm sorts a data structure using only a constant
amount of memory it is called an in-place (lat. in situ) algorithm and
the operation is called an in-place sorting. In the lecture only sorting of
numbers will be discussed, but all other data, like characters, also can
be sorted.

1The virtual memory is not taken into consideration here.
4 / 36



Sorting

Sorting
Example Algorithms

Three sorting algorithms that sort the linear array are introduced in the
lecture. All of them are in-place, internal sorting algorithms. Two of
them are stable sorting algorithms and the third one (selection sorting)
can be easily modified to be so. For arrays with a relatively small num-
ber of elements their effectiveness is almost the same. In the lecture are
presented implementations of the algorithms that sort arrays in an as-
cending (non-descending) order, but also information of how to modify
the algorithms to sort in a reverse order is provided.

5 / 36



Selection Sort

Selection Sort
Algorithm Description

The Selection Sort algorithm is quite simple. It is related to the algo-
rithm for finding a minimum value in an unsorted array. Selection sort is
based on the observation, that the first element in a sorted array should
store the minimum value. Therefore, the element holding such a value
has to be located and if it is not the first element, its value should be
swapped with the value of the first one. Then the operation is repeated,
but this time with the exception of the first element of the array (start-
ing with the second), and so on. After sorting on the last two elements
the whole array is sorted.

6 / 36



Selection Sort

Selection Sort
Simulation

The next slide contains a visualisation of sorting on a linear array of five
elements, containing some natural numbers with the use of the selection
sort algorithm. The orange arrow indicates the currently sorted element.
The violet arrow indicates the element that stores the smallest value and
belongs to the still unsorted part of the array. This part also includes
the currently sorted element. The latter is also indicated by the dark
gray background. Those elements that are already sorted have a green
background. The still unsorted elements have a red background. The
steps required to find the minimal value are not shown in the visuali-
sation. Those are the same as in the algorithm for finding the minimal
value in an unsorted array.

7 / 36



Selection Sort

Selection Sort
Simulation

15 32 8 16 4

8 / 36



Selection Sort

Selection Sort
Simulation

4 32 8 16 15

8 / 36



Selection Sort

Selection Sort
Simulation

4 32 8 16 15

8 / 36



Selection Sort

Selection Sort
Simulation

4 32 8 16 15

8 / 36



Selection Sort

Selection Sort
Simulation

4 8 32 16 15

8 / 36



Selection Sort

Selection Sort
Simulation

4 8 32 16 15

8 / 36



Selection Sort

Selection Sort
Simulation

4 8 32 16 15

8 / 36



Selection Sort

Selection Sort
Simulation

4 8 15 16 32

8 / 36



Selection Sort

Selection Sort
Simulation

4 8 15 16 32

8 / 36



Selection Sort

Selection Sort
Simulation

4 8 15 16 32

8 / 36



Selection Sort

Selection Sort
Simulation

4 8 15 16 32

8 / 36



Selection Sort

Selection Sort
Simulation

4 8 15 16 32

8 / 36



Selection Sort

Selection Sort
Implementation

void selection_sort(int array[])
{

int i,j;

for(i=0; i<NUMBER_OF_ELEMENTS-1; i++) {
int min = i;
for(j=i+1; j<NUMBER_OF_ELEMENTS; j++)

if(array[min]>array[j])
min = j;

if(min!=i)
swap(&array[min],&array[i]);

}
}

9 / 36



Selection Sort

Selection Sort
A Comment to the Implementation

The counter of the outer for loop indicates the element of the array that
should be sorted (just like the orange arrow in the visualisation). The
inner for loop searches for the smallest value in the part of the array to
the right of the currently sorted element. The algorithm is interested in
the location of the minimum value not in the value itself. In other words
it is interested in the index of the element that stores the value (the violet
arrow in the visualisation). If the min variable indicates different element
than the i variable, when the inner loop finishes, then the values of the
elements indicated by both variables should be exchanged. It is done
by the swap() function, which was introduced in the previous lecture.
The algorithm can be modified to perform a stable sorting by changing
the greater than operator in the conditional statement to the greater
or equal. If the operator is reversed then the array will be sorted in a
descending (non-ascending) order. The efficiency of the algorithm can
be improved by modifying it to sort the array “at both ends” and search
for the smallest and biggest value simultaneously. 10 / 36



Selection Sort

The swap() Function
A Different Implementation (Digression)

void swap(int *first, int *second)
{

if(first!=second) {
*first ^= *second;
*second ^= *first;
*first ^= *second;

}
}
The function presented above swaps values of two variables passed to it
by pointers, but without using an additional variable. It is enabled by
applying the ^ (xor) operator, which effect can be reversed. However,
if the address of the same variable is passed by both its parameters
then the variable will be zeroed out. Hence, if the conditional statement
detects such a case, no action will be taken by the function.

11 / 36



Selection Sort

The swap() Function
A Different Implementation (Digression) — Continuation

The advantage of such an implementation of the swap() function is that
it uses a little less memory than the more common implementation.
However, it is less efficient and it cannot be applied to variables of the
float, double and more advanced data types. The function can also be
implemented with the use of some arithmetic operators, but it will still
undergo similar limitations.

12 / 36



Insertion Sort

Insertion Sort
Algorithm Description

The insertion sort algorithm takes a different approach to the problem
of sorting on a linear array. It is based on the behaviour of same players
playing a card game. If they take a new card they try to find a place in a
deck for it by moving those cards that they already keep in a hand. The
algorithm begins sorting on the array starting from the second element,
by taking its value and comparing it with the value of the first element.
If the latter is greater, then the algorithm copies it to the element on
the right and inserts the value from the second element to the first one.
Then it proceeds similarly with the rest of the elements, i.e. it takes the
value of the nth element and compares it with the values of elements to
the left of it. If the value of some element is greater than the value of
the nth element then it is copied to the element to the right. Otherwise
the value of the nth element is inserted into the element located to the
right of the element which value was compared the last. The algorithm
finishes when it finds the right place for the value of the last element of
the array. 13 / 36



Insertion Sort

Insertion Sort
Simulation

The next slide contains a visualization of sorting on a linear array with
the use of the insertion sort algorithm. The element which value is cur-
rently sorted has a dark gray background. The value itself is shown and
moved above the elements with which it is compared. Please observe,
that instead of exchanging values between elements of array, the algo-
rithm just copies the value of an element to the element to its right.
Such an operation is called a “half exchange”. The elements with green
background are already sorted, the ones with red background are yet to
be sorted.

14 / 36



Insertion Sort

Insertion Sort
Simulation

15 32 8 16 4

15 / 36



Insertion Sort

Insertion Sort
Simulation

15

32

32 8 16 4

15 / 36



Insertion Sort

Insertion Sort
Simulation

15 32

8

8 16 4

15 / 36



Insertion Sort

Insertion Sort
Simulation

15

8

32 32 16 4

15 / 36



Insertion Sort

Insertion Sort
Simulation

15

8

15 32 16 4

15 / 36



Insertion Sort

Insertion Sort
Simulation

8 15 32

16

16 4

15 / 36



Insertion Sort

Insertion Sort
Simulation

8 15 32

16

32 4

15 / 36



Insertion Sort

Insertion Sort
Simulation

8 15

16

32 32 4

15 / 36



Insertion Sort

Insertion Sort
Simulation

8 15 16 32

4

4

15 / 36



Insertion Sort

Insertion Sort
Simulation

8 15 16

4

32 32

15 / 36



Insertion Sort

Insertion Sort
Simulation

8 15

4

16 16 32

15 / 36



Insertion Sort

Insertion Sort
Simulation

8

4

15 15 16 32

15 / 36



Insertion Sort

Insertion Sort
Simulation

8

4

8 15 16 32

15 / 36



Insertion Sort

Insertion Sort
Simulation

4 8 15 16 32

15 / 36



Insertion Sort

Insertion Sort
Implementation

void insertion_sort(int array[])
{

int i;
for(i=1;i<NUMBER_OF_ELEMENTS;i++) {

int key = array[i];
int j = i-1;
while(j>=0&&array[j]>key) {

array[j+1]=array[j];
j--;

}
array[j+1]=key;

}
}

16 / 36



Insertion Sort

Insertion Sort
Comment to the Implementation

The implementation of the insertion sort is more complicated than the
implementation of selection sort. The counter of the for loop indicates
an element which value is currently sorted. In the while loop the value
is compared with the values of the elements located to the left of it.
If those values are greater then they are moved right. Otherwise the
currently sorted value is inserted into an element located to the right
of an element that stores a value less or equal to it. If the internal
loop finishes “outside” the array, the value stored in the key variable
is inserted to the first element of the array. To change the direction of
sorting the operator in the array[j]>key expression should be reversed.

17 / 36



Insertion Sort

Insertion Sort
Insertion Sort vs. Selection Sort

To some extent the insertion sort algorithm is the opposite of the selec-
tion sort:

selection sort matches the right element to the right value, the in-
sertion sort matches the right value to the right element,
the selection sort scans the array form the left to the right and the
insertion sort from the right to the left.

18 / 36



Bubble Sort

Bubble Sort
Algorithm Description

There are several versions of bubble sort algorithm. In one of them the
algorithm scans the array from the right to the left, an element after an
element, and it compares the values of neighbouring elements. If they
are not sorted then it exchanges the values of those elements. After each
cycle of such scanning at least one of the elements at the left side of the
array is sorted. This element is omitted in the next cycle. The scanning
is repeated until the last two elements of the array are sorted.

19 / 36



Bubble Sort

Bubble Sort
Simulation

The next slide shows a visualization of sorting on a linear array with the
use of the bubble sort algorithm. The pair of elements that is currently
sorted has a gray background. The elements with the green background
are already sorted, the ones with the red background need to be sorted.

20 / 36



Bubble Sort

Bubble Sort
Simulation

15 32 8 16 44

21 / 36



Bubble Sort

Bubble Sort
Simulation

15 32 8 4 16

21 / 36



Bubble Sort

Bubble Sort
Simulation

15 32 4 8 16

21 / 36



Bubble Sort

Bubble Sort
Simulation

15 4 32 8 16

21 / 36



Bubble Sort

Bubble Sort
Simulation

4 15 32 8 1616

21 / 36



Bubble Sort

Bubble Sort
Simulation

4 15 32 8 16

21 / 36



Bubble Sort

Bubble Sort
Simulation

4 15 8 32 16

21 / 36



Bubble Sort

Bubble Sort
Simulation

4 8 15 32 16

21 / 36



Bubble Sort

Bubble Sort
Simulation

4 8 15 3216 32

21 / 36



Bubble Sort

Bubble Sort
Simulation

4 8 15 3216 32

21 / 36



Bubble Sort

Bubble Sort
Simulation

4 8 15 3216 32

21 / 36



Bubble Sort

Bubble Sort
Implementation

void bubble_sort(int array[])
{

int i,j;
for(i=0; i<NUMBER_OF_ELEMENTS; i++)

for(j=NUMBER_OF_ELEMENTS-1; j>i; j--)
if(array[j-1]>array[j])

swap(&array[j-1],&array[j]);
}

22 / 36



Bubble Sort

Bubble Sort
Comment to the Implementation

The internal for loop scans the array from the right to the left and
compares pairs of neighbouring elements. The range of the scan is limited
by the loop counter of the external for loop. To reverse the order of
sorting the operator in the conditional statement should be changed to
“less than”.

23 / 36



Bubble Sort

Sorting — Comparison of the Algorithms

All of the introduced sorting algorithms have the same properties except
for stability. However, they are some differences in their efficiency. From
the complexity theory point of view, it is the same for all of them. It
means, that the time needed to sort an array is proportional to the
square of the number of elements in the array2. However in practise, for
reasonably large arrays, the bubble sort algorithm is the worst choice.
It is not the worst possible sorting algorithm, because this title holds
the BogoSort, which generates a permutation of the values in the array
and then checks if they are sorted. Nevertheless, the bubble sort is
considered to be an anti example of efficient sorting, because it makes a
lot of time-consuming swap operations.

2More accurate analysis of the time complexity of those algorithms, which also
depends on the initial configuration of the values in the array, is one of the topics of
the Algorithms and Data Structures course.

24 / 36



Bubble Sort

Sorting — Comparison of the Algorithms
Continuation

The bubble sort algorithm should not be used in practise. Some com-
puter scientists believe that it should not be also taught. The difference
in the efficiency of the two other algorithms is small, but generally the
performance of insertion sort is better than selection sort. However, it
depends on the initial configuration of the values in the array. If they are
“almost” sorted then the selection sort will be more efficient, otherwise
the insertion sort will be a better choice.

25 / 36



Binary Search

Binary Search
Algorithm Description

It shows up, that searching for a given value in a sorted array can be
more efficient than performing the same operation on an unsorted array.
This, however requires a special algorithm that is called a binary search.
It consists of several steps. In the first one the middle element of the
array is located. If the array has an even number of elements then the
left to the middle element is assumed to be the one. Its value is compared
with the one that is desired. If they are the same the algorithm returns
the index of the element and finishes. However, if the value of the middle
element is greater than the desired value then it means that the latter can
only be in the part of the array that is located to the left of the middle
element. If the result of comparing those two values is the opposite, then
the desired value can only be in the part of the array located to the right
of the middle element. The algorithm repeats the steps for the chosen
part of the array.

26 / 36



Binary Search

Binary Search
Algorithm Description — Continuation

The algorithm repeats the steps until it locates the desired value or the
part of the array that needs to be checked becomes so small that it con-
tains no elements. In the latter case the desired valued does not occur in
the array. The algorithm always stops, because after every iteration it
halves the number of the elements of the array that need to be checked in
the next iteration. By contrast, the linear search algorithm reduces the
number of elements to search by one element in each iteration. There-
fore the binary search algorithm is much more efficient. The description
of the algorithm is simple, but implementing it can be challenging. Ac-
cording to Jon Bentley the algorithm was already known in 1946, but it
had not been correctly implemented until 1962.

27 / 36



Binary Search

Binary Search
Simulation

The next slide shows a visualization of the binary search algorithm for
a sorted array of six elements that contain natural numbers. The down
and up arrows indicate the first and the last element of the part of the
array that needs to be checked in the next iteration. Initially, this area
contains the whole array, but in the subsequent iterations it becomes
smaller. The middle arrow indicates the middle element in the checked
part of the array. The desired value is in the circle on the left.

28 / 36



Binary Search

Binary Search
Simulation

down upmiddle

0

7

1

9

2

10

4

17

5

20

3

14

14

29 / 36



Binary Search

Binary Search
Simulation

down upmiddle

0

7

1

9

2

10

4

17

5

20

3

14

14

29 / 36



Binary Search

Binary Search
Simulation

down

up

middle

0

7

1

9

2

10

4

17

5

20

3

14

14

29 / 36



Binary Search

Binary Search
Implementation

int binary_search(int array[], int value)
{

int down=0, up=NUMBER_OF_ELEMENTS-1;
while(down<=up) {

int middle = down+((up-down)/2);
if(array[middle]==value)

return middle;
if(array[middle]<value) {

down = middle + 1;
continue;

}
if(array[middle]>value)

up = middle - 1;
}
return -1;

}
30 / 36



Binary Search

Binary Search
Comment to the Implementation

The variables that indicate the beginning, the end and the middle of
the area of the array that needs to be checked have the same names as
the arrows in the simulation. The first line of the function that catches
the attention is the expression that locates the middle element. Why
the function does not calculate the average of the down and up instead?
Unfortunately, calculating the average of those two variables may lead
to the integer overflow in case of very large arrays (above one billion of
elements). The expression used in the function does not have such a
drawback. The second important part of the function is the detection of
the case when the desired value is not in the array. It is accomplished in
the condition of the loop, when the value of the down variable becomes
greater than the value of the up variable. It means that the area of the
array that needs to be checked contains no elements.

31 / 36



Binary Search

Binary Search
Comment to the Implementation — Continuation

The last interesting element of the implementation is an exclusion of
the middle element from the area that needs to be checked in the next
iteration. The element certainly does not contain the desired value and
leaving it in the search area can lead to errors. The continue keyword in
the second if statement prevents the condition in the third if statement
to be tested. If the condition in the second conditional statement is true
the condition in the next if statement is surely false and there is no
need to check it. If the desired value is not present in the array, the
function returns -1. If the desired value occurs many times in the array,
then the function always finds one of its occurrences, but not necessarily
the first one.

32 / 36



The Minimum and Maximum in a Sorted Array

The Minimum and Maximum in a Sorted Array

Finding the minimum and maximum becomes trivial in a sorted array.
If the values in the array are sorted in an ascending (non-descending)
order, the minimum is in its first element and the maximum in the last
one. If the values in the array are sorted in a descending (non-ascending)
order, the minimum is in the last element of the array and the maximum
is in the first one.

33 / 36



The End

Thanks

Many thanks to Grzegorz Łukawski, PhD and Leszek Ciopiński, MSc for
helping me to complete the Polish version of this slides.

34 / 36



The End

Questions

?

35 / 36



The End

The End

Thank You for Your attention!

36 / 36


	Sorting
	Selection Sort
	Insertion Sort
	Bubble Sort
	Binary Search
	The Minimum and Maximum in a Sorted Array
	The End

