
Fundamentals of Programming 1
Enumerated Types and Linear Arrays

Arkadiusz Chrobot

Department of Computer Science

December 7, 2020

1 / 42



Outline

1 Data Abstraction

2 Enumerated Types

3 The typedef Keyword

4 Linear Arrays

5 Initialization of an Array

6 Basic Operations on Linear Array

2 / 42



Data Abstraction

Data Abstraction

Abstraction can be applied not only to statements but also to data. The
C programming language allows a programmer to create custom data
types specific to a problem that is to be solved. An example of such a
data type is the enumerated type.

3 / 42



Enumerated Types

Enumerated Types

An enumerated type makes it possible to give names to characters or
numbers that belong to a subset of integers. In other words, the enumer-
ated type may be considered as a set of constants. The overall pattern
for defining an enumerated type is the following:

enum type_name {element_1=value, …, element_n};
Please note, that the name (identifier) of each element is written in
uppercases, just like names of constants. This is only a matter of con-
vention. Any name can be used, provided it is legal in the C language.
To each element of the enumerated type can be assigned a character or
an integer number. However, if no value is given to the elements by the
programmer, the compiler will assign to them successive numbers of int
type, starting from 0. It is also possible for the programmer to assign
the same value to more than one element or to assign a value only to
one element or a selected group or groups of elements. The rest of them
will get default values.

4 / 42



Enumerated Types

Enumerated Types
Examples

enum names_of_days {MONDAY=0, TUESDAY=1, WEDNESDAY=2, THURSDAY=3,
FRIDAY=4, SATURDAY=5, SUNDAY=6};

In the above definition of an enumerated type an integer number is
assigned to each name of a day. The same definition can be written as
follows:
enum names_of_days {MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY,

SATURDAY, SUNDAY};

However, if a programmer wants the values of the days to start with 1
instead of 0 she or he should define the type like this:
enum names_of_days {MONDAY=1, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY,

SATURDAY, SUNDAY};

Each subsequent day, after Monday, gets a number greater by one than
its predecessor, i.e. TUESDAY=2, WEDNESDAY=3, etc.

5 / 42



Enumerated Types

Enumerated Types
Examples

If the programmer wants to distinguish the days of weekend, by assigning
them for example numbers 9 and 10, then she or he can do that like
this:
enum names_of_days {MONDAY=1, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY,

SATURDAY=9, SUNDAY};

The values can also be assigned to the elements in a descending or-
der:
enum directions {NORTH=3, WEST=2, EAST=1, SOUTH=0};

6 / 42



Enumerated Types

Variables of an Enumerated Type
A variable of an enumerated type may be declared as local (also as a
function’s parameter) or global. The overall pattern for such a declara-
tion is as follows:

enum name_of_enumerated_type name_of_variable;
Any element of its enumerated type can be assigned to the variable. The
variable may be applied as a loop counter in a for loop, a selector in
a switch statement or it may be used in conditional statements and in
the condition-controlled loops.
Unfortunately, the C language implementation of the enumerated types
is imperfect. They are only a facilitation for the programmer. The
compiler does not verify the correctness of using the enumerated type
variables, considering them to be of int type. Thus it is possible to
assign to such variables any integer number. This can lead to many
mistakes. The C language makes it also possible to use the elements
of enumerated type as common constants and to define constants of
enumerated type with the use of the const keyword.

7 / 42



Enumerated Types

Enumerated Types
Examples

#include <stdio.h>

enum names_of_days {MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY, SUNDAY};

void print_message(enum names_of_days day)
{

switch(day) {
case MONDAY:
case TUESDAY:
case WEDNESDAY:
case THURSDAY:
case FRIDAY:

puts("Go to work!");
break;

default:
puts("Relax!");

}
}

int main(void)
{

enum names_of_days day;
for(day=MONDAY;day<=SUNDAY;day++)

print_message(day);
return 0;

}

8 / 42



Enumerated Types

Enumerated Types
Comment to the Example

In the program from the previous slide a local enumerated type variable
is declared in the main() function. It is the day variable. Also in the
print_message() function a parameter of the same type and name is
declared. The variable in the main() function is used as a loop counter
and the one in the print_message() is applied as a switch selector. It
is worth noticing, that in the switch statement most of the cases are
empty, but it is not a mistake but an intended effect. That way, the
code for Friday is performed also for all other days, except for Saturday
and Sunday, and it is not repeated. The code for those two mentioned
days is performed in the default case.
There is no easy way to print the value of an enumerated type variable.
It is however possible to display its numerical value with the use of
printf() function and the "%d" formatting string.

9 / 42



Enumerated Types

Enumerated Types
Examples

#include <stdio.h>

enum names_of_days {MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY=9, SUNDAY};

void print_message(enum names_of_days day)
{

switch(day) {
case MONDAY:
case TUESDAY:
case WEDNESDAY:
case THURSDAY:
case FRIDAY:

puts("Go to work!");
break;

default:
puts("Relax!");

}
}

int main(void)
{

enum names_of_days day;
for(day=MONDAY;day<=SUNDAY;day++)

print_message(day);
return 0;

}

10 / 42



Enumerated Types

Enumerated Types
Comment to the Example

A small change in the program, that assigns the value of 9 to the
Saturday element shows the imperfections of the enumerated types.
The output of the program suggests that the week has 11 days, most
of them free. The problem here is the day variable which is applied as a
loop counter. When the value of the counter is 4, what corresponds to
the Friday element, it is incremented in the next iteration of the loop
to 5 which cannot be mapped to any of the type’s element, but it still
a proper value, because for the program the day variable is of the int
type. In the C language the enumerated type is only a simple container
for constants and should be used carefully.

11 / 42



The typedef Keyword

The typedef Keyword

It is easy to forget that the declaration of an enumerated type variable
always starts with the enum keyword. To avoid issues with the missing
enum keyword, the typedef keyword may be applied. The latter keyword
allows for giving the enumerated type a shorter name:
typedef enum names_of_days {MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY=9, SUNDAY} days;

The variable of the type may now be declared like this:
days day = MONDAY;

Generally, the typedef keyword makes it possible to give an alternative
name to any data type including the predefined data types of the C
language. Therefore, it should be used carefully. Many programmers
advise against using it, since it can make the program difficult to read
by concealing the true types of variables.

12 / 42



Linear Arrays

Linear Arrays
One-dimensional arrays or simply the linear arrays are an example of a
data structure i.e. a variable that can store more than one value at the
same time. In case of arrays all those values are of the same type. The
picture below shows the construction of a linear array that can store up
to 8 integer numbers.

0
-7

1
7

2
10

3
-3

4
0

5
7

6
15

7
0

The numbers on the top of the array are the indices that uniquely locate
an element inside the array. In the C language the indices are natu-
ral numbers. The first element of the array always has an index of 0.
The element is a single location in the array that holds a single value.
All indices are unique and form an ascending sequence. The values of
the elements may repeat and do not have to be sorted. The array is
sometimes called (not entirely correctly) a vector.

13 / 42



Linear Arrays

Linear Arrays
Declaration

Just like other variables the array has to be declared before using. It can
be declared as global or local variable. The elements of the former are
initialized with zeros and the initial value of the elements of the latter is
unspecified. The overall pattern of declaration of an array is as follows:

data_type array_name[number_of_elements];
An element of the array may be of any of the types that were already
introduced in the lecture. The arrays of characters have a special mean-
ing and they will be discussed separately in a future lecture. The name
(identifier) has to be legal in the C language. The number of elements
determines how many elements will have the array. It can be given as a
literal or a constant defined with the use of #define statement. Accord-
ing to the ISO C99 standard, the number of elements has to be greater
than zero. The indices range stars from zero and ends with the number
of elements minus one.

14 / 42



Linear Arrays

Linear Arrays
Accessing the elements

It is worth noticing, that the array resembles the structure of RAM. In
order to read or modify the content of a single memory cell an address
has to be provided. Similarly, if a programmer wants to read or write
an element of an array she or he has to use its index. Referencing an
element of an array follows this pattern:

array_name[index]
In the C language the array name is equivalent to a pointer. Thus there
are three additional ways of referencing the element:

*(array_name+index)
*(index+array_name)
index[array_name]

The first two expressions use so-called pointers arithmetic. The most
frequently used way of accessing an array element is the one introduced
as first. The second one is also sometimes applied. The last two are
rarely used because they are less legible.

15 / 42



Linear Arrays

Linear Array
Array Size and Number of Elements

The size of an element (the number of bytes it occupies in memory) can
be acquired with the use of sizeof operator. The number of array’s
elements can be computed using the following expression:

sizeof(array_name)/sizeof(array_name[0])
The expression can be a little simplified with the use of the pointer
arithmetic:

sizeof(array_name)/sizeof(*array_name)
Unfortunately, both expressions and the sizeof operator give incorrect
results when the array is a function’s parameter.

16 / 42



Linear Arrays

Linear Array
Passing to a Function

Arrays can and should be passed by parameters to functions. The array
parameter can be declared the same way as a regular array, although in
a function’s list of parameters. However, the number of elements in such
a parameter is ignored. An array of any legal number of elements can be
an argument for this parameter. Only the data types of the elements of
the argument and the parameter have to be compatible. Therefore, the
number of elements in the array parameter is usually omitted. The array
may be also passed to the function with the use of a pointer parameter.
The pointer should be of the same type as the elements of the array or
it should be declared as a void * pointer. In the second case, the data
type of the pointer means that it can be assigned a pointer of any other
type. Effectively, the array is always passed by a pointer, which means
that changing a value of any of the parameter’s elements results in the
modification of the value of the same element in the argument.

17 / 42



Initialization of an Array

Initialization of an Array
Initialized Array

The array may be initialized in the place of its declaration. To this end
an assignment operator has to be put after the closing bracket followed
by a list of values in curly braces. The values have to be separated by
commas. If there is provided less values in the list than the array has
elements then only the starting elements of the array will be initialized.
It is also possible to skip the number of elements when initializing an
array this way. The compiler will figure it out by the number of provided
initial values.
int main(void)
{

double fractions[] = {0.1, 0.2, 0.3};
double fractions_2[3] = {0.1, 0.2, 0.3};
return 0;

}
18 / 42



Initialization of an Array

Initialization of an Array
Initialization Made by User

The initial values for the array can be provided by user, during a program
run, with the use of a keyboard. It requires using a loop for indexing
the elements of an array and the scanf() function. An element of the
array is a single variable. Therefore its address should be provided as
the second argument of the scanf() call. The address is obtained with
the use of the address operator. An example:
int main(void)
{

int array[5];
unsigned int i;

for(i=0;i<5;i++)
scanf("%d",&array[i]);

return 0;
} 19 / 42



Initialization of an Array

Initialization of an Array
Initialization with the Use of Indices

Using one of the two introduced ways of initializing arrays in case where
the array has huge number of elements could be cumbersome. Alterna-
tively, if the elements of the array are of int or compatible type, they
can be assigned the values of their indices:
int main(void)
{

int array[1000];
unsigned int i;
for(i=0;i<1000;i++)

array[i] = i;
return 0;

}
It is a simple way of initializing an array. However, the values of the
elements are unique and arranged in an ascending sequence, which is not
always desired. 20 / 42



Initialization of an Array

Pseudorandom Number Generator

An array may be initialized with the use of a pseudorandom number
generator (PNG). It is an algorithm that generates numbers appearing
to be random. However, it can be statistically verified that they are not
truly random. This usually excludes their use in cryptography, but for
the purpose of this lecture they are sufficiently random. To distinguish
them from truly random numbers, they are called pseudorandom. The
algorithm uses an initial value called a seed and a mathematical formula
to generate such numbers.

21 / 42



Initialization of an Array

Pseudorandom Number Generator
Using the PNG in the C Language

In the C language there are two functions, declared in the stdlib.h
header file, that are the implementation of the PNG. Those are srand()
and rand(). The former takes as an argument an unsigned int num-
ber and makes it the seed for the PNG. The latter does not take any
argument and returns a pseudorandom int number ranging from 0 to
rand_max. The srand() function has to be called outside any loop. The
argument for the function may be the result of the time() function de-
clared in the time.h header file. An argument for the latter function
can be null or zero.

22 / 42



Initialization of an Array

Pseudorandom Number Generator
The PNG Usage

The PNG generates only natural numbers. If a pseudorandom natural
number is needed ranging from 0 to 9 (both inclusive) it can be chosen
with the following expression:
int x = rand()%10;
To choose numbers ranging from 1 to 10 (both inclusive) the expression
should be modified as follows:
int x = 1+rand()%10;
To pick integer numbers ranging from −10 to 10 (both inclusive), a
following expression can be applied:
int x = -10+rand()%21;
If a floating-point pseudorandom number is needed from the interval of
[-10,11) it could be chosen with the following expression:
double x = -10+rand()%21+rand()/(RAND_MAX+1.0);

23 / 42



Initialization of an Array

Pseudorandom Number Generator
The PNG Usage

To pick a pseudorandom lowercase letter from the set of 26 lowercases
the following expression may be used:
char x = 'a'+rand()%26;

24 / 42



Initialization of an Array

Array Initialization
Array Initialization with Pseudorandom Numbers

Below is defined a function that initializes an array of number_of_elements
elements with pseudorandom numbers ranging from 0 to 199 (both in-
clusive):
void fill_array_with_random_numbers(int array[])
{

srand(time(0));
int i;
for(i=0; i<NUMBER_OF_ELEMENTS; i++)

array[i]=rand()%200;
}
Please observe, that the number may not be unique.

25 / 42



Initialization of an Array

Array Initialization
Shuffling

An array containing unique numbers arranged in an ascending order
may be created by assigning to each of its elements the value of the
element’s index. Such an array can be changed into an unsorted array
with unique numbers by applying the shuffle algorithm. The algorithm
generates a permutation of the values by visiting each of the elements
of the array, except for the last one, and swapping its value with other
(pseudo) randomly chosen element. The latter element is selected from
a set constituted of the yet not visited elements of the array and the
currently visited element. This algorithm is implemented with the help
of three functions that are described in the next slides.

26 / 42



Initialization of an Array

Array Initialization
Shuffling — Swapping the Value of Elements

Below is defined a function that swaps the value of two variables. Those
variables are passed to the function by pointers.
void swap(int *first, int *second)
{

int tmp;
tmp = *first;
*first = *second;
*second = tmp;

}

27 / 42



Initialization of an Array

Array Initialization
Shuffling — Choosing an Element

The function presented in this slide chooses the index of an element of the
array, that belongs to the set consisting of the currently visited element
and the yet not visited elements. The index of the currently visited
element is passed to the function by the from parameter. The number
of elements of the array is denoted by the array_length constant.
int choose(int from)
{

return from+rand()%(ARRAY_LENGTH-from);
}

28 / 42



Initialization of an Array

Array Initialization
Shuffling — the Implementation

The function defined below shuffles the values in the array. Please notice,
that the choose() function is invoked in brackets. It means that the
value returned by the function is used as the index of the element which
value is swapped with the value of the currently visited element of the
array. The index of the latter one is in the i variable.
void shuffle(int array[])
{

srand(time(0));
unsigned int i;
for(i=0;i<ARRAY_LENGTH-1;i++)

swap(&array[i],&array[choose(i)]);
}

29 / 42



Basic Operations on Linear Array

Array Coping

Two arrays of the same number and the same type of elements may be
copied with the use of a loop. However, the task may be accomplished
more efficiently if the memcpy() function is used. The function is declared
in the string.h header file. It takes three arguments. The first one is
the the name of the destination array. The second one is the name of
the source array. The third one is the size of the copied (source) array.
Generally, the sizes of the arrays may differ. In that case the destination
array should be bigger than the source array. The value returned by
the memcpy() is usually ignored. Other helpful function, that is also
declared in the string.h file, is memset(). This function also takes
three arguments. The first one is the name of an array. The second one
is an int number that should be copied to all elements of the array. The
last argument is a size of the array. The memset() function could be
utilized to initiate elements of the array with the same value. It is also
a common practice to ignore the value returned by memset().

30 / 42



Basic Operations on Linear Array

Printing the Values of Array’s Elements
An iterative statement, like the for loop, may be used for indexing and
successively visiting all elements of an array. Below is defined a function
that uses such a loop to display all values stored in an array.
void print_array(int array[])
{

unsigned int i;
for(i=0; i<100; i++)

printf("array[%u]: %d ",i,array[i]);
}
The values may also be displayed in a simplier manner:
void print_array(int array[])
{

unsigned int i;
for(i=0; i<100; i++)

printf(" %d ",array[i]);
} 31 / 42



Basic Operations on Linear Array

Finding the Minimum Value
The Algorithm

Solving some problems may require finding the smallest value in an un-
sorted array. The algorithm for that task is quite simple:

1 Store the value of the first element of the array in a separate variable.
Assume for now, that it is the minimum value.

2 Visit all other element of the array, starting from the second one. If
the currently visited element has a value smaller then the one stored
in the variable, then store the value of the element in the variable.

3 If all elements of the array has been visited, the minimal value is in
the variable.

32 / 42



Basic Operations on Linear Array

Finding the Minimum Value
The Implementation

The function blow implements the algorithm described in the previous
slide. It searches for the minimum value in an array of the number of
elements given by the constant number_of_elements.
int find_min(int *array)
{

int min;
unsigned int i;
min=array[0];
for(i=1; i<NUMBER_OF_ELEMENTS; i++)

if(min>array[i])
min=array[i];

return min;
}

33 / 42



Basic Operations on Linear Array

Finding the Maximum Value
The Implementation

The algorithm for finding the maximum value is basically the same as
for finding the minimum value. The only difference is the operator used
in the conditional statement — less than instead of greater than. The
function that implements the algorithm is named accordingly and so is
the variable inside the function, that stores the result.
int find_max(int *array)
{

int max;
unsigned int i;
max=array[0];
for(i=1; i<NUMBER_OF_ELEMENTS; i++)

if(max<array[i])
max=array[i];

return max;
}

34 / 42



Basic Operations on Linear Array

Finding the Extremes
It is easy to spot, that in the case where both values (the minimum
and the maximum) are needed it would be better to search for both of
them simultaneously than look them up separately. The function below
realizes this idea. It passes the minimum and maximum values by the
min and max parameters.
void find_exterme_values(int array[], int *min, int *max)
{

unsigned int i;
*max = *min = array[0];
for(i=1; i<NUMBER_OF_ELEMENTS; i++) {

if(*min>array[i])
*min=array[i];

if(*max<array[i])
*max=array[i];

}
}

35 / 42



Basic Operations on Linear Array

Searching For a Specific Value in an Unsorted Array
The Algorithm

The problem of locating a specific value in an array is very common.
There are many variants of this issue. Here, we are interested in finding
the first occurrence (starting from the first element) of the value in the
array. The algorithm is quite simple. It checks all elements of an array
one by one. If it finds the value in one of them it stops and returns the
index of that element. Otherwise, if it does not find such a value in any
of the elements, it returns a number, for example -1, that indicates that
the array does not contain such a value. Such an algorithm is know as
the linear search algorithm.

36 / 42



Basic Operations on Linear Array

Searching For a Specific Value in an Unsorted Array
The Implementation

Below is a function that implements the linear search algorithm.
int find_value_index(int array[], int value)
{

unsigned int i;
for(i=0; i<NUMBER_OF_ELEMENTS; i++) {

if(array[i]==value)
return i;

}
return -1;

}

37 / 42



Basic Operations on Linear Array

Searching For a Specific Value in an Unsorted Array – a
Different Approach
The Algorithm

In the function from the previous slide, in each iteration of the for loop
two conditions are checked. The first one is in the header of the loop
and it tests whether there are any elements of the array left to visit.
The second one is in the conditional statement and it checks whether
the currently visited element stores the value that the function searches
for. It is possible to simplify the loop. To do that an array is needed
with one additional element at the end of it. In that element is stored …
the desired value! That enables the reduction of conditions tested in the
loop. Now, it is only required to check whether the value is found. After
the loop terminates it is necessary to check the value of the variable used
for indexing the array. If it indicates the last element in the array, the
function should return -1, because the value is not among the original
values in the array. If not, it specifies the first element of the array
containing the desired value. The algorithm is called a sentinel linear
search or a guarded linear search. 38 / 42



Basic Operations on Linear Array

Searching For a Specific Value in an Unsorted Array – a
Different Approach
The Implementation

The following function implements sentinel linear search:
int faster_find_value_index(int *array, int value)
{

int larger_array[NUMBER_OF_ELEMENTS+1];

memcpy(larger_array,array,sizeof(array[0])*NUMBER_OF_ELEMENTS);
larger_array[NUMBER_OF_ELEMENTS]=value;

unsigned int i = 0;
while(larger_array[i]!=value)

i++;
return (i!=NUMBER_OF_ELEMENTS)?i:-1;

}

The original values are copied to the larger_array with the use of
memcpy() function. The array that stores them is passed to the function
by a pointer. Thus its size is calculated as the product of the size of its
first element and the total number of its elements.

39 / 42



Basic Operations on Linear Array

Thanks

Many thanks to Grzegorz Łukawski, PhD and Leszek Ciopiński, MSc for
helping me to complete the Polish version of this slides.

40 / 42



Basic Operations on Linear Array

Questions

?

41 / 42



Basic Operations on Linear Array

The End

Thank You for Your attention!

42 / 42


	Data Abstraction
	Enumerated Types
	The typedef Keyword
	Linear Arrays
	Initialization of an Array
	Basic Operations on Linear Array

