
Fundamentals of Programming 1
Libraries

Arkadiusz Chrobot

Department of Computer Science

January 25, 2021

1 / 57



Outline

1 Introduction

2 Libraries in the C Languages

3 Preprocessor Macros

4 The inline Functions

2 / 57



Introduction

Libraries

The source code of large computer programs is usually divided into sep-
arate files that are generally called translation units and in case of com-
piled programming languages – compilation units. The objective of this
partition is twofold. It improves the legibility of the code by grouping el-
ements of program that serve the same purpose and it allows for reusing
the code for creating different software. The translation units that con-
tain functions, variables, data types and constants for using in many
different program are called libraries. They are not only a “containers”
for elements of a program, but also allow the programmer to manage the
code, by deciding which of the elements should be available outside the
library and which should be hidden inside.

3 / 57



Introduction

Interface and Implementation of the Library

Elements of software which are gathered in a library and are available
outside, for public use, create the library interface. Elements closed
inside the library form its implementation. To make this distinction
possible a programming language has to provide special mechanism for
hiding the code. To explain the necessity of separating an interface from
an implementation, two points of view on the library structure have to
be taken into consideration. The first one in associated with the pro-
grammer who uses the library. She or he wants the library to be easy
to apply in her or his code. The programmer wants also to have a clear
information which elements of the library she or he can use in her or his
code and how. When a new version of the library is released, perhaps
with an extended interface or changed implementation, the program-
mer’s software should compile with this version of library without any
modifications. The second point of view is associated with the program-
mer who creates the library.

4 / 57



Introduction

Interface and Implementation of the Library
Continued

She or he wants to have the possibility of introducing changes or cor-
rections to the library code, but she or he doesn’t want to make harder
the job of the programmer who uses the library by making her or him
to modify her or his program. To fulfill requirements of those two types
of programmers the elements of the library that are likely to stay the
same in subsequent versions should be made a part of library interface.
If a function is such an element then the way it is invoked must be the
same in new releases of the library. This means that the name of the
function, the types, order and even number of its parameters have to
stay unchanged. The interface is responsible for cooperation between
the library and other units of translation, so it can only be extended in
next versions of library. It cannot be rebuilt or narrowed down. The
creator of the library should put all the elements that are likely to change
in next version in its implementation. Those elements decide about the
internal workings of the library and should be hidden to the programmer
that uses the library. 5 / 57



Introduction

Interface and Implementation of the Library
Continued

A similar strategy is followed by the car manufactures. In a new model
they try to preserve the layout of the elements necessary for controlling
the auto, like the steering wheel, clutch, gauges etc. while changing the
elements that decide about the performance or look of the car, like the
engine, gearbox, chassis, body, etc.

6 / 57



Libraries in the C Languages

Libraries in the C Languages

The C language allows the programmers to create and use static and
dynamic libraries. The former are included in the program during com-
pilation. The latter are loaded into the computer’s memory only when
a program references them, for example by calling one of the functions
they contain. A single dynamic library loaded in the memory may be
shared by more than one program.
The static and dynamic libraries are crated in the same way, but the
way of using the latter depends on the operating system. Therefore only
the static libraries are covered in the lecture.

7 / 57



Libraries in the C Languages

Declaration and Definition of a Variable
For the seek of simplicity the introduction of a variable to the program
is called a declaration. In reality, if a variable is used only in a single
translation unit, then when declared it also defined. If a variable is used
in many translation files, then its declaration may be separated from
its definition. Moreover there can be many declarations of the variable,
but only one definition has to exist. The declaration is information for
the compiler, that a variable is defined in some other translation unit,
but is used in the file that contains the definition. The declaration, on
the other hand informs the compiler that it has to put in the output
code instructions that allocate the memory for the variable (i.e. literally
create it) and initialize it. The declaration of a variable starts with the
extern keyword and that’s basically what differentiates it from definition
of the variable. The declared variable must be defined somewhere in the
program, usually in another translation unit. Otherwise the program
won’t compile. The next slide presents an example in which a variable
is declared and defined in two separate compilation units.

8 / 57



Libraries in the C Languages

Declaration and Definition of a Variable
Example

File 1: external.c

int foo;

File 2: program.c

#include<stdio.h>

extern int foo;

int main(void)
{

printf("%d\n",foo);
return 0;

}
9 / 57



Libraries in the C Languages

Declaration and Definition of a Variable
Comment

The external.c file contains the definition of the foo variable, which is
used in the program.c file. Since it is a global variable, its initial value
is zero.

10 / 57



Libraries in the C Languages

Static Variables

If the variable was to be global, but unavailable outside the translation
unit in which it is defined, its definition should be prefixed with the
static keyword. The keyword has been already introduced in the lec-
ture on functions. If it is used with a local variable it makes the variable
persistent between subsequent calls of the function where it is defined.
Moreover, the initial value of the variable (i.e. before the first call of the
function) is zero. In case of the global variables, the static keyword
narrows down their scope to file where they are declared. It is safe for
the functions defined in the same translation unit, to directly (i.e. with-
out using parameters) reference those variables, because no other code
can influence the state of those variables.

11 / 57



Libraries in the C Languages

Declaration and Definition of Function

Similarly to variables also functions can be defined and declared in sepa-
rate translation units. The declaration of a function consist of its header
ended with a semicolon. It is also allowed to leave out the names of
function’s parameters. Only their types have to be present in the dec-
laration. If a function is defined in separate translation unit, then its
declaration can be prefixed with the extern keyword, however it is not
mandatory. If the function should be available only in the file where it
id defined, then its header should start with the static keyword. It can
be concluded, that the static keyword in the context of libraries allows
for hiding details of their implementation, which should be unavailable
outside. The next slide shows a declaration and definition of a single
function placed in a two different files.

12 / 57



Libraries in the C Languages

Declaration and Definition of Function
Example

File 3: external_2.c

#include<stdio.h>

void print(int variable)
{

printf("%d\n",variable);
}

File 4: program_2.c

extern int foo;
extern void print(int);

int main(void)
{

print(foo);
return 0;

}

13 / 57



Libraries in the C Languages

Declaration and Definition of Function
Comment

The print() function is defined in the external_2.c file. Because
it calls the printf() function, it is necessary to include the stdio.h
header file in this translation unit. The print() function is invoked in
the program_2.c translation unit, where the function is also declared.
The code in the aforementioned file references also the foo variable,
which is defined in the external.c file.

14 / 57



Libraries in the C Languages

Header Files

Using variables and functions defined in different files requires repeat-
ing their declarations in every translation unit where they referenced
or invoked. This inconvenience can be mitigated by placing the dec-
larations in a header file. Such a file contains a source code, just like
other translation unit, but its name has a different extension: .h. The
header file may contain declarations of functions and variables defined
in at lease one translation unit with the .c extension, but it shouldn’t
contain their definitions or any other statements that force the program
to allocate memory. The other “safe” statements beside declarations of
files and variables are type definitions (for structures, unions and enu-
merated types) and preprocessor macros, which will be described in the
lecture. The next slide presents an example of a header file.

15 / 57



Libraries in the C Languages

Header Files

File 5: header.h

#ifndef HEADER_H
#define HEADER_H

extern int foo;
extern void print(int);

#endif

16 / 57



Libraries in the C Languages

Header Files
Comment

The exemplary header file contains declarations of a function and a vari-
able from the previous examples. They are surrounded by directives of
preprocessor that make sure that the declarations form the file will be
placed in a source code only once, even if the header file itself may be
included many times in the program. The #ifndef directive makes the
preprocessor to make some actions, provided that the marker that fol-
lows the directive is not defined. The marker is called an include guard,
macro guard or header guard and it can be any legal identifier, but
usually its definition in based on the header file name, just like in the
example. If the header guide is not defined that the preprocessor copies
all the code between the #ifndef and #endif to the place in program
where the header file is included. The code contains the definition of
the header file. It resembles definition of a constant but the value is
missing so, only the name (the marker) is defined. If the header file is
included in the source code more than once the preprocessor will detect
the definition of the header guard and will take no actions. 17 / 57



Libraries in the C Languages

Header Files
Inclusion of a Header File to a Program

The inclusion of the header file to the file with the .c extension or other
header file is done by the preprocessor. It is a program that takes a part
in the compilation process by preparing the source code for the compiler.
If the header file doesn’t contain any macros, the preprocessor copies its
content to the file where it is included, provided it hasn’t been already
copied. The #include directive is used for including the header file in
other file with the source code. If the header file is in the preprocessor
default directory for header files, then the directive is followed by the
name of the file embraced by angle brackets. If the file is kept in the
same directory as the rest of program’s files, then its name should be
embraced by quotation marks instead of angle brackets. Providing its
path could be necessary if it is in other nonstandard directory. It is
recommended that the header file is included in the file containing the
definitions of functions and variables. It allows the compiler to check the
validity of declarations and definitions. If the latter file uses macros or
types defined in the header file, then the header file must be included.18 / 57



Libraries in the C Languages

Header Files
Inclusion of a Header File to a Program — Remark

An important conclusion should be drawn from the description of the
header file inclusion procedure: If the program doesn’t need any def-
inition or declaration contained in a header file then the header file
shouldn’t be included in its source code. Otherwise the content of the
file will only increase the size of the executable output file. Next slide
demonstrates the usage of the header file in a program’s source code.

19 / 57



Libraries in the C Languages

Header Files
Example

File 6: external2.c

#include<stdio.h>
#include"header.h"

void print(int variable)
{

printf("%d\n",variable);
}

20 / 57



Libraries in the C Languages

Header Files

The previous slide contains the modified external_2.c file. A directive
is added that includes the header.h file. It is assumed that both files are
in the same directory. It is not necessary to include the header file into
the external_2.c file, but it allows the compiler to check compatibility
of declaration and definition of the function.

21 / 57



Libraries in the C Languages

Header Files
Example

File 7: external.c

#include"header.h"

int foo;

22 / 57



Libraries in the C Languages

Header Files
Comment

The previous slide contains modified version of external.c file. The
inclusion of the header file in this case is also not necessary, but it also
allows the compiler to check the compatibility of the declaration and
definition of the variable.

23 / 57



Libraries in the C Languages

Header Files
Comment

Plik 8: program2.c

#include"header.h"

int main(void)
{

print(foo);
return 0;

}

24 / 57



Libraries in the C Languages

Header Files
Example

Header files along with related source files (the files with the .c extension
in names) form libraries. The program from the previous slide demon-
strates the usage of a static library. The included header file contains
declarations of the foo variable and the print() function defined in an-
other source file. Thus the main() function can use them as their would
be declared in the same translation unit as the function.

25 / 57



Libraries in the C Languages

Libraries — Summary

A library in the C language consists of a header file and at least one
source file. The header file can contain definitions of macros and types as
well as declarations of functions and variables. The source files (already
compiled or not) contain the definitions of those functions and variables.
It is also possible to build a library consisting of only one source file
and many header files that at least contain definitions of function and
variables declared in the source file. Finally, a library with many header
files related to many source files is also possible.

26 / 57



Preprocessor Macros

Preprocessor Macros
The header files handling isn’t the only job of the preprocessor. It hes its
own programming language, consisting of directives, which isn’t trans-
lated to the machine language, but is used for controlling the compilation
process. Some of the directives of the processor have been already in-
troduced in the lecture. For example, the #define directive was often
used to define constants. Such constants are also a preprocessor macros.
The names of the constant used in the source code, are substituted by
the preprocessor with its value. However, the macros can be something
else than simple constant definitions. A macro can be a whole subrou-
tine with its own parameter list. When used in the program it is not
called like a function, but it is expanded, which means that its code is
copied to the place in the code where its name is listed together with
its arguments. The advantage of the macro over a function is that it do
not requires the program to allocate a stack frame, so it saves the time
and memory. The disadvantage is that the preprocessor that expands
the macro doesn’t check the validity of the macro code, which may lead
to hard to discover defects in the code. 27 / 57



Preprocessor Macros

Preprocessor Macros

Macros definitions are usually placed in header files, but it is also pos-
sible to put them in source files. The second approach is used in all
examples in the lecture, to simplify the code of exemplary program.
While expanding the macro the preprocessor doesn’t check its validity.
It only prepares the source code for the compiler, which performs such
an activity. This means that if there is a syntax error, it will be discov-
ered by the compiler in other place in the source code than the definition
of the macro. Thus it is more difficult to discover bugs in macro than in
a function. Also the macros are more prone to convey logical errors to
the code. The next slides present a program containing a definition of
a simple macro, which may cause unexpected problems in some cases.
The corrected version of the macro will also be introduced.

28 / 57



Preprocessor Macros

Preprocessor Macros
Example

#include<stdio.h>

#define MULTIPLY(X,Y) X*Y

int main(void)
{

int a=2, b=3;
printf("The macro result: %d\n",MULTIPLY(a,b));
return 0;

}

29 / 57



Preprocessor Macros

Preprocessor Macros
Comment

A macro named multiply is defined in the program, which multiplies
arguments passed to it by the x and y parameters. The definition of the
macro does not contain a semicolon. It may however be necessary to
used it in the location of code where the macro is expanded. Please also
observe that the parameters of the macro don’t have the type specifica-
tions. The names of the macro and parameters are capitalised, but it is
only a matter of convention. Most C programmers however follows it.
In the example the parameters of macro are substituted in the main()
function by two arguments – the a and b variables. The value of the
former is 2, and the latter 3. As expected the result of the macro is 6. A
small modification of the program’s code may lead to an incorrect result
from the macro, which is demonstrated in the next slide.

30 / 57



Preprocessor Macros

Preprocessor Macros
Example

#include<stdio.h>

#define MULTIPLY(X,Y) X*Y

int main(void)
{

int a=2, b=3;
printf("The macro result: %d\n",MULTIPLY(a+1,b-1));
return 0;

}

31 / 57



Preprocessor Macros

Preprocessor Macros
Comment

The modified version of the program will display 4 on the screen as
a result. The expected value is 6. The error is caused by the lack
of arguments evaluation when the macro is expanded. The x and y
parameters in the x*y expression are substituted by the a+1 and b-1
arguments, so the macro is expanded to a+1*b-1 expression. Finally,
when the program runs the expression is once more time evaluated to
the 2+1*3-1 form and hence the wrong result. To correct the defect each
of the parameters should be embraced by parentheses when applied in
macro code. Unfortunately, this solution fails if the arguments are of
incompatible type with the expression (for example they are strings).
Such an error is detected by the compiler.

32 / 57



Preprocessor Macros

Preprocessor Macros
Example

#include<stdio.h>

#define MULTIPLY(X,Y) (X)*(Y)

int main(void)
{

int a=2, b=3;
printf("The macro result: %d\n",MULTIPLY(a+1,b-1));
return 0;

}

33 / 57



Preprocessor Macros

Preprocessor Macro

The preprocessor macros may contain more than one statement. Each
of the statements can be placed in a separate line of the source code,
provided that some additional requirements are met. If the macro has
more than two lines of code, then all the lines between the first and
the last one have to be ended with the backslash character: \. The
backslash is used for informing the preprocessor that a line of macro
code is followed by another one. Very often the code of the macro body
is enclosed in a do…while() loop that has 0 as a condition and isn’t
ended with the semicolon. Such a loop is executed only once. The loop
allows the programmer to put a semicolon after the macro expansion
statement in the code wherever it seems to be necessary.

34 / 57



Preprocessor Macros

Makra preprocesora
Przykład

#include<stdio.h>

#define SWAP(A,B) do {\
int tmp;\
tmp = (A);\
(A) = (B);\
(B) = tmp; \

} while(0)

#define PRINT(A,B,C) printf("%s: %d, %s: %d, %s: %d\n",#A,(A),#B,(B),#C,(C))

int main(void)
{

int a=2, b=3, c = 4;
if(a>b)

SWAP(a,b);
else

SWAP(a,c);
PRINT(a,b,c);
return 0;

}
35 / 57



Preprocessor Macros

Preprocessor Macros
Comment

The usage of the do…while(0) in the code of the swap macro makes
it possible to end its expansion statement twice – before and after the
else keyword in the conditional statement. There is also another macro
defined in the exemplary program. Its name is print and it displays
names and the values of the variables on screen. The names of the
variables substituted for the macro parameters are obtained with the
use of # (the hash) operator. For example the #a expression means that
everything that stands between the hash and the following comma will
be converted to a string. Processor has another such an operator denoted
by double hashes: ##. This operator concatenates two strings (“glues”
them together). Its application is demonstrated in the next slide.

36 / 57



Preprocessor Macros

Processor Macros
Example

#include<stdio.h>

#define VARIABLE(SCOPE) int SCOPE##_variable

VARIABLE(global);

int main(void)
{

VARIABLE(local) = 6;
printf("global_variable: %d, local_variable: %d\n",

global_variable, local_variable);
return 0;

}

37 / 57



Preprocessor Macros

Preprocessor Macros
Comment

The variable macro is applied in the program to declare and define two
variables of the int type, namely the global_variable and local_variable.
Moreover, the latter variable is also initialized. The code in not easy to
follow, but it demonstrates the usage of the ## operator.
If needed a definition of a macro may be excluded from the whole of code
or a part of it with the use of #undef directive. It should be followed
by the name of the macro to exclude. The macro won’t be available for
the code that follows the directive.

38 / 57



Preprocessor Macros

Assertions

Macros are often used for finding defects and verifying the code. In
the C language there is a macro called assert defined in the assert.h
header file. It is an implementation of the assertion concept introduced
to computer science by Robert Floyd. The assertion is an expression
that should always true. The assertions are evaluated to check the cor-
rectness of some parts of a code. For example, an assertion can be
evaluated before and after a loop or a function is performed. If the value
of such assertion is false, then there is at least one defect in the code
that needs to be removed. The assert macro takes one argument, which
is an expression. If the expression is false then the macro displays an
appropriate message and terminates the program. Usage of the macro
is demonstrated in the next slide.

39 / 57



Preprocessor Macros

Assertions
Example

#include<stdio.h>
#include<assert.h>

int main(void)
{

int i;
for(i=1;i<10;i++) {

assert(i<=5);
printf("%d%%%d=%d ",5,i,5%i);

}
return 0;

}

40 / 57



Preprocessor Macros

Assertions
Comment

In the example form the previous slide the assert macro is used for
checking if the divisor in the expression is not greater than the dividend.
If the macro recognizes that the condition is not met, it will display a
message and terminate the program. Please also observe the formating
string in the printf() function call. It needs to display the reminder
operator symbol which is %. Because it is a special character in the
formatting string, it has to be doubled. That’s why the string looks
complicated. The programmers tend to switch off assertions when they
deliver the final version of the program. While it is controversial it is
worth to know how to do it. It is sufficient to define a ndebug macro at
the beginning of the program’s main translation unit or as an option of
the compiler. In the former case the macro should be defined before the
assert.h file is included. The next slide contains an example explaining
the usage of the macro.

41 / 57



Preprocessor Macros

Assertions
Example

#include<stdio.h>
#define NDEBUG
#include<assert.h>

int main(void)
{

int i;
for(i=1;i<10;i++) {

assert(i<=5);
printf("%d%%%d=%d ",5,i,5%i);

}
return 0;

}

42 / 57



Preprocessor Macros

Macros and Debugging

There are also other macros defined in the C language which may be
useful in the process of debugging a program. Using them don’t require
including any header files. Some of them are described here:
__date__ evaluated to the compilation date,
__time__ evaluated to the compilation time,
__file__ evaluated to the name of the compiled file,
__line__ evaluated to the line number in the compiled file.

43 / 57



Preprocessor Macros

Conditional Compilation

Some of the preprocessor directives allow for controlling the process of
compilation, i.e. they make it possible to decide whether some part of
the code should be compiled. Some of the directives used in the code
that applied the header guard. The table describes more of them.

#ifdef Is similar to #ifndef. If the marker that follows it is
defined the preprocessor processes the statements that
follow the directive. If not, they are omitted.

#else It is similar to the else keyword in the conditional
statement.

#elif It combines the #else and #if statements.

Examples of the conditional compilation usage are show in the next slide.

44 / 57



Preprocessor Macros

Conditional Compilation
Example

#include<stdio.h>
#include<assert.h>

#ifndef NDEBUG
#define PRINT_VERBOSE(X) printf("The variable %s has a value of: %d\n",#X,(X))
#else
#define PRINT_VERBOSE(X)
#endif

int main(void)
{

int i;
for(i=1;i<10;i++) {

PRINT_VERBOSE(i);
assert(i<=5);
printf("%d%%%d=%d ",5,i,5%i);

}
return 0;

}

45 / 57



Preprocessor Macros

Conditional Compilation
Comment

A print_verbose macro is defined in the program, that displays a mes-
sage concerning a value of a specified variable. The information is valu-
able in the process of debugging, should there be an error involving the
variable. However in the everyday usage of the program it is redundant.
That’s why, when the ndebug is defined, an empty definition of the
print_verbose macro is applied. The next slide contains an example
of such a case.

46 / 57



Preprocessor Macros

Conditional Compilation
Example

#include<stdio.h>
#define NDEBUG
#include<assert.h>

#ifndef NDEBUG
#define PRINT_VERBOSE(X) printf("The variable %s has a value of: %d\n",#X,(X))
#else
#define PRINT_VERBOSE(X)
#endif

int main(void)
{

int i;
for(i=1;i<10;i++) {

PRINT_VERBOSE(i);
assert(i<=5);
printf("%d%%%d=%d ",5,i,5%i);

}
return 0;

}

47 / 57



Preprocessor Macros

Functions With a Variable Number of Arguments

The C languages allows for creating functions that take a variable num-
ber of arguments. An example of such a function is printf(). The list
of such arguments is handled by preprocessor macros, which are defined
in the stdarg.h header file. To accept a variable number of arguments
the function has to be defined accordingly. It parameter list has to con-
tain at least one regular parameter. A three dots (…) should be the last
element of this list. Those dots inform the compiler that they can be
replaced by any number of argument when the function is invoked. The
dots cannot be preceded by an array parameter.

48 / 57



Preprocessor Macros

Functions With a Variable Number of Arguments

The access to the additional arguments is provided by five macros. The
first one is the va_start macro which accepts two arguments on its
own. The first argument is a previously declared and defined variable
of the va_list type. It is a list of the additional arguments. The
second argument of the va_start macro is last regular parameter of
the function. The va_start macro initializes the va_list. The va_arg
macro returns the value of the function’s argument which type name is
passed to the macro as its second argument. The first argument of the
macro is the list of additional arguments. The va_end macro takes the
list of additional arguments as its only argument and signals that the
processing of the list is finished by the program. Finally, the va_copy
macro is used when a copy of additional arguments list is required. It
takes two variables of the va_list type as its arguments. The second
one is the original list and in the first one the copy of the list will be
stored.

49 / 57



Preprocessor Macros

Functions With a Variable Number of Arguments
Example

#include<stdio.h>
#include<stdarg.h>

double average(unsigned int counter, ...)
{

va_list arguments_list;
int next=0, sum=0, i=counter;

if(counter==0)
return 0.0;

va_start(arguments_list, counter);
while(i--) {

next = va_arg(arguments_list,int);
sum += next;

}
va_end(arguments_list);
return (double)sum/counter;

}

50 / 57



Preprocessor Macros

Functions With a Variable Number of Arguments
Example

int main(void)
{

double result = average(5,1,2,3,4,5);
printf("The average is: %.2f\n",result);
return 0;

}

51 / 57



Preprocessor Macros

Functions With a Variable Number of Arguments
Comment

The average() function in the example counts the arithmetical average
of some integer numbers passed to the function as its arguments. Only
the first argument is passed to the function by a regular parameter. Its
value defines how many additional arguments the function has. It is not
required that the argument should have the same type, but such a case
is demonstrated in the exemplary program.

52 / 57



The inline Functions

The inline Functions

The inline functions are an alternative for the preprocessor macros.
Similarly to them they could be expanded, but this time by the compiler,
which check the validity of such expansion. In other words the inline
function is like a regular function, but is potentially expanded instead of
being invoked. Usage of such a function offers a better performance of
the program, but increases the size of the executable output file and the
time needed for compilation. It should be stated that the C language
standard doesn’t require the inline functions to be expanded at all.
They should only offer a better performance than the regular functions.
It is sufficient to add the static inline keywords at the beginning of
the function’s header to make it an inline function. An example of a
program with an inline function is presented on the next slide.

53 / 57



The inline Functions

The inline Functions
Example

#include<stdio.h>

static inline void swap(int *first, int *second)
{

int tmp = *first;
*first = *second;
*second = tmp;

}

int main(void)
{

int a = 1, b = 2;
swap(&a,&b);
printf("a: %d, b: %d",a,b);
return 0;

} 54 / 57



The End

Thanks

Many thanks to Grzegorz Łukawski, PhD and Leszek Ciopiński, MSc for
helping me to complete the Polish version of this slides.

55 / 57



The End

Questions

?

56 / 57



The End

The End

Thank You for Your attention!

57 / 57


	Introduction
	Libraries in the C Languages
	Preprocessor Macros
	The inline Functions
	The End

