
Fundamentals of Programming 1
Structures and Unions

Arkadiusz Chrobot

Department of Computer Science

January 17, 2021

1 / 57

Outline

Structures

Unions

Bit Fields

Structures, Unions and Functions

Examples

2 / 57

Structures
The structure in the C language is a data structure that makes it possible to
store values of a different types in a single variable. In other programming
languages such data structures are called records. To apply a structure in
a program it is necessary to define its type first. The overall pattern of
such a definition is as follows:

struct name_of_the_structure_type
{

field_type field_name_1;
field_type field_name_2;
...
field_type field_name_n;

};
Fields (or members) inside the structure are declared in the same way
as regular variables and they can be of any data type including an array,
another structure and a union. The last data type will be introduced in
this lecture. In the C language it is possible to create a structure type
without any fields.

3 / 57

Structures
Variables

To declare a variable of a structure type it is necessary to use the struct
keyword before the name of the structure type, just as in the following
pattern:

struct name_of_structure_type name_of_variable;
It is also possible to declare a structure variable together with the structure
type:

struct name_of_the_structure_type
{

field_type field_name_1;
...
field_type field_name_n;

} name_of_variable_1, name_of_variable_2;

There are two variables declared in the pattern above. If only one was
necessary than its name would be placed between the closing brace and
the semicolon.

4 / 57

Notes

Notes

Notes

Notes



Structures
Examples of Structured Types and Variables

Structures have many applications. They are used for gathering data of
different types, but some common characteristics. They can for example
store personal data:
struct personal_data
{

char name[LENGTH], surname[LENGTH];
unsigned char age, height, weight;

};
Variables of struct personal_data type can store such data as a name,
surname, age, height and weight of a specific person. Please observe, that
just like in the case of regular variables it is possible to declare several
fields of the same type just by placing the name of the type first and then
by giving the names of the variables, separating them with commas and
putting at the end a semicolon.

5 / 57

Structures
Examples of Structured Types and Variables

Structures can also by applied for storing some number of values of the
same type that have a special meaning in the problem to be solved. For
example, a structure can store coordinates of a point in three dimensional
space:
struct coordinates
{

double x,y,z;
} point;

6 / 57

Structures
Nested Structures

As it was mentioned before, the C language allows for nesting structures.
For example, the struct personal_data structure can be supplemented
with a field, for storing the address of a person, which itself is a structure
of the struct address type:
struct personal_data {

char name[LENGTH], surname[LENGTH];
unsigned char age, height, weight;
struct address {

char street_name[LENGTH], postal_code[LENGTH];
unsigned short int house_number;

} personal_address;
};

7 / 57

Structures
Arrays of Structures

The C language makes it possible to create arrays of structures. For ex-
ample an array of structures of the struct personal_data type defined
in previous slide may be declared as follows:
struct personal_data people[NUMBER_OF_ELEMENTS];

It is assumed that the NUMBER_OF_ELEMENTS constant specifies the num-
ber of the array’s elements and that it is defined before the array declara-
tion. The array of structures can also be created at the place of structure
type definition, just like a regular variable.

8 / 57

Notes

Notes

Notes

Notes



Structures
Accessing Fields

A structure member can be accessed by prefixing its name by the name of
the variable in which it is embedded and separating those two names with
a dot, just like in the following pattern:

name_of_variable.name_of_field
For example a value to the x filed of the point structure can be assigned
like this:
point.x = 3;

Referencing a field in a nested structure requires using the dot more than
once:
person.personal_address.house_number = 127;

If the structure is an element of an array, then the name of the variable in
the pattern has to be replaced with the reference to a specific element of
the array:
people[0].age = 37;

9 / 57

Structures
Initialization of Structures

The variables of a structural type may be declared as global or local. The
former are by default initialized with zeros, whereas the latter are uninitial-
ized and the programmer is responsible for assigning them initial values.
There are also cases when other than default values should be assigned to
a global structure. At least three ways of initializing a structure exist.

10 / 57

Structures
Initialization of Structures — the First Method

The variable of a structural type may be initialized in the place of its
declaration, similarly to an array – the values for the fields have to be
embraced with braces and separated by commas:
#include <stdio.h>

struct coordinates
{

double x, y, z;
} point = {1.0, 2.0, 3.0};

int main(void)
{

struct coordinates another_point = {4.0, 5.0, 6.0};
printf("x: %f ",another_point.x);
printf("y: %f ", another_point.y);
printf("z: %f\n", another_point.z);
return 0;

}

11 / 57

Structures
Initialization of Structures — the First Method

The example in the previous slide shows initialization of two variables of the
struct coordinates type: the point and another_point. The first
variable is declared and initialized in the place where its type is defined.
The x field gets the value of 1.0, the y field, the value of 2.0 and the z,
the value of 3.0. The second variable is declared as local and it is also
initialized in the place of its declaration. If one of the initial values was
missing then, according to the C language standard, the third field would
get the value of 0. Neither the scanf() nor the printf() function has a
formatting string suitable for simultaneous reading or displaying the values
of a structure. The value of every structure member has to be passed to
those functions separately, just like in the example program.

12 / 57

Notes

Notes

Notes

Notes



Structures
Initialization of Structures — the Second Method

The second way of initializing of structures is similar to the first one,
but involves using names of the members that are to be assigned a value.
They are placed inside brackets and prefixed with a dot, like in the example
program:
#include<stdio.h>

struct coordinates
{

double x, y, z;
} point = {.x=1.0, .z=2.0, .y=3.0};

int main(void)
{

struct coordinates another_point = point;
printf("x: %f ",another_point.x);
printf("y: %f ", another_point.y);
printf("z: %f\n", another_point.z);
return 0;

}

13 / 57

Structures
Initialization of Structures — the Second Method

Using names of fields explicitly allows initializing them in any order. It
is also possible to initialize only some of them. The rest of them will
be assigned the value of zero. The example program shows also that a
variable of structural type may be assigned a value of another variable of
the same type. As a result of such an assignment the values of the fields
of the variable on the right side of the assignment operator are assigned
to appropriate fields of the variable on the left side of the operator. This
is not possible in the case of structures of different types. It is also not
possible to cast a structure on a different structure type.

14 / 57

Structures
Initialization of Structures — the Third Method

The last way of initializing a structure consist in assigning values to its
fields outside of the place of declaring the variable:
#include <stdio.h>

struct coordinates
{

double x, y, z;
};

int main(void)
{

struct coordinates point;

point.x = point.y = point.z = 1.0;

printf("x: %f ", point.x);
printf("y: %f ", point.y);
printf("z: %f\n", point.z);
return 0;

}

15 / 57

Structures
Initialization of Structures — the Third Method

In the example program every field of the point variable gets a value of
1.0. If any of the fields was omitted then its value would depend on the
scope of the structure. The field in a global variable would get a value of
zero. In case of a local variable, its value would be undefined.

16 / 57

Notes

Notes

Notes

Notes



Unions

The union is similar to the structure. The main difference between those
two construct is that, unlike in the case of the structure, fields in the
union overlap in the memory. It means that they share the same area
of the memory. As a result the union typically occupies less place in the
memory than the structure with the same members and modification of
the value of one of its fields may influence the values of the other fields.

17 / 57

Unions
Example of a Union

The union type is defined similarly to structure type. Also a union variable
is declared in a similar fashion to a structure variable.
union union_type_example
{

char character;
int integer;
char array[8];

} union_example;

In the listing a union type is defined and a variable of this type is de-
clared. The variable is called a union for short. The size of the union
(the number of bytes it occupies) can be calculated with the use of the
sizeof operator. The results may vary depending on a computer and a
compiler configuration, but usually the union takes less memory than a
corresponding structure.

18 / 57

Unions
Fields Overlapping

The picture below illustrates overlapping of the fields.

char array[8]int integerchar character

The illustration is for reference only. The way in which the fields over-
lap depends on the type and configuration of a computer and a compiler.
However, modification of the value of one of the fields may result in mod-
ification of the value of one or more of the others.

19 / 57

Unions
Similarities Between Structures and Unions

Not only definitions of types and declarations of variables of structures
and unions are similar. The unions may be initialized in the same way as
structures, but if the first method is used for initializing more than one
field then the compiler will issue a warning, that the resulting values of the
fields may vary from the expected ones.
Using the union or struct keywords while declaring a union or structure
may be inconvenient. This drawback may be removed with the use of the
typedef keyword which allows the programmer to give a different (usually
shorter) name for a type. It should however be used carefully, because it
degrades the legibility of the source code.

20 / 57

Notes

Notes

Notes

Notes



Unions
Applications

Due to fields overlapping unions are often used for converting types of
different values, for example the ip address may be converted from binary
into decimal and vice versa or number can be converted from decimal
into bcd or the other way. The conversion consists in storing a value
in specific fields and reading another union members. However, the C
language standard does not recommend using this technique because the
result of such a conversion depends on the architecture of the computer
system and thus can be in some cases incorrect. The aforementioned
document suggests always reading only the recently modified union field.
Hence, it is better to apply unions as a fields of structures, to save some
memory. This method requires declaring an additional filed in the structure
for signaling which field of the union should be used. Such usage of a union
is shown in a program presented at the end of the lecture.

21 / 57

Bit Fields

The C language makes it possible to declare fields of structure which size
is expressed in bits. Those fields are called simply bit fields. The sizeof
operator cannot be applied to such fields. It is also impossible to assign
to them greater or smaller value than it is allowed by their size. Yet, it
does not mean that the overall size of the structure is a sum of bit fields
sizes. A structure that contains only two bit fields of the size of five bits
each has a size of at least two bytes, but not a size of ten bits. The
size of every structure is always a nonnegative integer multiple of a byte,
provided that the structure has at least one field. Bit fields are just a
special notation that forces the program to use only as many bits in the
fields as the programmer has specified. As the type of a bit field should
be used any type that allows for storing integer or natural numbers, like
the unsigned char or int. Unions can also have bit fields, but there are
less useful than those in structures.

22 / 57

Bit Fields
Example of a Structure with Bit Fields

struct bit_field_example
{

int flag:1;
char small_number:2;

};
A single bit is often used as so-called flag, i.e. a variable that stores
information that signals for example an occurrence of an exception. Thus
the field of the “size” of one bit in the structure is named that way.

23 / 57

Structures, Unions and the Functions

Unions and structures can be returned by functions. The listing presents a
source code of a function that returns a structure. A function that returns
a union may be declared similarly.
struct coordinates get_point(double x, double y, double z)
{

struct coordinates point;

point.x = x;
point.y = y;
point.z = z;

return point;
}

24 / 57

Notes

Notes

Notes

Notes



Structures, Unions and Functions
The Function Returning a Structure — a Comment To the Example

The function shown in the previous slide stores values passed to it by
parameters in a structure which is declared locally. Next, it returns the
structure. The function may be invoked in the following way:
struct coordinates start = get_point(0.0, 0.0, 0.0);

As a result of the function call the values from its local structure are stored
in the start variable.

25 / 57

Structures, Unions and Functions
Passing By Parameters

Both structures and unions can be declared as parameters of a function.
By default structures and unions are passed by value, just like any others
variables, apart from arrays. If the structure or union parameter should be
also an output parameter, then it has to be declared as a pointer. Access
to the fields of a union or structure passed or just pointed by a pointer
may be gained with the use of one of the two notation. The first one is
less readable and follows the pattern:

(*name_of_structure).field_name
The second one in more legible thanks to the use of a special operator: ->
and thus it is applied more often:

name_of_structure->field_name

26 / 57

Structures, Unions and Functions
Examples

void move(struct coordinates *point,
struct coordinates vector)

{
point->x += vector.x;
point->y += vector.y;
point->z += vector.z;

}

27 / 57

Structures, Unions and Functions
A Comment to the Example

The function from the previous slide determines coordinates of a point
in a three dimensional space after it is shifted by a given vector. The
first parameter points to a structure that before the function call stores
original coordinates of the point, and after the function finishes it stores
the resulting coordinates. The structure that describes the vector is passed
to the function by the second parameter. The values of each of its fields are
components of the vector (lengths of the vector in each of the dimensions).
The function adds the corresponding fields of the two structures and stores
the results in the point variable. As a first argument of the function call
should be passed an address of a variable of the struct coordinates
type or a pointer to such a variable. As the second parameter should
be passed a structure of the aforementioned type. The function may be
invoked like this:

move(&start,distance);

28 / 57

Notes

Notes

Notes

Notes



Examples
Array of Structures

A program that stores personal data, such as name, surname and age, in an
array of structures is presented as the first example. The aforementioned
data are created with the use of PRNG. The age is chosen randomly in
the range from 1 to 120 and the name and surname are chosen randomly
from predefined arrays. There is one array for surnames and another for
first names which contains male and female names.

29 / 57

Examples
Array of Structures

#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<time.h>

#define LENGTH 50
#define NUMBER_OF_PEOPLE 5

enum gender {MALE, FEMALE};

30 / 57

Examples
Array of Structures — a Comment

The part of the source code presented in the previous slide contains, besides
preprocessor directives that include header files in the program, definitions
of constants. The first one describes how many characters can store the
name and surname arrays. The second one defines the number of people
for whom personal data should be generated. There is also defined an
enumerated type which elements are used for describing the gender of a
person.

31 / 57

Examples
Array of Structures

struct name_forms
{

char male_name[LENGTH], female_name[LENGTH];
} names[] = {{.male_name = "Andrew", .female_name = "Anne"},

{.male_name="Edward", .female_name="Katherina"},
{.male_name="Henry", .female_name="Margaret"},
{.male_name="John", .female_name="Barbara"},
{.male_name="Jacob", .female_name="Joanna"}};

char surnames[NUMBER_OF_PEOPLE][LENGTH] = {"Smith", "Brown",
"Green", "White", "Johnson"};

32 / 57

Notes

Notes

Notes

Notes



Examples
Array of Structures — a Comment

The part of the source code from the previous slide contains declarations
and initializations of two arrays: names and surnames. The elements of
the first array are structures of the type struct name_forms. Each of
them stores two names, one for a male and another for a female. The
surnames array is an array of strings which elements store surnames. The
elements of those arrays are chosen randomly with the use of PRNG in
order to create records (structures) of personal information.

33 / 57

Examples
Array of Structures

struct personal_data
{

char name[LENGTH], surname[LENGTH];
unsigned char age;

} people_data[NUMBER_OF_PEOPLE];

34 / 57

Examples
Array of Structures — a Comment

The previous slide contains a definition of an array for storing the personal
data. The number of elements of this array is defined by the constant
number_of_people. Each of them is a structure that stores a name,
surname and age of a single person.

35 / 57

Examples
Array of Structures

struct personal_data get_randomized_data(struct name_forms names[], char surnames[][LENGTH])
{

struct personal_data person;

person.age = 1+rand()%120;
strncpy(person.surname, surnames[rand()%NUMBER_OF_PEOPLE], LENGTH-1);
unsigned char gender = rand()%2;
if(gender==FEMALE)

strncpy(person.name,names[rand()%NUMBER_OF_PEOPLE].female_name,LENGTH-1);
else

strncpy(person.name,names[rand()%NUMBER_OF_PEOPLE].male_name,LENGTH-1);

return person;
}

36 / 57

Notes

Notes

Notes

Notes



Examples
Array of Structures — a Comment

The get_randomized_data() function generates data about a single per-
son. The arrays with names and surnames are passed to it by parameters.
The function chooses randomly the age of the person as the first per-
sonal data item. Next, it choses randomly an index of a single element in
the surnames array and the value of the element is then coppied to the
surname field of the person structure. Then the function chooses ran-
domly a gender of the person. If it is a female the function should choose
randomly her name from the female names and if it is a male the function
should choose randomly his name from the male names. The structure
with the chosen personal data is returned by the function.

37 / 57

Examples
Array of Structures

void fill_array(struct personal_data array[],
struct name_forms names[],
char surnames[][LENGTH])

{
srand(time(0));
int i;
for(i=0;i<NUMBER_OF_PEOPLE;i++)

array[i]=get_randomized_data(names, surnames);
}

38 / 57

Examples
Array of Structures — a Comment

The fill_array() function initializes the PRNG and assigns to each of
the elements of the array, passed to it by the first parameter the value
returned by the get_randomized_data() function.

39 / 57

Examples
Array of Structures

void print_array(struct personal_data array[])
{

int i;
for(i=0;i<NUMBER_OF_PEOPLE;i++) {

printf("Name: %s\n",array[i].name);
printf("Surname: %s\n",array[i].surname);
printf("Age: %u\n",array[i].age);
puts("");

}
}

40 / 57

Notes

Notes

Notes

Notes



Examples
Array of Structures — a Comment

The print_array() function prints the data from the array on the screen.
The array is passed to the function by the parameter. The value of each
field of each element is printed in a separate line. Moreover, after all data
from a single element are printed on the screen the cursor is moved one
additional line lower to separate data of different elements.

41 / 57

Examples
Array of Structures

int main(void)
{

fill_array(people_data, names, surnames);
print_array(people_data);
return 0;

}

42 / 57

Examples
Array of Structures — a Comment

In the main() function the fill_array() and print_array() functions
are invoked. All needed arguments are passed to them. Please notice, that
the people_array is passed by the array parameter. In the C language,
and most of the other programming languages, the name of the parameter
may differ from the name of an argument. Only their types should be
compatible.

43 / 57

Examples
Structure and Union

The next example shows how to apply a union as a member (field) of
a structure. In other words the union is nested in the structure. Both
variables are used in a program that creates and displays information about
a computer game character.

44 / 57

Notes

Notes

Notes

Notes



Examples
Structure and Union

#include<stdio.h>
#include<stdlib.h>
#include<time.h>

#define LENGTH 10

enum character_type {WARRIOR, SORCERER};

45 / 57

Examples
Structure and Union — a Comment

The code from previous slide contains preprocessor directives that include
header files to the program, a definition of a constant that describes the
number of elements of an array used for storing the name of the game char-
acter and a definition of an enumerated type which describes the character
type: a sorcerer or a warrior.

46 / 57

Example
Structure and Union

struct playable_character {
char name[LENGTH];
enum character_type type;
union {

float strength;
double magic_power;

} abilities;
};

47 / 57

Example
Structure and Union — a Comment

The previous slide contains a definition of a type of a structure for storing
information about the game character. The first field is an array in which
the name of the character will be stored. The second field is for storing
the type of the character. The third field is a union. If the character is a
warrior then the information about her/his strength will be stored in the
strength field. Otherwise, if she/he is a sorcerer the magic_power field
will store data about her/his magic power.

48 / 57

Notes

Notes

Notes

Notes



Example
Structure and Union

void generate_character(struct playable_character *character)
{

puts("Please name Your character:");
scanf("%9s",character->name);
srand(time(0));
if(rand()%2==WARRIOR) {

character->type = WARRIOR;
character->abilities.strength = rand()%1000+(float)rand()/(RAND_MAX+1.0);

} else {
character->type = SORCERER;
character->abilities.magic_power = 1000+rand()%RAND_MAX

+ (double)rand()/(RAND_MAX+1.0);
}

}

49 / 57

Examples
Structure and Union — a Comment

The generate_character() functions fills the structure, that is passed
to it by a parameter, with data. First it asks a user to enter the name of the
character. The name is stored in the name field with the use of the scanf()
function. Please notice, that the field is an argument of the aforementioned
function. The arrow operator is used to access that field, because the
structure is passed by pointer. Number of characters read by scanf()
function from the keyboard is limited to 9, because of the number of
characters the field can store. Next, the generate_character() function
initiates the PRNG and chooses the character’s type. If it is a warrior then
the function stores this information in the type field and chooses a value
for the strength field in the abilities union. Please notice the way it
references the union fields. The structure is passed by a pointer, but the
union is a regular variable that is a member of this structure, so a regular
dot is used for its fields. If the chosen character’s type is a sorcerer, the
function performs similar activities.

50 / 57

Examples
Structure and Union

void print_character(struct playable_character character)
{

printf("Name: %s\n",character.name);
if(character.type==WARRIOR) {

printf("Type: warrior\n");
printf("Strength: %f\n",character.abilities.strength);

} else {
printf("Type: sorcerer\n");
printf("Magic power: %f\n",

character.abilities.magic_power);
}

}

51 / 57

Examples
Structure and Union — a Comment

The print_character() function displays information about the game
character that are stored in the structure. This time the structure is passed
to the function by value, so its fields as well as the fields of the union are
referenced with the use of the dot. If the value of the type field was
displayed directly then the user would see on the screen 0 or 1 depending
of the character’s type. To avoid this issue the value of the field is used
only to determine which message and which field of the abilities union
should be displayed on the screen.

52 / 57

Notes

Notes

Notes

Notes



Examples
Structure and Union

int main(void)
{

struct playable_character character;
generate_character(&character);
print_character(character);
return 0;

}

53 / 57

Examples
Structure and Union — a Comment

A structure of the name character is declared in the main() function
and filled with data by the generate_character() function. Next, its
content is displayed on the screen with the use of print_character()
function.

54 / 57

Thanks

Many thanks to Grzegorz Łukawski, PhD and Leszek Ciopiński, MSc for
helping me to complete the Polish version of this slides.

55 / 57

Questions

?

56 / 57

Notes

Notes

Notes

Notes



The End

Thank You for Your attention!

57 / 57

Notes

Notes

Notes

Notes


	Structures
	Unions
	Bit Fields
	Structures, Unions and Functions
	Examples

