
Fundamentals of Programming 1
Strings of Characters

Arkadiusz Chrobot

Department of Computer Science

January 4, 2021

1 / 47

Outline

Single Character Operations

Data Types for Strings of Characters

String Initialization

Entering and Printing Strings

String Operations

Conversions

2 / 47

Single Character Operations
The getchar() Function

The C language offers a set of functions that we call the standard library.
Among the functions are those that perform operations on single characters
represented as ascii codes and usually stored in variables of char type.
The C language makes it also possible to use characters encoded in other
codes, like the utf, but this possibility won’t be further discussed in this
lecture.
The getchar() function allows the user to enter a single character using
a keyboard. It is declared in the stdio.h header file. The function takes
no arguments and returns the ascii code of the character, however the
returned value is of the int type instead of the char type.

3 / 47

Single Character Operations
Functions From the ctype.h Header File

The ctype.h header file provides other functions that perform operations
on single characters. All of them take take one argument, which is a
character (the ascii code) and some of them also return a character (the
ascii code). However, the type of the parameter as well as the type of the
returned value is int. The table below describes some of the functions.

Function’s Prototype Description
int tolower(int c) If the argument is an uppercase letter, the

function returns a corresponding lowercase let-
ter.

int toupper(int c) If the argument is a lowercase letter, the func-
tion returns a corresponding uppercase letter.

int isalnum(int c) The function returns a nonzero value, if the
argument is a digit or a letter. Otherwise it
returns zero.

4 / 47

Notes

Notes

Notes

Notes

Single Character Operations
Functions From the ctype.h Header File — Continued

Function’s Prototype Description
int isalpha(int c) If the character is a letter the function returns

a nonzero value. Otherwise it returns zero.
int isdigit(int c) If the character is a digit the function returns

a nonzero value. Otherwise it returns zero.
int isspace(int c) If the character is a whitespace the function

returns a nonzero value. Otherwise is returns
zero.

int islower(int c) If the character is a lowercase letter the func-
tion returns a nonzero value. Otherwise it re-
turns zero.

int isupper(int c) If the character is an uppercase letter the func-
tion returns a nonzero value. Otherwise is re-
turns zero.

5 / 47

Single Character Operations
Implementation Example

Most of the functions introduced in the previous slides is easy to implement.
Following is a function that takes a character as an argument and if it’s a
letter the function returns it after altering its case. To understand how it
works it is enough to know that the ascii codes of corresponding lowercase
and uppercase letters differ by the value of the sixth bit (25 = 32). For
the uppercase letters it is cleared (its value is zero) and for the lowercase
letters it is set (its value is one).
char set_upper_or_lower(char input)
{

if((input>='a'&&input<='z')||(input>='A'&&input<='Z'))
input ^= 32;

return input;
}

6 / 47

Data Types for Strings of Characters

Aside from individual characters, computers are able to process effectively
strings of characters (strings for short). The C language has no special
data type for strings. They are stored in arrays which elements are of
char type. Those arrays are called char arrays. Not all elements of such
arrays must be occupied by characters belonging to the string. Therefore
each string is terminated by a special character that marks the end of
the string. The value of the character’s ascii code is zero and in the C
language notation it is represented as '\0'. The picture shows an array
of six elements that stores the abc string.

'a'

0

'b'

1

'c'

2

'\0'

3 4 5

7 / 47

String Initialization

The char array may be initialized in the place of its declaration, like other
regular arrays. The initial characters have to separated by commas and
embraced by curly braces. The last character has to be the '\0'. However,
there is a more convenient way of initializing the char array. Is is easier to
assign to the array a string of characters surrounded by quotation marks.
The array has to have an additional element for the character marking the
end of the string. It is better to not determine the number of elements in
the array. The compiler will deduce it basing on the numbers of characters
in the string. The string can also by assigned to the char * pointer.
However, such a string should not be modified during the program run.
Otherwise the program will be aborted.

8 / 47

Notes

Notes

Notes

Notes

String Initialization
Examples

int main(void)
{

char first_string[] = {'E','x','a','m','p','l','e','\0'};
char second_string[] = "Example";
char *third_string = "Example";
char fourth_string[10];

second_string[1] = 'z';
// third_string[1] = 'z'; // This is dangerous.

return 0;
}

All arrays in the program are local variables, but in general they can also be
declared global or passed by parameters to functions like any other arrays.
The forth_string variable is not initialized, but it can store a string of
9 characters (without the character that marks the end of string). Also, a
string can be assigned to the array in the place of its declaration.

9 / 47

Entering and Printing Strings

The strings embraced by quotation marks can be printed directly on the
screen using the printf() and puts() functions. If the string is stored
in an array, it can be printed by applying the puts() function or using the
printf() function with the "%s" formating string. To allow the user to
enter a string using a keyboard a scanf() function can be applied also with
the "%s" formating string. However, in that case the scanf() function
stops reading the input when it finds a whitespace character. Entering,
for example, a full sentence may be accomplished with the use of the fol-
lowing formating string: "%[^\n]s". The brackets allows the programmer
to define which characters should be accepted by the scanf() function.
The ^\n notation means “any character except the new line character (as-
sociated with the Enter key in the keyboard)”. The same effect may be
achieved with the use of fgets() function. It takes three arguments: the
name of the char array, the maximum number of characters the array can
store and the stdin variable. The function returns null if it is unable to
read the input. Otherwise it returns the pointer to the array.

10 / 47

Entering and Printing Strings
Example

#include<stdio.h>

int main(void)
{

char str[40];

scanf("%s",str); // Reads the string until the first whitespace character.
while(getchar()!='\n'); // Deletes all characters from input stream

// including the \n character.
scanf("%[^\n]s",str); // Reads a string with whitespaces.
while(getchar()!='\n'); // Deletes the \n character form the input stream.
fgets(str,40,stdin); // Reads a string with whitespaces.

return 0;
}

The stdin variable is the input stream, i.e. a pointer to a file. Please
notice, that the name of a array is also a pointer, therefore it can be
directly passed to the scanf() and fgets() functions as an argument.
The address operator should not be applied in such a case.

11 / 47

Entering and Printing Strings
Example

#include <stdio.h>

int main(void)
{

char string[11];
scanf("%10[^\n]s",string);
printf("%s\n",string);
return 0;

}
The example shows how to limit the number of characters read from the
input with the use of the scanf() function. Without this limitation the
function can try to store more characters in the array than it has elements.
Such an error is called an array overflow and it has a potentially dangerous
consequences.

12 / 47

Notes

Notes

Notes

Notes

String Operations

The char arrays and strings should not be compared with the use of
relational operators, like ==. If those operators are however applied to
char arrays they will compare addresses of the variables, not their content.
The same goes for the strings. It is also not possible to assign (except of
the initialization) a string to the char array with the use of = operator.
The aforementioned operations (comparison and assigning) can only be
performed by accessing each of the char arrays elements separately. To
simplify them the authors of the C language have provided functions that
perform such operations and are a part of the C language standard library.
Those functions are available when the string.h or strings.h header
files are included to the source code of a program. Next, some of the
functions declared in the string.h header file are discussed.

13 / 47

String Operations

Example of Using Description
unsigned long int a = strlen(string); The function returns the number of characters

in the argument, without the end of string char-
acter.

strcpy(string_2, string_1); The function copies a string from its second ar-
gument to the array passed as its first argument.
It returns the address of the second argument,
but it is usually ignored.

strncpy(string_2, string_1, number); The function does the same as the strcpy(),
but copies at most the number of characters to
the first argument. This is a protection from the
string_2 array overflow.

if(strcmp(string_1,string_2)==0) {
…

} else {
…

}

The function compares two strings and returns a
value less than zero if the string_1 is less than
the string_2 or a value greater than zero if the
string_1 is greater than the string_2 or zero,
if they are equal. The exact way the strings are
compared is discussed latter in the lecture.

14 / 47

String Operations

Example of Using Description
if(strncmp(string_1,string_2,number)==0) {

…
} else {

…
}

The function does the same as the
strcmp(), but it compares at most the
number of characters in both strings.
This is protection from attempting to
read more characters than the compared
strings have.

strcat(string_1,string_2); The function appends a string from the
second argument to the string in the first
argument. In other words it concate-
nates the strings. The function returns
the address of its first argument, but it
is usually ignored.

strncat(string_1,string_2,number); The function does the same as the
strcat() function, but it appends at
most the number of characters of the
second string to the first string.

char *result = strstr(string,pattern); The function searches for the first oc-
currence of the pattern in the string.
It returns the address of the first ele-
ment of the string that stores the first
character of the pattern.

15 / 47

String Operations

Example of Using Description
char *result = strtok(string,delimiters); The function splits the string into

smaller parts according to the charac-
ters in the delimiters string. Using
it is complicated, therefore an example
showing how to apply it correctly is pre-
sented latter in the lecture.

char *result = strchr(string,character); The function returns the address of the
first element of the string that stores
the character. The second parameter
of the function is of int type.

char *result = strrchr(string,character); The function returns the address of the
last element of the string that stores
the character.

16 / 47

Notes

Notes

Notes

Notes

String Operations
The strcmp() Function

The strcmp() function compares two strings stored in its arguments. It
tests the pairs of characters of both strings, i.e. the first character of the
first string with the first character of the second string and so on. If one
of those characters has a greater ascii code than the other then the string
to which the character belongs is recognized as the greater one. In the
converse case the function recognizes the second one as the greater. If
both characters are the same the function proceeds to the next pair. The
comparison can be finished in the following cases:

1. Both strings have the same number of characters and the characters
are the same. The function returns zero because the strings are the
same.

2. If the first string is a prefix of the second string, the functions rec-
ognizes the first as a less than the other. In the opposite case it is
acknowledged as the greater one.

3. If the function finds a pair of different characters it returns a value as
described before.

17 / 47

String Operations
Summary

In the table presented in previous slides are described some of the most
frequently used functions in the C language for processing strings. If a
function has a version that enables limiting the number of characters it
processes than that version should be used, because it is more secure. For
example the strncpy() should be used instead of the strcpy().
Any programmer may implement those functions on her or his own, given
the fact, that elements of a char array may be accessed the same way as
the elements of a regular array. Some implementations of those functions
can be found in the book “The C Programming Language“ by B. W. Kernighan
and D. M. Ritchie. In this lecture implementations of some of those func-
tions are also shown.

18 / 47

String Operations
The strlen() Function

The strlen() function is quite simple. It searches for the '\0' character
in the char array and counts how many characters it has to pass before
finding it. In the next slide is presented implementation of this function,
but under a different name.

19 / 47

String Operations
The strlen() Implementation

unsigned int string_length(char *string)
{

unsigned int i;
for(i=0;string[i];i++)

;
return i;

}

20 / 47

Notes

Notes

Notes

Notes

String Operations
The strlen() Implementation — a Comment

The code presented in the previous slide is only one of the many possibilities
of implementing the strlen() function. Its implementation that uses
the pointers arithmetic is presented in the already mentioned book by
Kernighan and Ritchie. Please notice, that the header of the for loop is
the most important part of the function.

21 / 47

String Operations
The strncpy() Function

The strncpy() function copies the content of its second argument to
its first argument, but no more characters than it is given by the third
argument. The maximal number of characters that can be stored in the
first argument should be specified as the third argument of the function. It
prevents storing some character outside the char array. Next are presented
two implementations of the function with the names and the order of the
first two parameters changed.

22 / 47

String Operations
The strncpy() Implementation — The First Version

void string_copy(char source[], char destination[], int length)
{

int i = 0;
while(length!=0 && source[i]!='\0') {

destination[i]=source[i];
i++;
length--;

}
destination[i]='\0';

}

23 / 47

String Operations
Comment to the First Version of strncpy()

The string is copied in the while loop, where its characters are read from
the source array and stored in the destination array. The loop termi-
nates when the value of the length parameter becomes zero or when the
end of string character is read from the source array. After the loop ter-
minates the aforementioned character must be stored in the i-th element
of the destination array.

24 / 47

Notes

Notes

Notes

Notes

String Operations
The strncpy() Implementation — a Version That Uses the Pointers Arithmetic

void string_copy(char *source, char *destination, int length)
{

destination[length]='\0';
while((length--)&&(*destination++=*source++))

;
}

25 / 47

String Operations
Comment to the Second Version of strncpy()

The second version of the strncpy() function is shorter than the first one
thanks to the use of pointers arithmetics and some others features of the C
language. The expressions length-- and *destination++=*source++
are not compared with zero, because their values are directly interpreted
as true or false. The short-circuit evaluation of the && operator means
that the second expression is not evaluated when the first one is false. The
elements of the arrays are accessed with the use of the pointer arithmetics.
The post-increment operator do not increment the value of the element
pointed by the pointer but the address stored in the pointer. It means
that the pinter is ”advanced“ to the next element of the array. Before the
loop is performed the end of string character is stored in the element of
the destination array indicated by the length variable. Thanks to that the
copy of the string is terminated with the \0 character even if the original
has more than length elements.

26 / 47

String Operations
The strstr() Function

The strstr() function looks for the string passed as its second argument
(the pattern) in the string passed as its first argument (the text). If it
locates the pattern then it returns the pointer to the element of the text
that stores the first character of the pattern. Otherwise it returns null.
This operation is called pattern matching. There are many algorithms
that performs this operation. The Boyer-Moore and kmp algorithms are
effective for long patterns and texts. The naive algorithm that is introduced
in the lecture is effective, according to prof. Steven S. Skiena, for patterns
no longer than five characters. The algorithm looks for the occurrence of
the pattern’s first character in the text. If it locates it, then it checks if
the rest of the characters also matches. If so then the pattern is located.

27 / 47

String Operations
Pattern Matching — an Implementation

int find_match(char string[], char pattern[])
{

int i,j,
pattern_length=strlen(pattern),
string_length=strlen(string);

for(i=0;i<=(string_length-pattern_length);i++) {
j=0;
while((j<pattern_length)&&(string[i+j]==pattern[j]))

j++;
if(j==pattern_length)

return i;
}
return -1;

}

28 / 47

Notes

Notes

Notes

Notes

String Operations
Pattern Matching — a Comment

The find_match() function behaves a little differently than the strstr()
function. It returns the index of the text string element that stores the
first character of the pattern or -1 if it is unable to locate the pattern.
First, the function counts the lengths (the number of characters) of both
strings. Next in the for loop it checks every element of the text string to
locate the first character of the pattern. If it finds the character then it
performs the while loop as long as the subsequent characters in the text
string match the next characters in the pattern or if the pattern ends. The
latter is detected in the if statement. If the condition is satisfied then the
pattern is located and the i-th element of the text string stores its first
character. Therefore, the function returns the value of the i variable. If
the condition is false then the function checks subsequent characters of
the text string.

29 / 47

String Operations
Pattern Matching — a Comment

Please observe, that the for loop terminates when there is less characters
to be checked in the text string than there is characters in the pattern. If
the pattern is not yet located than there is no more chance of locating it
and the function returns -1.

30 / 47

String Operations
The strtok() Function — Example of Usage

#include <stdio.h>
#include <string.h>

int main(void)
{

char string[51] = {'\0'};
scanf("%50[^\n]s",string);
char *result = strtok(string," ");
do {

if(result)
printf("%s\n",result);

result=strtok(NULL," ");
} while(result!=NULL);
return 0;

}

31 / 47

String Operations
Example of Using strtok() — a Comment

The program from the previous slide shows how to use the strtok()
function to split a string into parts separated by spaces. The program
prints all of those parts on the screen, each in a separate line. The function
is invoked for the first time outside the loop. It takes the string to be split
and a string containing a single space (the delimiter). If the function
returns a value different than null1, what is tested in the if statement,
than the printf() function prints the part of the string currently pointed
by the result pointer. Next, the pointer is used for storing results of
subsequent calls of the strtok(). The function is invoked in order to
find the next part of the string, but this time it takes null as its first
argument. Those three operations take place inside the do … while loop
until the strtok() function returns null which means that there are no
more characters in the split string.

1Zero can be used in place of this constant.
32 / 47

Notes

Notes

Notes

Notes

String Operations

The next two presented functions do not have their equivalents in the
standard library of the C language. There are similar subroutines in the
Pascal language. They perform such useful operations that it is worth
creating their equivalents in the C language.

33 / 47

String Operations
Deleting Part of a String

The first function deletes part of a string containing a given number of
characters, starting from a specified character. Removing a part of a string
requires moving to the left all characters behind that part by as many places
as there are characters in the part being deleted. To easier understand this
description please look at the visualization in the next slide. There the “
is” phrase is removed from the sentence “Time is up.”. Please notice the
space before the “is” word.

34 / 47

String Operations
Visualization — Deleting a Part of a String

'T'

0

'i'

1

'm'

2

'e'

3

' '

4

'i'

5

's'

6

' '

7

'u'

8

'p'
9

'.'

10

'\0'

11

'T'

0

'i'

1

'm'

2

'e'

3

' '

4

'u'

5

'p'
6

'.'

7

'\0'

8

'p'
9

'.'

10

'\0'

11

35 / 47

String Operations
Implementation — Deleting a Part of a String

int delete_from_string(char *string, unsigned int where, unsigned int how_many)
{

if(where>=strlen(string))
return -1;

if(how_many>strlen(string)-where)
return -2;

int i;
for(i=where;i<strlen(string);i++)

string[i] = string[how_many+i];

return 0;
}

36 / 47

Notes

Notes

Notes

Notes

String Operations
Deleting a Part of a String — a Comment

The string, which part is to be removed, is passed to the function by its
first parameter. The where parameter is the index of the element that
stores the first character to be deleted. The number of characters to be
removed is passed by the how_many parameter.
The delete_from_string() function first checks if the operation can be
carried out. Should the value of the where parameter be greater than the
number of the characters in the string, it will return -1 and take no further
actions. Similarly, if the how_many parameter value is greater than the
number of characters possible to remove, it will return -2 and terminate.
If however the values of the parameters are correct, then the characters
are moved accordingly in the for loop. Next, the function returns zero,
signalling a success and finishes.

37 / 47

String Operations
Inserting Into a String

The next function inserts a string (let’s call it a “pattern”) into another
string, starting from a given element. To carry out such an operation it
is first necessary to move characters in the string to the right by as many
elements as the pattern has characters, starting from the specified element.
Only then the pattern should be copied to the string. The operation is
shown in the next slide, where the pattern “ is” is inserted into the string
“Time up.”, starting from the fifth element.

38 / 47

String Operations
Visualization — Inserting Into a String

'T'

0

'i'

1

'm'

2

'e'

3

' '

4

'u'

5

'p'
6

'.'

7

'\0'

8

'\0'

9

'\0'

10

'\0'

11

' '

0

'i'

1

's'

2

'\0'

3

'T'

0

'i'

1

'm'

2

'e'

3

' '

4

'u'

5

'p'
6

' '

7

'u'

8

'p'
9

'.'

10

'\0'

11

' '

0

'i'

1

's'

2

'\0'

3

'T'

0

'i'

1

'm'

2

'e'

3

' '

4

'i'

5

's'

6

' '

7

'u'

8

'p'
9

'.'

10

'\0'

11

' '

0

'i'

1

's'

2

'\0'

3

39 / 47

String Operations
Implementation — Inserting Into a String

int insert_into_string(char *string, const char *pattern, unsigned int where)
{

if(strlen(pattern)+strlen(string)+1>NUMBER_OF_ELEMENTS)
return -1;

if(where>strlen(string))
return -2;

int i;
for(i=strlen(string);i>=where;i--)

string[i+strlen(pattern)]=string[i];
for(i=0;i<strlen(pattern);i++)

string[where+i]=pattern[i];
return 0;

}

40 / 47

Notes

Notes

Notes

Notes

String Operations
Inserting Into String — a Comment

The insert_into_string() function inserts the string passed by the
pattern parameter into the string passed by the string parameter, start-
ing from the element which index is passed by the where parameter. It
first checks if the resulting string is fitting the string array. Should it
have more characters than the array is capable of storing, the function
returns -1 and quits. Otherwise the function checks if the where param-
eter has a correct value, i.e. it indicates an element inside the string, not
outside. Should the test have failed the function returns -2 and also quits.
If both tests are successfully passed then the characters are moved to the
right in the first for loop by as many elements as there are characters in
the pattern. In the second for loop the characters from the pattern are
copied to the specified place in the string. Please observe the way the loop
counters are initialized and applied. Please also notice the expressions used
for indexing the strings. After the last loop finishes the function returns 0,
signalling success, and quits.

41 / 47

Conversions

The standard C library provides functions that convert a string passed
to them as an argument into a number of a specified type. They are
declared in the stdlib.h header file. The table in the next slide contains
descriptions of several such functions.

42 / 47

Conversions

Example of Using Description
int number = atoi("45"); The function converts a string of dig-

its into a number of the int type. The
conversion is successful even if the string
only starts with digits, and the rest of
it does not contain digits. If the string
cannot be converted, the function re-
turns 0.

long int number = atol("45"); The function does the same as the
atoi() function but returns a long int
type number.

long long int number = atoll("45"); The function does the same as the
atoi() function but returns a long
long int type number.

double number = atof("45.5"); The function does the same as the
atoi() function but returns a double
type number. The number in the string
may also be expressed in the scientific
notation.

43 / 47

Conversions

A number can be converted into a string with the use of the sprintf()
and snprintf() functions, which are declared in the stdio.h header file.
The functions behave similarly to the printf() function, but instead of
printing they store the resulting string in a char array, passed to them
as their first argument. The snprintf() function takes an additional,
second argument which specifies the maximal number of characters that
the char array may store. It is safer to use that function instead of the
sprintf() function.

44 / 47

Notes

Notes

Notes

Notes

Thanks

Many thanks to Grzegorz Łukawski, PhD and Leszek Ciopiński, MSc for
helping me to complete the Polish version of this slides.

45 / 47

Questions

?

46 / 47

The End

Thank You for Your attention!

47 / 47

Notes

Notes

Notes

Notes

	Single Character Operations
	Data Types for Strings of Characters
	String Initialization
	Entering and Printing Strings
	String Operations
	Conversions

