Fundamentals of Programming 1

Flow of Control

Arkadiusz Chrobot
Department of Computer Science

November 14, 2020 \qquad
\qquad
\qquad

Outline

Control Flow Statements

Block of Statements
Conditional Statement

Switch Statement
Iteration Statements
The for Loop
The while loop
The do...while loop

The break and continue Keywords
Examples

Control Flow Statements

A statement is a high-level programming language instruction. Con trol flow statements or statements that change the flow of control in a program are a crucial part of every programming language. They make it possible to change the order in which other statements are performed. Particularly, they decide, basing on the value of some condition (expression), whether to execute or repeat the execution of other statements. Control statements allow programmers to implement complex algorithms.

Block of Statements

A block of statements (or simply a block) in the C language is a group of statements inside a pair of curly brackets. The group can consist of several statements or just one statement or even it can be empty. The block is interpreted by the program as a single statement. Blocks can be nested i.e. a block can be inserted into another block. We already saw the usage of a block in the definition of the main() function, but it can be applied in other parts of source code, particularly in the control statements.

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad

The conditional statement (or simply the conditional) is a statement that performs an action depending on a some condition that is a part of it. The overall structure of such a statement is as follows:

if (condition)
 statement;
 else
 alternative_statement;

If the condition is satisfied, than the statement is executed, otherwise the alternative_statement is carried out. When not needed the whole else branch can be omitted. In the C language any expression can be used as the condition.

Conditional statement

Remarks

The C language is very flexible in the terms of the structure of sentences. For example in the if statement a programmer may not only skip the else branch but even the statement. This can be achieved by putting a semicolon right behind the closing parenthesis. Such a construction of the conditional, although correct, has no practical meaning. Using an assignment instruction (=) in the condition, instead of the equality operator $(==)$ is a common mistake ${ }^{1}$. However, experienced programmers can use such a condition correctly for simplifying the program.

[^0]
Conditional Statements

An Example

$$
\begin{aligned}
& \text { if }(a==b) \\
& \text { else } \quad a=5 ; \\
& \quad b=5 ;
\end{aligned}
$$

Some programmers recommend to use blocks even if only a single statement is used after the condition and/or the else keyword.

```
if (a==b) {
} else a=5;
b=5
}
```


Conditional Statements

Nested Conditionals

It is possible to place a conditional inside another conditional. Such a statement is called a nested conditional:

$$
\begin{aligned}
& \text { if }(\mathrm{a}==3) \text { \{ } \\
& \\
& \quad \text { if }(\mathrm{b}==4) \\
& \text { \} }
\end{aligned}
$$

However, such a construction can make the code illegible, so it is better to use a complex condition instead:
if ($a==3$ \&\& $b==4$) $c=5$;
Beware, that converting the nested conditional to a simpler form is not always as obvious as in the example, due to the short-circuit evaluation of the expression in the condition.

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes

\qquad

The switch statement is a kind of multiple choice statement that change the flow of control. It performs other statements depending on the value of a variable which is called a selector. The variable can be of int, char or other integer type. The overall structure of switch statement is as follows:

```
switch(selector) {
    case value_1: statement_1;
    break;
...
    case value_nth: statement_nth
            break;
    default: statement;
}
The number of cases (case) is limited only by the range of selector's
data type.
```


Switch Statement

Remarks

More than one statement can be placed in a single case in the switch statement. It is only required that they should be followed by the break keyword. Using a block is not required. The break keyword, when reached by the program, finishes the execution of the switch statement. If the case is not terminated by the break then the program unconditionally carries out the next case. Sometimes this feature of switch statement is deliberately used by programmers, but often it is a mistake. If the value of the selector doesn't match any of the values in the cases then the statements in the default case are performed. The programmer may decide to not to use the default case at all.

Switch Statement

An Example
switch(a) \{
case 1: puts("One"); break;
case 2: puts("Two"); break;
case 3: puts("Three") break;
default: puts("A different number.");
\}

If the value of the a variable is 1 then the program will print the word One on the screen. If it is 2 then the word Two will be printed. Similarly the word Three will appear on the screen if the value of a is 3 . In case of any other value the sentence A different number. will be shown on the screen.

Iteration Statements

Iteration statements or simply loops repeat the execution of a statement or a block for a finite (sometimes infinite) number of times. The statement or the block is called a body of the loop. A single repetition of the body is called an iteration, hence the other name of the loops. Usually, the outcome of a single iteration is different from the outcomes of the other iterations, but sometimes is the same.

Notes
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The for statement is a count-controlled loop which means that it repeats its body for a given number of times. It needs at least one variable that is known as a loop counter or a control variable. The overall structure of the for statement is as follows:
for(counter(s) initialization; condition;afterthought) body
The upper part of the for statement is called a header. In the counter (s) initialization part a loop counter or counters are given an initial value. If the condition is true, the body is repeated otherwise the loop terminates. The afterthought part describes what happens with the loop counter(s) after a single iteration. Usually the counters have identifiers that consist of a single letter. The counter loop can be a variable of any primary data type in the C language. The for loops can be nested.

The for Loop
Examples
\#include<stdio.h>
int a;
int main(void)
\{
for ($a=0 ; a<5 ; a++$) printf("\%d\n", a);
return 0;
\}

The for Loop
Examples

\#include<stdio.h>

int $a ;$
int main(void)
\{

```
    for(a=0;a<5;a++) {
        printf("%d\n",a);
    }
    return 0;
```

\}

The for Loop
Examples
\#include<stdio.h>
int a;
int main(void)
\{

```
            for(a=1;a<=5;a++)
            printf("%d\n",a);
            return 0;
```

$\}$

The for Loop
Examples
Notes
\#include<stdio.h>
int a;
int main(void)
\{

$$
\text { for }(a=0 ; a<7 ; a+=2)
$$

printf("\%d\n", a);
return 0;
\}

The for Loop
Examples
\#include<stdio.h>
int $a ;$
int main(void)
\{
$\mathrm{a}=1$;
for (; $\mathrm{a}<=5$;) \{ printf("\%d\n", a);
a++;
\}
return 0 ;
\}

The for Loop
Examples
\#include<stdio.h>
int a;
int main(void)
\{
for ($a=7 ; a>0 ; a--$)
printf("\%d\n", a);
return 0;
\}

19/55

The for Loop
Examples
\#include<stdio.h>
int i,j;
int main(void)
\{
for ($i=7, j=0 ; i>j ; j++, i--)$ printf("\%d \%d\n",i,j);
return 0 ;
\}

The for Loop
Examples
Notes
\#include<stdio.h>
double x ;
int main(void)
\{

$$
\text { for }(x=0.0 ; x<0.5 ; x+=0.01)
$$ printf(1%. 10f $\backslash n ", x$);

return 0 ;
\}

The for Loop
Examples
\#include<stdio.h>
int $a, i ;$
int main(void)
\{

```
            for(i=0;i<5;i++) {
            a+=i;
            printf("%d\n",a);
    }
```

 return 0;
 \}

The for Loop
Examples
int a;
int main(void)
\{

```
        for(a=0;a<5;a++)
            ;
```

 return 0 ;
 \}

The while loop

Notes
\qquad
\qquad execution of its body as long as the condition that is a part of the loop is satisfied. The overall structure of such a loop is as follows:

while(condition)

body;
The number of iterations of the while loop is not known in advance, therefore its body has to contain at least one expression that will eventually make the condition false and the loop will terminate. Otherwise the loop will continue to perform the body infinitely. The while loop can be nested or used inside the for loop. It is also possible to use the for loop inside the while.
\qquad
\qquad
\qquad
\qquad

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The while Loop
Examples
Notes
\#include<stdio.h>
char a;
int main(void)
\{

while(a!='q')

scanf(" \%c",\&a)
return 0;
$\}$

The while Loop
Examples
\#include<stdio.h>
char a;
int main(void)
\{
while(a!='q') \{
scanf(" \%c",\&a);
\}
return 0 ;
\}

The while Loop
Examples
\#include<stdio.h>
int x, y;
int main(void)
\{

$$
\text { while }(y>=0) \text { \{ }
$$

$$
\operatorname{scanf}\left(" \% \mathrm{~d}^{\prime}, \& y\right) ;
$$

\}

$$
\mathrm{x}+=\mathrm{y}
$$

return 0;
\}

Notes
\qquad
\qquad
\qquad to its construction the body is always executed at least once. The condition is checked after execution of the body. The overall structure

The do...while loop of the loop is as follows:
do body
while(condition) ;
(condition);

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The do...while Loop
Examples
\#include<stdio.h>
char a;
int main(void)
\{
do
$\operatorname{scanf}\left(" \% c^{\prime \prime}, \& a\right)$;
while(a!='q');
return 0;
\}

The do...while Loop
Examples
\#include<stdio.h>
char a;
int main(void)
\{
do \{
$\operatorname{scanf}(" \% c$ ", \&a) ;
\} while(a!='q');
return 0 ;
$\}$

The do...while Loop
Examples
\#include<stdio.h>
int $\mathrm{x}, \mathrm{y}=1$;
int main(void)
\{
do \{
$\mathrm{x}+=1$;
$\mathrm{y} *=\mathrm{x}$;
\} while (x!=10);
return 0;
\}

The break Keyword
Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The continue keyword can only be applied inside a loop body and is accompanied by a conditional or a ternary operator. If executed the continue keyword terminates the current iteration of the loop and stars the next one. Execution of all statements placed behind the keyword in the loop's body is in that case skipped.

The continue keyword
An Example
\#include <stdio.h>
int i;
int main(void)
\{
for (i=-5;i<=5;i++) \{
if ($\mathrm{i}==0$)
continue;
printf("5 by \%d is \%f $\backslash n ", i, 5.0 / i)$;
\}
return 0;
\}

The goto keyword

The goto keyword (statement) redirects the flow of control to any arbitrary place in the source code indicated by a label. The label may be located above the spot in code where the goto is used or below or even in the same place. Although the goto keyword can be helpful its usage should be avoided. In the beginning of computer science it was overused by the programmers. That resulted in a messy, unreadable, unmaintainable and often incorrect code. The situation was so serious that Edsger Dijkstra, one of the pioneers of computer science has forbidden to use the goto statement at all. In the C language the goto keyword is usually applied by experienced programmers for exceptions handling and optimizing the performance of a program. Other usages of that statement should be avoided at any cost.

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The goto keyword An Example
\#include <stdio.h>
int i;
int main(void)
\{
label_1: i++;
printf("\%d\n",i); if ($i==15$)
goto label_2; goto label_1;
label_2:
return 0;

In mathematics the factorial operation is defined for natural numbers as follows:
$0!=1$
$1!=1$
$n!=1 \cdot 2 \cdot 3 \cdot 4 \cdot \ldots \cdot(n-1) \cdot n$
The program in the next slide calculates the factorial using a single for loop. The loop counter (the i variable) also serves for storing successive natural numbers that are multiplied. The final result is stored in the factorial variable, but the same variable is also used for storing the partial products. The argument of the factorial is entered by the user. However, the do...while loop limits user's choices to the natural numbers smaller that 21 . The reason for that is the type of factorial variable. It simply cannot store factorials of greater numbers. Please observe, that the program correctly computes the 0 !. In that case the for loop body is not executed. Not even once.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Factorial

The Code

```
#include <stdio.h>
unsigned long long int factorial = 1;
unsigned char i,number;
int main(void)
    do {
        printf("Please enter a natural number that is less than 21, ")
        printf("for which You wish to calculate the factorial:\\");
        scanf("%hhu", &number);
    fwile(number>20);
        for(i=1;i<=number; i++)
            factorial*=i;
        printf("Factorial of %hhu is %llu\n",number,factorial);
        return 0;
}
```


Factorial

The Code - a slightly different approach

```
#include <stdio.h>
unsigned long long int factorial = 1
unsigned char i,number;
int main(void)
    do {
        printf("Please enter a natural number that is less than 21,");
        printf("for which You wish to calculate the factorial:\n");
        scanf("%hhu",&number);
    } while(number>20);
    for(i=1;i<=number;factorial*=i,i++)
        ;
    printf("Factorial of %hhu is %llu\n",number,factorial);
    return 0;
}
```


Greatest Common Divisor

Description

The next example is a program that calculates the Greatest Common Divisor. It uses a modified Euclid's Algorithm that was introduced in the first lecture. The names of the variables are preserved, but the program repeats the $m=n$ and $n=r$ statements just after the r becomes zero. It simplifies the code, but the result is stored in m instead of n. Furthermore, the GCD is calculated only for natural numbers. There is also introduced a while loop that prohibits the user from entering zero as the value of n.

Notes
\qquad

The Code
Notes

```
*include \langlestdio.h>
unsigned int r, n, m;
f
    puts("Please enter two natural numbers."),
    scanf("%,%",&m);
    Mwile(n=0) {
```



```
    } sca
    dotm
    c
    Mrintf("The GCD for those numbers is: %uप\",m);
} return 0;
```


Quadratic equation

Description

Another example is a program that calculates the roots of a quadratic equation. It uses formulas that are immune to the accumulation of rounding errors, which is one of the issues of the floating-point arithmetics. For the "regular" formulas used for solving the quadratic equations those errors appear when $a \cdot c \ll b$ and the float data type is used. The "safe" formulas are as follows: $q \equiv-\frac{1}{2} \cdot[b+\operatorname{sgn}(b) \cdot \sqrt{\Delta}]$, $x_{1}=\frac{q}{a}$ and $x_{2}=\frac{c}{q}$, where sgn is a signum function, that yields 1 if $b>0,-1$ if $b<0$ and 0 if $b=0$. The signum function is implemented with the use of the nested ternary operators. The program is protected, so the user cannot enter zero as a value of the a coefficient. The sqrt() function is a part of math library of the C language. It calculates the square root of a number. To use the function it is necessary to include the math. h header file to the program.

Quadratic equation
The Code

```
\begin{subarray}{c}{#\mathrm{ includestdio.,h>}}\\{#\mathrm{ includemath.h>}}\end{subarray}
##nclude<math.h>
##nclude<math.h>
f int main(void)
    Muts("Please enter the quadratic equation coefficients:")
        M-
```



```
        } white(a=0.0);
        M print("b= ");;
        *)
```



```
        if(delta>>0)t,
            if(doltal=0.0.5*(b-sqrt(delta)):(a)
```



```
    } flse puts("This equation has no roots in the real number domain.");
} return 0,
```

Binary Numbers
Description

Sometimes it is necessary to display a decimal number in binary. Unfortunately, the C99 standard doesn't define a special formatting string for the printf() function to do that in a simple way. However, we should remember that any information in computer memory, including numbers, is represented in binary. The only issue is how to "take it" to the screen. That is what the next program does. It displays in binary an eight-bit number stored in a char variable using a single for loop. Inside the body of the loop each bit of the number, starting from the most significant one, is tested with the use of the masking operation. The second argument of this operation is an expression that shifts right the value of mask constant (eight bits, the most significant one is set) by as many positions as it is indicated by the value of the loop counter.

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad

Binary Numbers
The Code
Notes
\#include <stdio.h>
\#define MASK 128 // 10000000
int i;
char number;

int main(void)
 \{

puts("Please enter the number to be displayed in binary:");
scanf("\%hhi", \&number);
for(i=0;i<8*sizeof(number);i++)
printf("\%d", number\& (MASK>>i) ? $1: 0$) ;
return 0 ;
$\}$

Prime Numbers
Description
A prime number is any natural number greater then one, that is divisible only by one and itself. Finding prime numbers is so time-consuming, that those numbers are applied in cryptography to construct ciphers. The next program displays all such numbers form 3 to almost the upper limit of the unsigned long long int type. The basic algorithm for finding a prime number is as follows: Take a natural number and check if it is a prime by dividing it by all natural numbers grater than 1 and less than the number. If all reminders after those divisions are not zeros, the number is a prime, otherwise it is not. Unfortunately, this algorithm is very inefficient. It is possible to slightly improve it, by making two modifications. In the program the numbers that should be checked are generated by an external for loop and all of them are odd. The internal for loop checks if a particular number is a prime by applying the above algorithm, but it stops checking when the divisor is greater then the square root of the tested number or when the reminder is equal zero. Please note the useage of the prime variable and the break keyword.

Prime Numbers
The Code

```
#include \stdio.h>
```



```
\
int main(void)
    Muts("Prime numbers greater than 2:"); ;
        M
            if(candidate%divivor=
        if(prime)
        if(\mathrm{ Prime) ("%1u ",candidate)}
    }
    , return 0;
```


Cosine

Description

In the math library of the C language there is the $\cos ()$ function that calculates the value of cosine for a given angle measured in radians. However, it is worth to know how to calculate such a value without the help of the $\cos ()$ function. One of the possibilities is to apply the MacLaurian series. For the cosine it takes the following form: $\cos (x)=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\ldots+(-1)^{k} \cdot \frac{x^{2 k}}{(2 k)!}+\ldots$
If we divide some of the series terms by their left neighbours, we will come to the conclusion that they differ by a factor of $-\frac{x^{2}}{(2 i)(2 i-1)}$, where i indicates the position of the term in series. We assume that for the $-\frac{x^{2}}{2!}$ term the value of i is 1 .

Notes
\qquad

The program in the next slide computes the cosine for an angle of $\pi / 3$ radians. In the body of the while loop all the necessary terms of MacLaurian series are calculated and stored in the term variable. The cosinus variable stores the sum of all calculated terms. The i variable stores the position of the current term. The loop should terminate when the value of cosinus is the same as of $\cos ()$ function. However, we cannot compare them directly, because of the floating-point arithmetics properties. Those two numbers could always differ by a very small value and the loop would never stop. Instead, the program measures if the absolute error of those two numbers is less or equal to the EPSILon constant, which means that those values are the same with the respect to eleven digits after the decimal point. The absolute error is calculated by subtracting the already mentioned numbers and taking the absolute value of the result. The absolute value is calculated with the use of fabs() function from the math library of the C language.

Cosine
The Code

```
#include<stdio.h>
```

\#include<stdio.h>
\#include<stdio.h>
\#include<stdio.h>
\#define EPSILON 1e-11
\#define EPSILON 1e-11
double cosinus = 1, term = 1, i = 1;
double cosinus = 1, term = 1, i = 1;
const double x = M_PI/3;
const double x = M_PI/3;
int main(void)
int main(void)
while(fabs(cos(x)-cosinus)>EPSILON) {
while(fabs(cos(x)-cosinus)>EPSILON) {
term *= - 1.0*x*x/((2*i-1)*(2*i));
term *= - 1.0*x*x/((2*i-1)*(2*i));
cosinus += term;
cosinus += term;
}
}
printf("The value of the cosine for the %f radians angle is %f\n",x,cosinus);
printf("The value of the cosine for the %f radians angle is %f\n",x,cosinus);
return 0;
return 0;
}
}
i++;

```
        i++;
```


Natural Exponential Function

Description
The value of the natural exponential function, for a given exponent can be calculated similarly to the cosine. The MacLaurian series for such a function takes the following form $\mathrm{e}^{x}=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots+\frac{x^{k}}{k!}+\ldots$
Using the same method as previously we can find out that the terms differ by a factor of $\frac{x}{i}$, where $i>0$ is the position of a given term in the series. The program in the next slide calculates the value of the exponential function for an exponent entered by the user. It uses a similar algorithm as the program that calculates the cosine. The main difference between them is that the program for the exponential function uses the relative error to compare the value calculated with the use of the MacLaurian series and the value of the $\exp ()$ function (also from the math library). The latter also calculates the value of the natural exponential function. The relative error can be applied in this program, instead of the absolute error, because the value of the exponential function is never zero.

Notes
\qquad

Natural Exponential Function
The Code

```
```

\#include<stdio.h>

```
```

\#include<stdio.h>

```
```

\#include<stdio.h>
\#include<math.h>
\#include<math.h>
\#include<math.h>
\#define EPSILON 1e-11
\#define EPSILON 1e-11
\#define EPSILON 1e-11
double exponential = 1.0, x, i=1, term = 1;
double exponential = 1.0, x, i=1, term = 1;
double exponential = 1.0, x, i=1, term = 1;
{ int main(void)
{ int main(void)
{ int main(void)
puts("Please enter the exponent:");
puts("Please enter the exponent:");
puts("Please enter the exponent:");
scanf("%/f",\&x);
scanf("%/f",\&x);
scanf("%/f",\&x);
scanf("falf"(kx);
scanf("falf"(kx);
scanf("falf"(kx);
term *= (x/i);
term *= (x/i);
term *= (x/i);
exponential += term;
exponential += term;
exponential += term;
} i++;
} i++;
} i++;
printf("The value of e}\mp@subsup{e}{}{-}x\mathrm{ is: %f\n",exponential);
printf("The value of e}\mp@subsup{e}{}{-}x\mathrm{ is: %f\n",exponential);
printf("The value of e}\mp@subsup{e}{}{-}x\mathrm{ is: %f\n",exponential);
return 0;

```
```

 return 0;
    ```
```

 return 0;
    ```
```

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Questions

Notes

?

The End

Notes

Thank You for Your attention!

Notes

[^0]: ${ }^{1}$ The compiler will only warn the programmer that the condition should be inserted into another pair of parentheses.

