Fundamentals of Programming 1

Introduction

Arkadiusz Chrobot

Department of Computer Science

October 12, 2020

Outline

Contact Information

Literature

IllTI'Odl](’,ﬁ()Il

Algorithm

Computer System

Programming Languages

The C Language

Basics of the C Language
Comments

Constants

Variables and Types of Variables

Contact Information

Lecturer: Arkadiusz Chrobot, PhD

Room number: 3.23, D building
Office hours: Monday, 18:00 — 19:30 (via WebEx)

Phone: 41 34-24-185

E-mail: a.chrobot@tu.kielce.pl

WebEx: https://tu-kielce.webex.com/meet/a.chrobot
www: https://achilles.tu.kielce.pl

Literature

PRIMARY LITERATURE

o

. Brian W. Kernighan, Dennis M. Ritchie,“The C Programming
Language”, Second Edition, Prentice-Hall Inc., Upper Saddle River,

2012

. Stephen Prata, “C Primer Plus”, 6th Edition, Addison-Wesley,

Upper Saddle River, 2015

. Zed A. Shaw, “Learn C the Hard Way: Practical Exercises on the

Computational Subjects You Keep Avoiding (Like C)”, Addison-
‘Wesley, Upper Saddle River, 2016

. Paul Deitel, Harvey Deitel, ”C How to Program”, 8th Edition,

Pearson Education Inc., Hoboken, NJ, 2015

. Jon Bentley, “Programming Pearls”, Addison-Wesley, Inc., Upper

Saddle River, 2000

. Alfred V. Aho, John E. Hopcroft, Jeffrey D. Ullman,“Data Struc-

tures and Algorithms”, Addison-Wesley Inc., Upper Saddle River,
1987

1/41

2/41

3/41

a/41

Notes

Notes

Notes

Notes

https://tu-kielce.webex.com/meet/a.chrobot
https://achilles.tu.kielce.pl

Literature

ADVANCED LITERATURE

1. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, “In-
troduction to Algorithms”, 3rd edition, MIT Press, Cambridge US,
2009

2. Donald E. Knuth, “The Art of Programming”, Vol. 1 — 4A,
Addison-Wesley Inc., Reading, Massachusetts, 2011

3. Robert Sedgewick, Kevin Wayne, “Algorithms”, 4th edition, Addison-
Wesley Inc., Reading, Massachusetts, 2011

4. Steven S. Skiena, “The Algorithm Design Manual”, Springer-Verlang,
London 2010

5/41

Literature

WEBPAGES

. Wikibooks: C Programing

3. Learning GNU C

1
2. The GNU C programming tutorial
3
4. The GNU C Library

6/41

Programming

Definition of Programming
Programming is a task of preparing a program for a computer system
that solves a given problem. It consists of the following steps:

1. building a model of the problem,
2. creating an algorithm,
3. writing the algorithm in a programing language,

4. removing syntax and logical errors (so called bugs).

7/41

Computer Program

Definition of a Computer Program
A computer program is an algorithm that solves a specific problem and
is expressed (coded) in a programming language.

8/41

Notes

Notes

Notes

Notes

https://en.wikibooks.org/wiki/C_Programming
https://www.linuxtopia.org/online_books/programming_books/gnu_c_programming_tutorial/index.html
https://www.linuxtopia.org/online_books/programming_books/learning_gnu_c/index.html
https://www.linuxtopia.org/online_books/programming_books/gnu_libc_guide/index.html

Algorithm

Definition of an Algorithm
An algorithm is a series of precise, well-defined activities necessary to
complete a given task.

9/41

Properties of an Algorithm

Finiteness: The algorithm has to finish after a finite number of steps.
Procedures that possesses algorithm’s all properties ex-
cept for finiteness are called computational methods.

Definiteness: Each step of the algorithm has to be specified in a strict,
accurate and unambiguous way.

Input data: The algorithm has zero or more input data.

Output data: The algorithm yields one or more output data related to
the input data.

Effectiveness: The algorithm should not only complete in finite time,
but the time should be as short as possible.

10/41

Expressing the Algorithm

The algorithm can be expressed in a form understandable to a human
or in a form understandable to a computer system.

11741

Expressing the Algorithm

Problem Description

Euclid’s Algorithm for finding the Greatest Common Divisor (GCD) of
two integer numbers.

The Problem
Given a two integer numbers M and N find their Greatest Common

Divisor, i.e. the largest positive integer number, that divides both of
them.

12/41

Notes

Notes

Notes

Notes

Expressing the Algorithm

Pseudocode

El.[Finding the reminder] Divide M by N. Denote by R the re-
minder. (0 < R < N).

E2.[Is zero?] If R = 0 then stop. N is the answer.

E3.[Reduction] Assign N — M and R — N. Go back to the step
El1.

13/41

Expressing the Algorithm

Flowchart

Ll

Read M
and N
M «— N
N « R R «— M mod N

YES -
NO R=07? Print N

14/41

Computer System

Definition of a Computer System
A computer system is a device or a group of collaborating devices that
are capable of running a computer program.

15/41

Types of Computer Systems

(a) Cluster (b) Personal (¢) Mobile Device (d)
Computer Microcontroller

..and many, many others ...

16/41

Notes

Notes

Notes

Notes

Types of Computer Systems — Common Elements

Any computer system has at least two elements:
1. a Central Processing Unit (CPU),
2. a Memory.

Any computer “understands” binary code.

17/41

Expressing the Algorithm — a Computer Program

Initially all computer programs (software) were written in machine
code, i.e. a series of binary (sometimes octal or hexadecimal) num-
bers. Next, assembly languages were introduced. In assembly lan-
guages each machine instruction is represented by a single mnemonic,
i.e. a short, easy to remember string of characters. Latter, a high-level
programming languages were developed. A program written in such a
language resembles a text in a natural language (usually English). A
single instruction in a high-level language can correspond to many ma-
chine language instructions. Programs in high-level languages have to
be translated to the machine code by a special program called a trans-
lator. There are two kinds of translators: interpreters and compilers.
The activity of expressing an algorithm in a computer language is called
implementing and thus the program is sometimes referred to as an
implementation. A program written in assembly or high-level language
is called a source code. It’s version translated to the machine code is
known as an ezecutable code.

18/41

Abstraction

The evolution of programming languages is an example of applying an
abstraction, which is a method of simplifying a problem by highlighting
its most important features and hiding the ones that are unnecessary
for solving it. Basically, programming is all about using skilfully the
abstraction.

19/41

The C Language

Highlights

developed in 70. of 20th century,
high-level language with some low-level features,

supports an imperative, procedural paradigm of programming,

vyvyYvyy

has a simple syntax that was also applied in many other program-
ming languages (Java, C++, C#, etc.),

v

one of the most popular programming languages according to TIOBE

rank (currently it’s no. 1),

» it is compiled; there are many compilers for many computer sys-
tems,

> it is standardised (current standard version is ISO C11, but for the

lecture the ISO C99 will be used and a few non-standard GNU C

extensions).

20/41

Notes

Notes

Notes

Notes

The Simplest Program

Notes
Listing 1: The simplest program in the C language
1 int main(void)
2 {
3 return O;
4 }
21/41
The “Hello World!” Program
Notes
ing 2: "Hello World!" in the C language
1 #include<stdio.h>
2
s int main(void)
P
5 puts("Hello World!");
6 return O;
7 }
22/41
Comments
Notes
Comments in a source code are used for explaining the meaning of
particular parts of code. They are ignored by a compiler. This feature
of comments is sometimes used by the programmers for temporary
excluding (commenting out) from the compilation process excerpts of
a code that are not yet finished. There are three types of comments
available in the C language. Comments of the first type start with the
/* and end with the */ characters. Such comments can have many lines
of text. A comment of the second type starts with the // characters
and ends with the end of line character. Such a comment always has
only one line of text. The comments of the last type start with #if 0
and end with #endif preprocessor instructions.
23 /41
Comments
Notes

Examples

Listing 3: Comments in the C language

24/41

Cons and Pros of Using Comments

+ they help to understand code,
- they may indicate that the code they explain is not well written,

changing the commented code makes the comment outdated,

+ may be used to temporary “switch off” parts of code that are not
yet finished.

25 /41

Constants

In the programming constants are used for naming values that are time-
invariant. There are two ways of defining constants in the C language.
The first one involves using so-called preprocessor macros.

Pattern
#define NAME VALUE

Example
#define GRAVITY 9.81

Names of constants are usually uppercased. Whenever the compiler
(the preprocessors) finds in the source code the GRAVITY it substitutes
it with the 9.81 value.

26 /41

Variable

A variable is a name given to a place where data is stored. From the
computer point of view the variable is a specific part of its memory.
Each variable has (beside the name) two attributes: a scope and a
type. The scope determines where it can be used in a program and
it is depended of the place in the source code where the variable is
declared. We are going to learn about the global variables first. Those
are available in the whole program, starting from the place where they
are declared. The type determines the size of the variable and the sort
of information (data) it stores.

27 /41

Variable Declaration Pattern

PRI

Before a variable can be used in a program it has to be declared first.

type_of_variable variable_name;

Example

Listing 4: Example of variable declaration

unsigned int number_of_students;
int main(void)

return 0;

}

28/41

Notes

Notes

Notes

Notes

Name of the Variable

Rules

Notes

A name is an identifier that allows a programmer to uniformly refer
to a variable (or any other element) in a source code. Every identifier
(also name of a variable) in the C language must adhere to the following

rules:

» identifiers must be unique (there are some exceptions to the rule),

» identifiers must not start with a digit,

» placing special characters which are neither letters nor digits in the

identifiers is not allowed, with the sole exception of the underscore
character (),

» the C language is case sensitive,

v

identifiers should contain only Latin letters,

> a keyword cannot be used as an identifier (The keyword is a part

of the language, for example the int word).

29 /41

Name of the Variable

Recommendations

Notes

The rules presented on the previous slide are checked by the compiler.
However there are some rules for creating identifiers that are not verified

by compiler, but form a convention which helps to make the source
code more legible. Below are presented some of them. Remember, the
source code in more often read then written, so it is worth to make it

understable to wider group of programmers.
» Identifiers should be readable.

» Names of variables should contain at least one noun.

» If the identifier contains more than one word, the words should be
build of lowercase letters and connected by underscores.

> Single letter identifiers should not be used, except for some specific
language constructions (for example: well-known mathematical ex-

pressions, loops).

30/41

Types of Variables

The Basic (Primitive) Types

Notes

Name Size (i bytes) | Values

int 1 integer numbers
Short int or short 2 integer numbers
Tong int or long integer numbers
Tong long int or long long integer numbers
char characters or integer numbers

oo s | 00|)

loat Aoating-point numbers
double foating-point numbers
Tong double 2 floating-point numbers

One byte equals to 8 bits. Bit is the smallest unit of information that
can be processed by a computer (0 or 1). The C language standard
does not define the actual size of types of variables, but describes how

they relate to each others. The sizes in the table are specific to a 64-bit
PC computer.

31/41

Binary Number System and Its Derivatives (Basics) Not
otes

Decimal System

128(pecy) = 1-102 4 2- 10" + 8- 10°

Binary System
1001 sy =123 +0-2240-2" +1-20 = 950y

Two’s Complement
(_5)(uuc) = OIOI(BL\.) = 1010(005) +1= 1011(1@5)

32/41

Types of Variables

Ranges of Integer Types for 64-bit Computers

Name Minimal value Maximal value

int 2 147 483 648 2 147 483 647

short _int or short 32 768 32 767

Tong int or long —9 223 372 036 854 775 808 | 9 2 72 036 854 775 807
Tong long int or long long | —0 223 372 036 854 775 808 | 0 223 372 036 854 775 807
char 128 127

33 /41

Types of Variables

Characters

Single characters, i.e. letters, digits and non-alphanumerics can be
stored in variables of the char type. Every value of the variable is
interpreted as an AscIl (American Standard Code for Information In-
terchange) value.

34/41

Types of Variables

Specifiers

Specifiers are keywords of the C language that modify the meaning
of some types of variables. The specifier unsigned is used together
with the int and char types. It informs the compiler that it should
interpret the value stored in such a variable as a natural number. In
other words it changes an integer numbers type into a natural numbers
type. Complementary to the unsigned is the signed specifier, but in
the essence it does not do anything and is often omitted. The long
specifier doubles the size of the variable of int or double type. The
short specifier halves the size of a variable of int type.

35/41

Types of Variables

Ranges of Natural Types for 64-bit Computers

Name Minimal value Maximal value

unsigned int or unsigned 0 4 294 967 295
unsigned short imt or unsigned short 0 65 535

unsigned long int or unsigned long 0 18 446 744 073 709 551 615
unsigned long long int or unsigned long long 0 18 446 744 073 709 551 615
unsigned char 0 255

In the limits.h header file are defined constants for values of limits
for every integer and natural numbers type.

36/41

Notes

Notes

Notes

Notes

Types of Variables

The void Type

Notes

The keyword void is a data type name, but not a variable type name

all types of variables are data types, but not all data types are types
of variables. It means that it is impossible to declare a variable of such
a type. However, the keyword is useful in other situations that will be

discussed in latter lectures.

37/41

Types of Variables

Floating-Point Numbers Types

Notes

Some real numbers cannot be accurately represented in the computer
memory. For that reason the computer scientist crated less accurate
but possible to fit into the memory representation of those numbers

that is called a floating-point number. It is based on scientific notation,
but the base is 2. In the computer memory the numbers are stored
in the following way. The most significant bit determines the sign of

the number. Some next bits store the significant (sometimes called
incorrectly “mantissa”), the last part is for storing an exponent. The

significant (i.e. the fraction) is expressed in a binary code in such a way,
that the each subsequent bit, starting from the left, has a negative base
exponent (i.e. 271,272,273,...). The number’s exponent is expressed

in two’s complement. In the C language floating-point numbers are
stored in float, double and long double types of variables. The

difference between them is not only in the total size of occupied memory
but also in the sizes of the parts for significant and the exponent.

38/41

Types of Variables

Boolean Type

Notes

In the C language all values that are nonzero are interpreted as logi-
cally true and all values that are equal zero are interpreted as logically

false. In the previous editions of the C language standards there was
no definition of a special type of variable for such values. Starting
from the ISO C99 standard there is such a type called bool. It can be

used in a program, provided that the stdbool.h header file is included
at the beginning of its source code like this: #include<stdbool.h>.
Variables of such a type can have one of the two values true or false.

39/41

Questions
Notes

10/41

THE END

Thank You for Your attention!

Notes

Notes

Notes

Notes

	Contact Information
	Literature
	Introduction
	Algorithm
	Computer System
	Programming Languages
	The C Language
	Basics of the C Language
	Comments
	Constants
	Variables and Types of Variables

