
Fundamentals of Programming 1
Multidimensional Arrays

Arkadiusz Chrobot

Department of Computer Science

December 10, 2019

1 / 72

Outline

1 Multidimensional Arrays

2 Indexing of Elements

3 Passing by Parameters

4 Arrays of Strings

5 Matrix Operations

6 Conway’s Game of Life

2 / 72

Multidimensional Arrays

Multidimensional Arrays

A multidimensional array is an array that requires more than one index
for locating an element. Most of the contemporary programming lan-
guages allows for creating and using such arrays. In the C language,
declaration of the multidimensional array is similar to the declaration
of a linear array, but it requires additional pairs of brackets. In general,
there have to be as many pairs of brackets as the array has dimensions.
Each of the pairs should contain the number of elements in the given
dimension. The two-dimensional arrays (arrays of the arrays) are usu-
ally used for modeling matrices. The three dimensional arrays (arrays
of the arrays of the arrays) can be imagined as having a cubic or cuboid
shape. Arrays of a higher number of dimensions may also be applied.

3 / 72

Multidimensional Arrays

Multidimensional Arrays
Initialization of Multidimensional Arrays

The multidimensional arrays may be created as already initialized vari-
ables. In that case the number of elements for the first dimension may
be omitted (the first pair of brackets may be left empty). Nevertheless it
must be defined for the rest of the dimensions. The initial values for the
multidimensional array are best described as an array of other arrays.
In the simplest case of a two dimensional array, the initial value is an
array of linear arrays, just like in the following example:

int first_matrix[2][3] = {{1,2,3},{4,5,6}};
int second_matrix[][2] = {{1,2},{3,4}};

In the first line the two dimensional array is initialized with the array
of two elements which are, in turn, arrays of three elements of the int
type. In the second line the two dimensional array is initialized with
the array of two elements which are arrays of two elements of the int
type. Please observe, that in the latter case the number of elements for
the first dimension is not given. 4 / 72

Indexing of Elements

Indexing of Elements

To access a single element in a multidimensional array it is necessary
to provide all of its indices. The element has as many indices as the
array has dimensions. Each of the indices should be embraced in a
separate pair of brackets. The values of the indices have to be natural
numbers, regardless if the indices are expressed as expressions, vari-
ables, constants or literals. None of the indices may be greater than or
equal to the number of elements in a given dimension. The examples
show expressions that reference a single element in a two, three and
four dimensional array of elements of the double type.

double value = matrix[1][0];
value = cube[3][5][7];
value = hypercube[1][3][2][3];

5 / 72

Passing by Parameters

Passing by Parameters

The multidimensional array may be passed to a function by a parameter.
The parameter may be declared in the parameter list of the function in
the same way as the array. When invoking the function the parameter
is substituted by an argument which in this case is the array. It is also
permissible to skip the number of elements of the first dimension in the
declaration of the parameter. For the rest of the dimensions the number
has to be defined. The first dimension in the parameter declaration can
also be replaced by a pointer. The next three slides show functions
that have the described parameters used for passing a two dimensional
array.

6 / 72

Passing by Parameters

Passing by Parameters
The First Way

void print_matrix(int matrix[ROWS][COLUMNS])
{

int i,j;
for(i=0;i<ROWS;i++) {

for(j=0;j<COLUMNS;j++)
printf("%4d",matrix[i][j]);

puts("");
}

}

7 / 72

Passing by Parameters

Passing by Parameters
The First Way — a Comment

The function, which source code is presented in the previous slide, prints
the values from a two dimensional array of elements of the int type
on the screen. The number of elements in each of the dimensions is
defined by the rows and columns constants, what makes changing them
easy. It suffices to modify the values of the constants at the place
where they are defined. Please notice, that accessing each element of
the array requires using two loops, one nested into another. Please
also observe the invocation of the puts() function. In this example the
two dimensional array models a matrix. The aforementioned calling
of the puts() function serves the purpose of moving the cursor at the
beginning of the next line on the screen so the next row of the matrix
can be displayed there. This causes the matrix to look on the screen
similarly as its mathematical notation. The printf() function reserves,
according to the formatting string, four places on the screen for each
value of the array.

8 / 72

Passing by Parameters

Passing by Parameters
The Second Way

void fill_matrix(int matrix[][COLUMNS])
{

int i,j;
srand(time(0));
for(i=0;i<ROWS;i++)

for(j=0;j<COLUMNS;j++)
matrix[i][j] = rand()%10;

}

9 / 72

Passing by Parameters

Passing by Parameters
The Second Way — a Comment

The function presented in the previous slide fills the two dimensional
array (a matrix) with randomly chosen natural numbers ranging from
0 to 9. In the declaration of the function’s parameter the number of
elements for the first dimension of matrix is omitted. However, the rows
constant can still be used in the function’s body, as it is demonstrated
in the external loop header.

10 / 72

Passing by Parameters

Passing by Parameters
The Third Way

void print_matrix(int (*matrix)[COLUMNS])
{

int i,j;
for(i=0;i<ROWS;i++) {

for(j=0;j<COLUMNS;j++)
printf("%4d",matrix[i][j]);

puts("");
}

}

11 / 72

Passing by Parameters

Passing By Parameters
The Third Way — a Comment

In the definition of the function from the previous slide, a pointer is ap-
plied as a parameter for passing a two dimensional array. The function
displays on the screen values from the array, just like the first of the
functions described in previous slides. Please notice the parentheses
used in the parameter declaration. They are necessary to define the
parameter as a pointer to an array and not an array of pointers.

12 / 72

Arrays of Strings

Arrays of Strings

Arrays of strings are a special case of two dimensional arrays. It is
possible to access a single character in the array by providing two
indices: one for the string and one for the character. However, it is
also possible to provide only one index for the string. Those arrays are
created the same way as regular two dimensional arrays. Only the type
of their elements is defined as char. The arrays may also be initialized.
The example shows the declaration of such an array.
char cities[][LENGTH] = {"Brussels","Amsterdam","Antwerp",

"Cracow","Vienna","Warsaw"};

The LENGTH constant defines the number of elements for storing char-
acters. The strings, which are the initial values, do not have to be
embraced by curly braces, they may be embraced only in quotation
marks. Functions that implement operations on the array are presented
in next slides. Those operations are sorting and printing.

13 / 72

Arrays of Strings

Arrays of Strings
Printing the Array of String on the Screen

void print_cities(char cities[][LENGTH])
{

int i;
for(i=0; i<NUMBER; i++)

printf("%s ",cities[i]);
puts("");

}

14 / 72

Arrays of Strings

Arrays of Strings
Printing the Array of Strings on the Screen — a Comment

The function from the previous slide prints all strings from the array on
the screen. The array is passed by the parameter, in which the number
of elements for the first dimension is omitted. The number of strings
in the array is given by the number constant, which is used in the for
loop. To print the values from the array only one loop is needed. The
individual strings are displayed on screen by the printf() function with
the use of the "%s" formatting string.

15 / 72

Arrays of Strings

Arrays of Strings
The swap() Function

void swap(char first[], char second[])
{

char tmp[LENGTH];

strncpy(tmp,first,LENGTH-1);
strncpy(first,second,LENGTH-1);
strncpy(second,tmp,LENGTH-1);

}

16 / 72

Arrays of Strings

Arrays of Strings
The swap() Function — a Comment

The swap() function for the array of strings differs from the same func-
tions for the primitive data types like the int. As the parameters are
used the arrays of characters. They are substituted by the elements of
the array of strings when the function is invoked. The strings stored in
the elements are switching their places. To the end the tmp1 variable
is created. It is used for storing the first of the strings temporarily. The
strings are copied with the use of the strncpy() function. The length
constant is used in the expression that evaluates to the maximum num-
ber of characters that the function can copy.

1It is an abbreviation of the “temporary” word.
17 / 72

Arrays of Strings

Arrays of Strings
Sorting of the Array of Strings

void sort_cities(char (*cities)[LENGTH])
{

int i,j;

for(i=0; i<NUMBER-1; i++) {
int min = i;
for(j=i+1; j<NUMBER; j++)

if(strncmp(cities[min],cities[j],LENGTH-1)>0)
min = j;

if(min!=i)
swap(cities[min],cities[i]);

}
}

18 / 72

Arrays of Strings

Arrays of Strings
Sorting of the Arrays of Strings — a Comment

The function from the previous slide is a modification of the function for
sorting a linear array with the use of the selection sort algorithm. In the
header, beside the name, the parameter declaration has been changed,
so it can pass an array of strings. Also the name of the constant that
defines the number of elements in the array has been changed. More
importantly, the strncmp() is applied in the conditional statement for
comparing the string indicated by the min index with the one indicated
by the j index. If the latter is less than the other the function returns a
value greater than zero.

19 / 72

Arrays of Strings

Arrays of Strings
Program Arguments

The arrays of strings have a special meaning for the main() function. Its
parameter list do not have to be empty. It can contain two parameters,
which are usually (the names can be changed) called argc and argv.
The first one is of int type and the second one is an array of pointers
to strings. Both of them are used for passing to the main() function the
program arguments. As an example of such arguments the options of
Unix shell commands may be given. Each of the argument is interpreted
by the program as a string. If there is more than one argument then they
are separated by whitespaces. Those strings (arguments) are stored in
the argv array and the number of them is stored in the argc parameter.
It is vital to know, that the argc parameter has always the value equal
at least one. This is because the argv array stores in its first element
the fully qualified name of the program, i.e. the name of the program’s
executable file in the form of its full path. The next slide contains a
program that prints on screen, in separate lines, the arguments which
are passed to it.

20 / 72

Arrays of Strings

Arrays of Strings
Program Arguments

#include <stdio.h>

int main(int argc, char *argv[])
{

int i;
for(i=0;i<argc;i++)

printf("%s\n",argv[i]);
puts("");
return 0;

}

21 / 72

Matrix Operations

Matrix Operations

The two dimensional arrays are used for representing matrices. In that
case the first dimension in the matrix declaration defines the number
of rows and the second one the number of columns and thus also the
number of items (elements) in each of the rows. Therefore the 2 × 3
matrix of integer elements could be declared as follows:

int matrix[2][3];

If the numbers of elements in both dimensions are equal than the matrix
is a square matrix. When referencing a single element of the matrix, the
first index indicates the row where the element is located and the second
one the column. There are many operations defined for the matrices,
like addition, subtraction, multiplication, transposition, inversion and
calculation of a determinant. The next slides contain functions, with
descriptions, that implement the first four of them.

22 / 72

Matrix Operations

Addition

Two matrices can be added if and only if they have the same numbers
of rows and columns. The resulting matrix has the same dimensions
as the arguments have. The adding of matrices simply boils down to
adding the values of the corresponding elements of both arguments. The
operation is illustrated in the next slide. Three items were highlighted
in the slide. The items with the green and blue background are those
that are added. The resulting item has the red background.

23 / 72

Matrix Operations

Matrix Operations
Addition

1 2 3
4 5 6







 +
1 2 3
4 5 6







 =
2 4 6
8 10 12









24 / 72

Matrix Operations

Matrix Operations
Addition — an Implementation

void add_matrices(int (*argument_1)[COLUMNS],
int (*argument_2)[COLUMNS],
int result[ROWS][COLUMNS])

{
int i,j;
for(i=0;i<ROWS;i++)

for(j=0;j<COLUMNS;j++)
result[i][j] =

argument_1[i][j] + argument_2[i][j];
}

25 / 72

Matrix Operations

Matrix Operations
Addition — a Comment on the Implementation

Matrices can not be, at least directly, returned by a function. Therefore
the add_matrices() function has three parameters. The first two of
them are used for passing the matrices to the function and the third one
is used for passing the resulting matrix outside the function. Adding
the matrices requires two loops, one nested in the other. The first one
indexes rows in the three matrices and the second one indexes the
elements in each row.

26 / 72

Matrix Operations

Matrix Operations
Subtraction

The subtraction of matrices is similar to addition. The next slide illus-
trates such an operation.

27 / 72

Matrix Operations

Matrix Operations
Subtraction

1 2 3
4 5 6







 − 1 2 3
4 5 6







 =
0 0 0
0 0 0









28 / 72

Matrix Operations

Matrix Operations
Subtraction — an Implementation

void substract_matrices(int (*argument_1)[COLUMNS],
int (*argument_2)[COLUMNS],
int result[ROWS][COLUMNS])

{
int i,j;
for(i=0;i<ROWS;i++)

for(j=0;j<COLUMNS;j++)
result[i][j] =

argument_1[i][j] - argument_2[i][j];
}

29 / 72

Matrix Operations

Subtraction — a Comment on the Implementation

The function that subtracts matrices is defined similarly to the function
that implements the addition. The only difference, beside the name, is
the subtraction operator used in place of the addition operator.

30 / 72

Matrix Operations

Matrix Operations
Multiplication

Multiplication of matrices is more complicated operation than the two
previously described. In contrast to the numbers multiplication the ma-
trix multiplication is not commutative, i.e. the order of the arguments
of multiplication is important. Moreover, the operation is only possible
if the first argument has as many columns as the second argument has
rows. Calculating the value of a single element of the resulting ma-
trix consists in adding the products of all items in a specific row of the
first argument and the corresponding column of the second argument.
The next slide contains an example. The value of the item with the red
background is calculated by multiplying the row with the green back-
ground from the first matrix and the column with the blue background
from the second matrix, i.e. by evaluating the following expression:
1 ∗ 1 + 2 ∗ 3 + 3 ∗ 5 = 22.

31 / 72

Matrix Operations

Matrix Operations
Multiplication

1 2 3
4 5 6







 ×
1 2
3 4
5 6







 =
22 28
49 64









32 / 72

Matrix Operations

Matrix Operations
Multiplication — Implementation

void multiply_matrices(int argument_1[2][3],
int argument_2[3][2],
int result[2][2])

{
int i,j,k;
for(i=0;i<2;i++)

for(j=0;j<2;j++)
for(k=0;k<3;k++)

result[i][j] +=
argument_1[i][k]*argument_2[k][j];

}

33 / 72

Matrix Operations

Multiplication — a Comment to the Implementation

The parameters of the function play the same role as in the previously
defined functions for addition and subtraction. The function uses the
simplest matrix multiplication algorithm. It requires using three loops.
The first one indicates a row in the first argument, the second one
indicates the column in the second argument and the third one indexes
consecutive elements of this row and this column. Also the loop counters
of the two first loops indicate the element, in the resulting matrix, in
which the result is stored. The element is used during the calculation
for storing the partial sums of the items products, so its initial value
has to be zero. Therefore the third argument of the function has to be
a zero matrix. It is enough to declare the matrix as a global variable.

34 / 72

Matrix Operations

Matrix Operations
Matrix Multiplication Effectiveness

The order of the loops in the function can be changed. It occurs that
it has an impact on the performance of the function. Let’s denote the
loops by the names of their loop counters. The most effective order
of the loops is (ikj), but it also depends on the configuration of the
computer that executes the function. There are more efficient algorithms
of the matrix multiplication, but they are more complicated, harder to
implement correctly and the increased performance is noticeable only
for very big matrices.

35 / 72

Matrix Operations

Matrix Operations
Transposition

In the simplest terms matrix transposition involves swapping the columns
and rows, so a A matrix of 2× 3 dimensions becomes a matrix AT of the
3×2 dimensions. The result of matrix transposition is called a transpose.
The next slide shows an example of such an operation.

36 / 72

Matrix Operations

Matrix Operations
Transposition

1 2 3
4 5 6








T

=
1 4
2 5
3 6









37 / 72

Matrix Operations

Matrix Operations
Transposition — Implementation

void transpose_matrix(int argument[ROWS][COLUMNS],
int result[COLUMNS][ROWS])

{
int i,j;
for(i=0;i<2;i++)

for(j=0;j<3;j++)
result[j][i]=argument[i][j];

}

38 / 72

Matrix Operations

Transposition — a Comment to the Implementation

The transposition of a rectangular matrix requires using an additional
matrix for storing the transpose. The matrix to be transposed is passed
to the function by the first argument, the result is passed outside by the
second parameter. Please observe the way the loop counters are used
as indices in both matrices. The order of the indices is reversed in the
resulting matrix.

39 / 72

Matrix Operations

Matrix Operations
Transposition of a Square Matrix —Implementation

void transpose_square_matrix(int matrix [3][3])
{

int i,j;
for(i=0; i<3; i++)

for(j=0; j<i; j++) {
int tmp;
tmp = matrix[i][j];
matrix[i][j] = matrix[j][i];
matrix[j][i] = tmp;

}
}

40 / 72

Matrix Operations

Matrix Operations
Transposition of a Square Matrix — a Comment on the Implementation

If the matrix to be transposed is a squared one, the operation can be
implemented with the use of only one array of arrays. The square matrix
consists of two triangular matrices located on the both sides of its main
diagonal. The algorithm exchanges the values of the elements in both
triangular matrices. Please notice the header of the inner loop. The
upper limit of its loop counter values (the j variable) is set by the current
value of the loop counter of the external loop (the i variable). The body
of the inner loop contains statements that swap the values of two of the
matrix elements. The statements may be replaced by the invocation of
the swap() function defined in the previous lectures.

41 / 72

Conway’s Game of Life

Conway’s Game of Life

The Game of Life is a cellular automaton (ca) that was discovered by a
British mathematician John Conway. Contrary to its name, it has nothing
to do with the entertainment, at least not in a common meaning of the
word. The automaton is build from cells, arranged in an infinite square
board, that change their states in each step of the automaton activity,
according to some simple rules. States of all of the cells form a state of
the game, which can evolve in a very complicated way. The automaton is
a subject of research for mathematicians, physicists, computer scientists
and biologists. From the computer science point of view the automaton
is equivalent to the Turing machine. It means that the automaton is a
computer capable of processing information. In the lecture other aspect
of the Game of Life are discussed. The automaton can be simulated with
the use of matrices.

42 / 72

Conway’s Game of Life

Conway’s Game of Life
Cell State Evolution Rules

The cells of the automaton are represented by elements of a matrix.
Each of the cells in a specific moment of the automaton activity may be
in one of two states: dead or alive. The change in the state of the cell
in next step of the automaton activity is depended on the states of its
neighbours in the current step and undergoes the following rules:

1 each alive cell that has less than two alive neighbours dies,
2 each alive cell that has more than three alive neighbours dies,
3 each alive cell that has two or three alive neighbours stays alive,
4 each dead cell that has three alive neighbours becomes alive.

The next slide contains a picture that illustrates the concept of neigh-
bourhood in the Game of Life.

43 / 72

Conway’s Game of Life

Conway’s Game of Life
Moore Neighbourhood

44 / 72

Conway’s Game of Life

Conway’s Game of Life
Coordinates of the Neighbours

The red-marked cell has eight yellow-marked neighbours, as it is shown
in the picture. Calculating their coordinates (the row and the column)
is not hard. They differ at most by −1 or +1 from the coordinates of the
red-marked cell. For example, if the red-marked cell has coordinates
of (x, y), then its top left neighbour has coordinates of (x − 1, y − 1),
assuming that the cell in top left corner of the board has coordinates
of (0, 0), the values of indices of rows grow in top-bottom direction and
the values of indices of columns grow in left-right direction. There is
however one more issue that should be taken into account. The issue
is illustrated in the next slide.

45 / 72

Conway’s Game of Life

Conway’s Game of Life
More Neighbourhood

46 / 72

Conway’s Game of Life

Conway’s Game of Life
Coordinates of the Neighbours

The game’s board should be infinite. It means that the elements on the
edges of the board must also have their neighbours and exactly eight
for each of them. This obstacle can be overcome by using the modu-
lar arithmetic, what is demonstrated in the source code of a program
that simulates the Game of Life. Conceptually, the modular arithmetics
converts the square board into a torus, as it is depicted in the next slide.

47 / 72

Conway’s Game of Life

Conway’s Game of Life
The Board

⇐

48 / 72

Conway’s Game of Life

Conway’s Game of Life
Implementation

#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <string.h>

#define SIZE 32

enum state {DEAD, ALIVE};

unsigned char board[SIZE][SIZE];

49 / 72

Conway’s Game of Life

Conway’s Game of Life
Implementation — a Comment

The beginning of the program from the previous slide contains, beside
the preprocessor directives that include all necessary header files, a
definition of a constant that defines the size of the game’s board (32
elements in each dimension), a definition of an enumerated type and a
declaration of a matrix. Variables of the enumerated type are not used
in the program. Only elements of this type are used as constants that
describe the state of a single cell. A dead cell has a value of 0 and the
constant for this state is named dead. An alive cell has a value of 1, and
the constant for the state is named alive.

50 / 72

Conway’s Game of Life

Conway’s Game of Life
Implementation

unsigned int down(unsigned int y)
{

return (y+1)%SIZE;
}

unsigned int up(unsigned int y)
{

return (y+(SIZE-1))%SIZE;
}

51 / 72

Conway’s Game of Life

Conway’s Game of Life
Implementation — a Comment

The up() and down() functions are used for finding the vertical coordi-
nate of neighbours of any cell on the board. The down() function uses
the modulus operator to find the vertical coordinate of the neighbours
of cells at “the very bottom” of the board. The up() function uses the
same operator to find the vertical coordinate of the neighbours of cells
at “the very top” of the board. The down() function increments the value
of the vertical coordinate of a cell in the range from 0 to size-1. The
up() function decrements the same value in the same range.

52 / 72

Conway’s Game of Life

Conway’s Game of Life
Implementation

unsigned int right(unsigned int x)
{

return (x+1)%SIZE;
}

unsigned int left(unsigned int x)
{

return (x+(SIZE-1))%SIZE;
}

53 / 72

Conway’s Game of Life

Conway’s Game of Life
Implementation — a Comment

The horizontal coordinate of the neighbours of any cell may be calcu-
lated with the use of the same functions that calculate the vertical coor-
dinate. However, the program is more legible if two separate functions
are defined for calculating the horizontal coordinate. Those functions
are similar to the ones that find the vertical coordinate.

54 / 72

Conway’s Game of Life

Conway’s Game of Life
Implementation

unsigned char count_alive_neighbours(
unsigned char board[SIZE][SIZE],
unsigned int i, unsigned int j)

{
return board[i][down(j)]

+ board[i][up(j)]
+ board[left(i)][j]
+ board[right(i)][j]
+ board[right(i)][down(j)]
+ board[right(i)][up(j)]
+ board[left(i)][down(j)]
+ board[left(i)][up(j)];

}

55 / 72

Conway’s Game of Life

Conway’s Game of Life
Implementation — a Comment

The count_alive_neighbours() function counts the number of alive
neighbours of a cell which coordinates are given by i and j. Since
every alive cell has the value of 1 and every dead cell has a value of 0,
it is enough to add values of all neighbouring cells to get the number
of the alive ones.

56 / 72

Conway’s Game of Life

Conway’s Game of Life
Implementation

void get_next_step(unsigned char board[SIZE][SIZE])
{

static unsigned char swap[SIZE][SIZE];
unsigned int i,j;

for(i=0; i<SIZE; i++)
for(j=0; j<SIZE; j++) {

unsigned char state = board[i][j];
unsigned char alive_neighbours = count_alive_neighbours(board,i,j);
if(state == ALIVE && alive_neighbours < 2)

swap[i][j] = DEAD;
if(state == ALIVE && alive_neighbours > 3)

swap[i][j] = DEAD;
if(state == ALIVE && (alive_neighbours == 3 || alive_neighbours == 2))

swap[i][j] = ALIVE;
if(state == DEAD && alive_neighbours == 3)

swap[i][j] = ALIVE;
}

memcpy(board,swap,SIZE*SIZE);
}

57 / 72

Conway’s Game of Life

Conway’s Game of Life
Implementation — a Comment

The get_next_step() function generates the state of the automaton in
the next step. The new state is stored in the swap matrix. It is created
according to the current state that is passed to the function in the form
of the board matrix. Please observe that the swap matrix is a static
local variable. It is the easiest way of initiating the matrix with zeros.
In the two for loops the state of each cell is read and the number of
its alive neighbours is calculated. Then the resulting state of the cell
is computed according to the rules presented before and stored in the
swap matrix. Finally, after the loops terminate, the content of the swap
matrix is copied to the board matrix with the use of memcpy() function.

58 / 72

Conway’s Game of Life

Conway’s Game of Life
Implementation

void seed_board(unsigned char board[SIZE][SIZE])
{

unsigned int i,j,k;
srand(time(NULL));
for(k = 0; k<8; k++) {

i = rand()%SIZE;
j = rand()%SIZE;
board[i][j] = ALIVE;
int choice = rand()%8;
switch(choice) {
case 0 :

board[i][down(j)] = ALIVE;
case 1 :

board[i][up(j)] = ALIVE;
case 2 :

board[left(i)][j] = ALIVE;
case 3 :

board[right(i)][j] = ALIVE;
case 4 :

board[right(i)][down(j)] = ALIVE;
case 5 :

board[right(i)][up(j)] = ALIVE;
case 6 :

board[left(i)][down(j)] = ALIVE;
case 7 :

board[left(i)][up(j)] = ALIVE;
}

}
}

59 / 72

Conway’s Game of Life

Conway’s Game of Life
Implementation — a Comment

The seed_board() function initiates the board before the game starts.
It chooses randomly the coordinates of eight cells which become alive
and for each of them it initiates alive neighbours. The number of that
neighbours is also randomly chosen by the function.

60 / 72

Conway’s Game of Life

Conway’s Game of Life
Implementation

void create_blinker(unsigned char board[SIZE][SIZE])
{

board[SIZE/2-1][SIZE/2-1] = board[SIZE/2][SIZE/2-1]
= board[SIZE/2+1][SIZE/2-1] = ALIVE;

}

61 / 72

Conway’s Game of Life

Conway’s Game of Life
Implementation — a Comment

The create_blinker() function also initiates the game’s board, but
this time deterministically. It creates in the middle of the board a pat-
tern that belongs to the group of so called oscillators and its name is
“blinker”. The pattern consists of three cells. Two vertical and two hor-
izontal cells alternately become dead or alive, so they look as if they
are circulating.

62 / 72

Conway’s Game of Life

Conway’s Game of Life
Implementation

void create_ten_in_row(unsigned char board[SIZE][SIZE])
{

memset((void *)&board[SIZE/2-1][SIZE/2-6],ALIVE,10);
}

63 / 72

Conway’s Game of Life

Conway’s Game of Life
Implementation — a Comment

The create_ten_in_row() function also initializes the board by placing
in the middle of it a pattern that consists of ten alive cells located one
by one in a row. The pattern is called a “ten in a row” or a “crocodile”.
It turns out that the simple pattern evolves in a complicated meaner.
To initiate the ten elements of the matrix with the alive value the
memset() function is used. It is possible thanks to the structure of the
matrix – each of its elements has a size of one byte. The function assigns
the value, passed as its second argument, to the ten subsequent cells,
starting with the cell which coordinates are (SIZE/2 − 1, SIZE/2 − 6).

64 / 72

Conway’s Game of Life

Conway’s Game of Life
Implementation

void print_board(unsigned char board[SIZE][SIZE])
{

unsigned int i,j;

for(i=0; i<SIZE; i++) {
printf("\n");
for(j=0; j<SIZE; j++)

printf("%2d",board[i][j]);
}
printf("\n");

}

65 / 72

Conway’s Game of Life

Conway’s Game of Life
Implementation — a Comment

The print_board() function displays on the screen the current state
of the game, in other words the content of the matrix that is passed as
its argument. For the value of each cell the printf() function reserves
two places on the screen. Please observe, that the printf() function
is also used instead of the puts() function to move the cursor to the
next line on the screen.

66 / 72

Conway’s Game of Life

Conway’s Game of Life
Implementation

int main(int argc, char **argv)
{

if(argc==2) {
if(!strcmp(argv[1],"blinker"))

create_blinker(board);
else if(!strcmp(argv[1],"ten_in_row"))

create_ten_in_row(board);
else

seed_board(board);
} else

seed_board(board);

do {
print_board(board);
get_next_step(board);

} while(getchar()!=’q’);
return 0;

}

67 / 72

Conway’s Game of Life

Conway’s Game of Life
Implementation — a Comment

In the beginning the main() function initializes the state of the game
basing on whether the user passed an argument to the program and
the value of the argument. If there is one argument, then the function
checks whether its value is blinker or ten_in_row. According to this
value it sets one of the patterns as a default state of the board. If the
program is run without an argument or the argument has an invalid
value, the board is initiated (pseudo)randomly. After the initialization is
finished the do...while loop is performed until the user presses the q
or the Enter key. In the body of the loop the current state of the game
is displayed on the screen with the use of the print_board() function
and the next state is generated with the use of the get_next_step()
function.

68 / 72

Conway’s Game of Life

Conway’s Game of Life
Implementation — a Comment

The described program displays the state of the game on screen as a
series of zeros and ones. The overall effect is not spectacular, but a more
fluent animation may be achieved by pressing and holding the Enter
key. Printing the state of the game is improved in the future lectures.
The Game of Life, depending on the initial state may evolve into three
deferent ways:

1 the board becomes empty — all the cells are dead,
2 the state of the game is stable — all the patterns on the board

aren’t evolving any more,
3 the state of the game is changing periodically.

A series of interesting patterns may appear on the board during the
game.

69 / 72

Conway’s Game of Life

Thanks

Many thanks to Grzegorz Łukawski, PhD and Leszek Ciopiński, MSc for
helping me to complete the Polish version of this slides.

70 / 72

Conway’s Game of Life

Questions

?

71 / 72

Conway’s Game of Life

The End

Thank You for Your attention!

72 / 72

	Multidimensional Arrays
	Indexing of Elements
	Passing by Parameters
	Arrays of Strings
	Matrix Operations
	Conway's Game of Life

