
.

......

Fundamentals of Programming 1
Flow of Control

Arkadiusz Chrobot

Department of Computer Science

October 27, 2019

1 / 55



Outline

...1 Control Flow Statements

...2 Block of Statements

...3 Conditional Statement

...4 Switch Statement

...5 Iteration Statements
The for Loop
The while loop
The do…while loop

...6 The break and continue Keywords

...7 Examples

2 / 55



Control Flow Statements

Control Flow Statements

A statement is a high-level programming language instruction. Control
flow statements or statements that change the flow of control in a program
are a crucial part of every programming language. They make it possible
to change the order in which other statements are performed. Particu-
larly, they decide, basing on the value of some condition (expression),
whether to execute or repeat the execution of other statements. Control
statements allow programmers to implement complex algorithms.

3 / 55



Block of Statements

Block of Statements

A block of statements (or simply a block) in the C language is a group
of statements inside a pair of curly brackets. The group can consist of
several statements or just one statement or even it can be empty. The
block is interpreted by the program as a single statement. Blocks can
be nested i.e. a block can be inserted into another block. We already
saw the usage of a block in the definition of the main() function, but it
can be applied in other parts of source code, particularly in the control
statements.

4 / 55



Conditional Statement

Conditional Statement
Description

The conditional statement (or simply the conditional) is a statement that
performs an action depending on a some condition that is a part of it.
The overall structure of such a statement is as follows:
if(condition)

statement;
else

alternative_statement;

If the condition is satisfied, than the statement is executed, otherwise
the alternative_statement is carried out. When not needed the whole
else branch can be omitted. In the C language any expression can be
used as the condition.

5 / 55



Conditional Statement

Conditional statement
Remarks

The C language is very flexible in the terms of the structure of sentences.
For example in the if statement a programmer may not only skip the
else branch but even the statement. This can be achieved by putting
a semicolon right behind the closing parenthesis. Such a construction
of the conditional, although correct, has no practical meaning. Using
an assignment instruction (=) in the condition, instead of the equality
operator (==) is a common mistake1. However, experienced programmers
can use such a condition correctly for simplifying the program.

1The compiler will only warn the programmer that the condition should be
inserted into another pair of parentheses.

6 / 55



Conditional Statement

Conditional Statements
An Example

if(a==b)
a=5;

else
b=5;

Some programmers recommend to use blocks even if only a single state-
ment is used after the condition and/or the else keyword.
if(a==b) {

a=5;
} else {

b=5;
}

7 / 55



Conditional Statement

Conditional Statements
Nested Conditionals

It is possible to place a conditional inside another conditional. Such a
statement is called a nested conditional:
if(a==3) {

if(b==4)
c=5;

}
However, such a construction can make the code illegible, so it is better
to use a complex condition instead:
if(a==3 && b==4)

c=5;
Beware, that converting the nested conditional to a simpler form is not
always as obvious as in the example, due to the short-circuit evaluation
of the expression in the condition.

8 / 55



Switch Statement

Switch Statement

The switch statement is a kind of multiple choice statement that changes
the flow of control. It performs other statements depending on the value
of a variable which is called a selector. The variable can be of int, char
or other integer type. The overall structure of switch statement is as
follows:
switch(selector) {

case value_1: statement_1;
break;

…
case value_nth: statement_nth;

break;
default: statement;

}
The number of cases (case) is limited only by the range of selector’s data
type.

9 / 55



Switch Statement

Switch Statement
Remarks

More than one statement can be placed in a single case in the switch
statement. It is only required that they should be followed by the break
keyword. Using a block is not required. The break keyword, when
reached by the program, finishes the execution of the switch statement.
If the case is not terminated by the break then the program uncon-
ditionally carries out the next case. Sometimes this feature of switch
statement is deliberately used by programmers, but often it is a mistake.
If the value of the selector doesn’t match any of the values in the cases
then the statements in the default case are performed. The programmer
may decide to not to use the default case at all.

10 / 55



Switch Statement

Switch Statement
An Example

switch(a) {
case 1: puts("One");

break;
case 2: puts("Two");

break;
case 3: puts("Three");

break;
default: puts("A different number.");

}
If the value of the a variable is 1 then the program will print the word
One on the screen. If it is 2 then the word Two will be printed. Similarly
the word Three will appear on the screen if the value of a is 3. In case
of any other value the sentence A different number. will be shown on
the screen.

11 / 55



Iteration Statements

Iteration Statements

Iteration statements or simply loops repeat the execution of a statement
or a block for a finite (sometimes infinite) number of times. The state-
ment or the block is called a body of the loop. A single repetition of the
body is called an iteration, hence the other name of the loops. Usually,
the outcome of a single iteration is different from the outcomes of the
other iterations, but sometimes is the same.

12 / 55



Iteration Statements The for Loop

The for Loop

The for statement is a count-controlled loop which means that it repeats
its body for a given number of times. It needs at least one variable that
is known as a loop counter or a control variable. The overall structure of
the for statement is as follows:
for(counter(s) initialization;condition;afterthought)

body

The upper part of the for statement is called a header. In the counter(s)
initialization part a loop counter or counters are given an initial
value. If the condition is true, the body is repeated otherwise the loop
terminates. The afterthought part describes what happens with the
loop counter(s) after a single iteration. Usually the counters have identi-
fiers that consist of a single letter. The counter loop can be a variable of
any primary data type in the C language. The for loops can be nested.

13 / 55



Iteration Statements The for Loop

The for Loop
Examples

#include<stdio.h>

int a;

int main(void)
{

for(a=0;a<5;a++)
printf("%d\n",a);

return 0;
}

14 / 55



Iteration Statements The for Loop

The for Loop
Examples

#include<stdio.h>

int a;

int main(void)
{

for(a=0;a<5;a++) {
printf("%d\n",a);

}
return 0;

}

15 / 55



Iteration Statements The for Loop

The for Loop
Examples

#include<stdio.h>

int a;

int main(void)
{

for(a=1;a<=5;a++)
printf("%d\n",a);

return 0;
}

16 / 55



Iteration Statements The for Loop

The for Loop
Examples

#include<stdio.h>

int a;

int main(void)
{

for(a=0;a<7;a+=2)
printf("%d\n",a);

return 0;
}

17 / 55



Iteration Statements The for Loop

The for Loop
Examples

#include<stdio.h>

int a;

int main(void)
{

a=1;
for(;a<=5;) {

printf("%d\n",a);
a++;

}
return 0;

}

18 / 55



Iteration Statements The for Loop

The for Loop
Examples

#include<stdio.h>

int a;

int main(void)
{

for(a=7;a>0;a--)
printf("%d\n",a);

return 0;
}

19 / 55



Iteration Statements The for Loop

The for Loop
Examples

#include<stdio.h>

int i,j;

int main(void)
{

for(i=7,j=0;i>j;j++,i--)
printf("%d %d\n",i,j);

return 0;
}

20 / 55



Iteration Statements The for Loop

The for Loop
Examples

#include<stdio.h>

double x;

int main(void)
{

for(x=0.0;x<0.5;x+=0.01)
printf("%.10f\n",x);

return 0;
}

21 / 55



Iteration Statements The for Loop

The for Loop
Examples

#include<stdio.h>

int a,i;

int main(void)
{

for(i=0;i<5;i++) {
a+=i;
printf("%d\n",a);

}
return 0;

}

22 / 55



Iteration Statements The for Loop

The for Loop
Examples

int a;
int main(void)
{

for(a=0;a<5;a++)
;

return 0;
}

23 / 55



Iteration Statements The while loop

The while loop

The while statement is a condition-controlled loop. It repeats the exe-
cution of its body as long as the condition that is a part of the loop is
satisfied. The overall structure of such a loop is as follows:
while(condition)

body;

The number of iterations of the while loop is not known in advance,
therefore its body has to contain at least one expression that will even-
tually make the condition false and the loop will terminate. Otherwise
the loop will continue to perform the body infinitely. The while loop
can be nested or used inside the for loop. It is also possible to use the
for loop inside the while.

24 / 55



Iteration Statements The while loop

The while Loop
Examples

#include<stdio.h>

char a;

int main(void)
{

while(a!='q')
scanf(" %c",&a);

return 0;
}

25 / 55



Iteration Statements The while loop

The while Loop
Examples

#include<stdio.h>

char a;

int main(void)
{

while(a!='q') {
scanf(" %c",&a);

}
return 0;

}

26 / 55



Iteration Statements The while loop

The while Loop
Examples

#include<stdio.h>

int x,y;

int main(void)
{

while(y>=0) {
scanf("%d",&y);
x+=y;

}
return 0;

}

27 / 55



Iteration Statements The do…while loop

The do…while loop

The do…while statement is similar to the while loop. However, due to
its construction the body is always executed at least one. The condition
is checked after execution of the body. The overall structure of the loop
is as follows:
do

body
while(condition);

28 / 55



Iteration Statements The do…while loop

The do…while Loop
Examples

#include<stdio.h>

char a;

int main(void)
{

do
scanf(" %c",&a);

while(a!='q');
return 0;

}

29 / 55



Iteration Statements The do…while loop

The do…while Loop
Examples

#include<stdio.h>

char a;

int main(void)
{

do {
scanf(" %c",&a);

} while(a!='q');
return 0;

}

30 / 55



Iteration Statements The do…while loop

The do…while Loop
Examples

#include<stdio.h>

int x,y=1;

int main(void)
{

do {
x+=1;
y*=x;

} while(x!=10);
return 0;

}

31 / 55



The break and continue Keywords

The break keyword

The break keyword may be applied not only in the switch statement
but also inside a loop’s body. In that case it is used with a conditional
statement or a ternary operator. If the condition is met, than the break
keyword terminates the loop. In other words it creates an additional exit
point in the loop.

32 / 55



The break and continue Keywords

The continue keyword

The continue keyword can only be applied inside a loop body and is
accompanied by a conditional or a ternary operator. If executed the
continue keyword terminates the current iteration of the loop and stars
the next one. Execution of all statements placed behind the keyword in
the loop’s body is in that case skipped.

33 / 55



The break and continue Keywords

The continue keyword
An Example

#include <stdio.h>

int i;

int main(void)
{

for(i=-5;i<=5;i++) {
if(i==0)

continue;
printf("5 by %d is %f\n",i,5.0/i);

}

return 0;
}

34 / 55



The break and continue Keywords

The goto keyword

The goto keyword (statement) redirects the flow of control to any arbi-
trary place in the source code indicated by a label. The label may be
located above the spot in code where the goto is used or below or even
in the same place. Although the goto keyword can be helpful its usage
should be avoided. In the beginning of computer science it was overused
by the programmers. That resulted in a messy, unreadable, unmaintain-
able and often incorrect code. The situation was so serious that Edsger
Dijkstra, one of the pioneers of computer science has forbidden to use
the goto statement at all. In the C language the goto keyword is usually
applied by experienced programmers for exceptions handling and opti-
mizing the performance of a program. Other usages of that statement
should be avoided at any cost.

35 / 55



The break and continue Keywords

The goto keyword
An Example

#include <stdio.h>

int i;

int main(void)
{

label_1: i++;
printf("%d\n",i);
if(i==15)

goto label_2;
goto label_1;

label_2:
return 0;

}
36 / 55



Examples

Factorial
Description

In mathematics the factorial operation is defined for natural numbers as
follows:
0! = 1
1! = 1
n! = 1 · 2 · 3 · 4 · . . . · (n − 1) · n
The program in the next slide calculates the factorial with the use of a
single for loop. The loop counter (the i variable) also serves as a storage
for successive natural numbers that are multiplied by themselves. The
final result is stored in the factorial variable, but the same variable is
also used for storing the partial products. The argument of the factorial
is entered by the user. However, the do…while loop limits user’s choices
to the natural numbers smaller that 21. The reason for that is the type of
factorial variable. It simply cannot store factorials of greater numbers.
Please observe, that the program correctly computes the 0!. In that case
the for loop body is not executed. Not even once.

37 / 55



Examples

Factorial
The Code

#include <stdio.h>

unsigned long long int factorial = 1;
unsigned char i,number;

int main(void)
{

do {
printf("Please enter a natural number that is less than 21, ");
printf("for which You wish to calculate the factorial:\n");
scanf("%hhu",&number);

} while(number>20);

for(i=1;i<=number;i++)
factorial*=i;

printf("Factorial of %hhu is %llu\n",number,factorial);

return 0;
}

38 / 55



Examples

Factorial
The Code — a slightly different approach

#include <stdio.h>

unsigned long long int factorial = 1;
unsigned char i,number;

int main(void)
{

do {
printf("Please enter a natural number that is less than 21, ");
printf("for which You wish to calculate the factorial:\n");
scanf("%hhu",&number);

} while(number>20);

for(i=1;i<=number;factorial*=i,i++)
;

printf("Factorial of %hhu is %llu\n",number,factorial);

return 0;
}

39 / 55



Examples

Greatest Common Divisor
Description

The next example is a program that calculates the Greatest Common
Divisor. It uses a modified Euclid’s Algorithm that was introduced in the
first lecture. The names of the variables are preserved, but the program
repeats the m = n and n = r statements just after the r becomes
zero. It simplifies the code, but the result is stored in m instead of n.
Furthermore, the GCD is calculated only for natural numbers. There is
also introduced a while loop that prohibits the user from entering zero
as the value of n.

40 / 55



Examples

Greatest Common Divisor
The Code

#include <stdio.h>

unsigned int r, n, m;

int main(void)
{

puts("Please enter two natural numbers.");

scanf("%u",&m);
scanf("%u",&n);

while(n==0) {
puts("The value of the divisor cannot be zero!");
scanf("%u",&n);

}

do {
r=m%n;
m=n;
n=r;

} while(r!=0);

printf("The GCD for those numbers is: %u\n",m);
return 0;

}

41 / 55



Examples

Quadratic equation
Description

Another example is a program that calculates the roots of a quadratic
equation. It uses formulas that are immune to the accumulation of round-
ing errors, which is one of the issues of the floating-point arithmetics. For
the ”regular” formulas used for solving the quadratic equations those er-
rors appear when a · c ≪ b and the float data type is used. The ”safe”
formulas are as follows: q ≡ −1

2 · [b+ sgn(b) ·
√
∆], x1 =

q
a and x2 =

c
q ,

where sgn is a signum function, that yields 1 if b > 0, −1 if b < 0 and 0
if b = 0. The signum function is implemented with the use of the nested
ternary operators. The program is protected, so the user cannot enter
zero as a value of the a coefficient. The sqrt() function is a part of math
library of the C language. It calculates the square root of a number. To
use the function it is necessary to include the math.h header file to the
program.

42 / 55



Examples

Quadratic equation
The Code

#include<stdio.h>
#include<math.h>

float a,b,c,delta,q;

int main(void)
{

puts("Please enter the quadratic equation coefficients:");
do {

printf("a= ");
scanf("%f",&a);
if(a==0.0)

puts("The value of the 'a' coefficient cannot be 0! Please, enter it correctly:");
} while(a==0.0);
printf("b= ");
scanf("%f",&b);
printf("c= ");
scanf("%f",&c);
delta = b*b-4*a*c;
if(delta>=0) {

q = (b<0) ? -0.5*(b-sqrt(delta)) : (b==0.0)? 0.0 : -0.5*(b+sqrt(delta));
if(delta!=0.0)

printf("x1=%f x2=%f\n",q/a,c/q);
else

printf("x=%f\n",q/a);
} else

puts("This equation has no roots in the real number domain.");

return 0;
} 43 / 55



Examples

Binary Numbers
Description

Sometimes it is necessary to display a decimal number in binary. Un-
fortunately, the C99 standard doesn’t define a special formatting string
for the printf() function to do that in a simple way. However, we
should remember that any information in computer memory, including
numbers, is represented in binary. The only issue is how to ”take it” to
the screen. That is what the next program does. It displays in binary
an eight-bit number stored in a char variable using a single for loop.
Inside the body of the loop each bit of the number, starting from the
most significant one, is tested with the use of the masking operation.
The second argument of this operation is an expression that shifts right
the value of mask constant (eight bits, the most significant one is set) by
as many positions as it is indicated by the value of the loop counter.

44 / 55



Examples

Binary Numbers
The Code

#include <stdio.h>

#define MASK 128 // 10000000

int i;
char number;

int main(void)
{

puts("Please enter the number to be displayed in binary:");
scanf("%hhi",&number);
for(i=0;i<8*sizeof(number);i++)

printf("%d",number&(MASK>>i)?1:0);
return 0;

}

45 / 55



Examples

Prime Numbers
Description

Prime number is a natural number greater then one, that can be divided
without reminder only by one and itself. Finding prime numbers is so
time-consuming, that those numbers are applied in cryptography to con-
struct ciphers. The next program displays all such numbers form 3 to the
upper limit of unsigned long long int type. The basic algorithm for
finding prime number is as follows: Take a natural number and check if
it prime by dividing it by all natural numbers grater then 1 and less than
the number. If all reminders of those divisions are not zeros, the number
is prime, otherwise it is not. Unfortunately, this algorithm is very ineffi-
cient. It is possible to slightly improve it, by making two modifications.
In the program the numbers that should be checked are generated by an
external for loop and all of them are odd. The internal for loop checks
if a particular number is prime by applying the above algorithm, but it
stops checking when the divisor is greater then the square root of the
tested number or when the reminder is equal zero. Please note the use
of the prime variable and the break keyword. 46 / 55



Examples

Prime Numbers
The Code

#include <stdio.h>
#include <limits.h>
#include <math.h>
#include <stdbool.h>

unsigned long long int candidate, divisor;
bool prime;

int main(void)
{

puts("Prime numbers greater than 2:");
for(candidate=3;candidate<=ULLONG_MAX;candidate+=2) {

prime=true;
for(divisor=2;divisor<sqrt(candidate)+1;divisor++)

if(candidate%divisor==0) {
prime = false;
break;

}
if(prime)

printf("%llu ",candidate);
}

return 0;
}

47 / 55



Examples

Cosine
Description

In the math library of the C language there is the cos() function that
calculates the value of cosine for a given angle measured in radians.
However, it is worth to know how to calculate such a value without
the help of the cos() function. One of the possibilities is to apply the
MacLaurian series. For the cosine it takes the following form:
cos(x) = 1 − x2

2! +
x4

4! − x6

6! + . . . + (−1)k · x2k

(2k)! + . . .
If we divide some of the series terms by their left neighbours, we will
come to the conclusion that they differ by a factor of − x2

(2i)(2i−1) , where i
indicates the position of the term in series. We assume that for the −x2

2!
term the value of i is 1.

48 / 55



Examples

Cosine
Description — follow-up

The program in the next slide computes the cosine for an angle of π/3
radians. In the body of the while loop all the necessary terms of MacLau-
rian series are calculated and stored in the term variable. The cosinus
variable stores the sum of all calculated terms. The i variable stores the
position of the current term. The loop should terminate when the value
of cosinus is the same as of cos() function. However, we cannot com-
pare them directly, because of the floating-point arithmetics properties.
Those two numbers could always differ by a very small value and the
loop would never stop. Instead, the program measures if the absolute er-
ror of those two numbers is less or equal to the epsilon constant, which
means that those values are the same with the respect to eleven digits
after the decimal point. The absolute error is calculated by subtracting
the already mentioned numbers and taking the absolute value of the re-
sult. The absolute value is calculated with the use of fabs() function
from the math library of the C language.

49 / 55



Examples

Cosine
The Code

#include<stdio.h>
#include<math.h>

#define EPSILON 1e-11

double cosinus = 1, term = 1, i = 1;
const double x = M_PI/3;

int main(void)
{

while(fabs(cos(x)-cosinus)>EPSILON) {
term *= -1.0*x*x/((2*i-1)*(2*i));
cosinus += term;
i++;

}

printf("The value of the cosine for the %f radians angle is %f\n",x,cosinus);

return 0;
}

50 / 55



Examples

Natural Exponential Function
Description

The value of the natural exponential function, for a given exponent, can
be calculated similarly to the cosine. The MacLaurian series for such a
function takes the following form:
ex = 1 + x

1! +
x2

2! +
x3

3! + . . . + xk

k! + . . .
Using the same method as previously we can find out that the terms differ
by a factor of x

i , where i > 0 is the position of a given term in the series.
The program in the next slide calculates the value of the exponential
function for an exponent entered by the user. It uses similar algorithm
as the program that calculates the cosine. The main difference between
them is that the program for exponential function uses the relative error
to compare the value calculated with the use of MacLaurian series and the
value of the exp() function (also from the math library). The latter also
calculates the value of natural exponential function. The relative error
can be applied in this program, instead of the absolute error, because
the value of the exponential function is never zero.

51 / 55



Examples

Natural Exponential Function
The Code

#include<stdio.h>
#include<math.h>

#define EPSILON 1e-11

double exponential = 1.0, x, i=1, term = 1;

int main(void)
{

puts("Please enter the exponent:");
scanf("%lf",&x);
while(fabs((exp(x)-exponential)/exponential)>EPSILON) {

term *= (x/i);
exponential += term;
i++;

}

printf("The value of e^x is: %f\n",exponential);

return 0;
}

52 / 55



Examples

Thanks

Many thanks to Grzegorz Łukawski, PhD and Leszek Ciopiński, MSc for
helping me to complete the Polish version of this slides.

53 / 55



Examples

Questions

?

54 / 55



Examples

The End

Thank You for Your attention!

55 / 55


	Control Flow Statements
	Block of Statements
	Conditional Statement
	Switch Statement
	Iteration Statements
	The for Loop
	The while loop
	The do…while loop

	The break and continue Keywords
	Examples

