
.

......

Fundamentals of Programming 1
Basics of the C Language

Arkadiusz Chrobot

Department of Computer Science

October 22, 2019

1 / 44

Outline

...1 Initialization of a Variable

...2 Constants (Once Again)

...3 Operators
Relational Operators
Arithmetic Operators
Boolean Operators
Bitwise Operators
The Ternary Operator
Type Casting
Other Operators
Operators Precedence

...4 Basic Input/Output

2 / 44

Initialization of a Variable

Initialization of a Variable

Before a variable can be used (more precisely, it can be read) it has to be
initialized. That means it must be assigned an initial value. Many program
errors have their roots in lack of the initialization. Fortunately variables of
the global scope have a default value of zero. However, such an initial value
is not always suitable for the program.
In this lecture most of the names of variables will be a single lowercase letter.

3 / 44

Initialization of a Variable

Assignment Instruction

Using an assignment instruction is probably the easiest way of initializing
a variable. In the C language this instruction has a = symbol. Generally,
the assignment instruction is used for changing a value of the variable, not
only initializing it. Formally, such an instruction evaluates an expression
standing on its right side and converts the type of the result to the type
of the variable placed on its left side. As a side-effect of such a conversion
the variable gets the value of the expression. The programmers are more
interested in the side-effect than in the conversion. In the C language the
assignment instruction is also an operator, which means it returns a value.

4 / 44

Initialization of a Variable

Initialization Methods
Initialization of Integer Variables

A variable can be assigned an initial value in the place where it is declared.
The listing below shows how can it be done for integer variables.
int a = 3, b = 075, c = 0xab, d = 1u;

int main(void)
{

return 0;
}
If the number is prefixed by zero, then it is an octal number. If the prefix is
0x, then it is a hexadecimal number. The integer numbers can also have a
suffix, like u or U, which means the numbers are unsigned or l or L, which
means they are of the long type. Both of the suffixes can be combined into
lu or LU.

5 / 44

Initialization of a Variable

Initialization Methods
Initialization of Integer Variables

Because in the C language the assignment instruction is also an operator, it
is possible to assign a single value to many variables, just like that:
int a, b, c;

int main(void)
{

a=b=c=3;
return 0;

}

6 / 44

Initialization of a Variable

Initialization Methods
Character Variables Initialization

A character variable (of the char type) may be assigned a number that can
mean an ascii code or be assigned a character in apostrophes.
char a = 65, b = 'a';

int main(void)
{

return 0;
}
Please remember that the variables of such a type may store both characters
and numbers.

7 / 44

Initialization of a Variable

Initialization Methods
Floating-Point Variables Initialization

The floating-point variables (of the float, double and long double types)
can be initialized with the use of a regular decimal number with fraction part
or by a number expressed in the scientific notation. For example the 0.01
number may be expressed as 1e-2 which means 1 · 10−2. If the decimal
number should be of the float type, then it ought to be ended with an f
suffix.
double a = 0.001f, b = 0.02, c = 1e-2;

int main(void)
{

return 0;
}

8 / 44

Constants (Once Again)

Constants and the const Keyword

The const keyword can be used, instead of using the preprocessor #define
directive, to define a constant, like this:
const int SEVEN = 7;

int main(void)
{

return 0;
}
The const keyword means that the value of seven will not change during the
program run1. Please note, that the identifier of the constant is, according
to the convention, written in uppercases.

1There are ways to change the value of such an constant, but they won’t be discussed
here.

9 / 44

Operators

Operators

Operators are for building expressions. The value of an expression may be
assigned to a variable with the help on the assignment instruction which is
also an operator. There are several categories of operators in the C language,
but only a few of them will be discussed during this lecture. Similarly as in
mathematics operators are evaluated in the expressions in a specific order.
In other words there is defined a precedence order for the operators. Other
attribute of the operators is associativity, which can be right-to-left or left-
to-right.

10 / 44

Operators Relational Operators

Relational Operators

Relational operators are binary operators. In this context it means that they
require two arguments. The operators test the relation between values of
those arguments and return 1 if it is true or 0 otherwise.

Operators Description
==, != Equality and inequality operators. The first one returns one if

its arguments are equal, the second one does the same if they
are not equal.

<, >, <=, >= “less than”, “greater than”, “less than or equal“, ”greater than
or equal“

11 / 44

Operators Arithmetic Operators

Arithmetic Operators
Operators Description
++, -- Unary increment and decrement operators. They may be

left-to-right associative or right-to-left associative, for exam-
ple ++a; (pre-increment), a++; (post-increment), --a; (pre-
decrement), a--; (post-decrement). They increment or decre-
ment the value of variable by one and return the result of this
operation.

+, - Those operators may be binary or unary. In the former case
they simply mean addition and subtraction. In the later case
the - operator changes the sign of a number and the + does
nothing.

*, / Multiplication and division operators. Warrning: If the ar-
guments of the division operator are integers, then the result
is also an integer, irrespectively of the type of the variable in
which it is stored.

% The modulus operator returns the reminder after division of
two integer numbers.

12 / 44

Operators Arithmetic Operators

Arithmetic Operators
Integer Overflow

The integer overflow happens when the result of an arithmetic operation (i.e.
an operation that involves arithmetic operators) is outside of the range of the
variable where it is stored. The final value of the result is thus incorrect.
unsigned char a = 255;
char b = -128;

int main(void)
{

a = a + 1; //The value of "a" is 0;
b = b - 1; //The value of "b" is 127.

return 0;
}

13 / 44

Operators Arithmetic Operators

Arithmetic Operators
Modulus Operator – Description

The modulus operator in the C language is applied only to integers. Its result
always fulfills the following equation: (x/y)*y+(x%y)==x. The examples
show the result of the modulus operation when at least one of its arguments
is negative.
5%-2 // The value of the expression is 1.
-5%2 // The value of the expression is -1.
-5%-2 // The value of the expression is -1.

Like in the case of a regular division operation, the divisor must not be zero.

14 / 44

Operators Arithmetic Operators

Arithmetic Operators
Division Operator – Description

The expressions in the example yield a different results, although they look
very similar. In the first expression both arguments are integers. In the
second one, the first argument is a floating-point number. The C language
compilers recognize all numbers without the decimal point as an integer
number.
double a;

int main(void)
{

a = 4/5; // The result is 0.
a = 4.0/5; // The result is 0.8.

return 0;
}

15 / 44

Operators Arithmetic Operators

Arithmetic Operators
Shorthands

In some cases, when the value of an expression is assigned to a variable
which itself is used in the expression it is possible to use a shorthand form
of the assignment.
int a=2, b=2;
int main(void)
{

b+=a; // Instead of b=b+a;
b-=a; // Instead of b=b-a;
b*=a; // Instead of b=b*a;
b/=a; // Instead of b=b/a;
b%=a; // Instead of b=b%a;

return 0;
}

16 / 44

Operators Arithmetic Operators

Arithmetic Operators
Description of the Increment and Decrement Operators

int a = 4, b;
int main(void)
{

b=++a; //After: "b" is 5, "a" is 5.
a=4;
b=a++; //After: "b" is 4, "a" is 5.
a=4;
b=--a; //After: "b" is 3, "a" is 3.
a=4;
b=a--; //After: "b" is 4, "a" is 3.
a=4;
a++; //After: "a" is 5.
a=4;
++a; //After: "a" is 5.
a=4;
a--; //After: "a" is 3.
a=4;
--a; //After: "a" is 3.

return 0;
}

17 / 44

Operators Boolean Operators

Boolean Operators

Boolean (logical) operators are used in expressions which evaluate to true
or false. In the C language the following boolean operators are available:

Operator Description
||, && Binary operators of logical sum (or) and logical product

(and).
! The unary logical negation operator.

Although the operators yield 1 (true) and 0 (false), it is worth to remember,
that in the C language every expression that evaluates to value different
than zero is simultaneously true and every expresion that evaluates to
zero is simultaneously false. The && operator returns true (1) if both of
its argument are true and false (0) otherwise. The || operator yields false
(0) if both its arguments are false and true otherwise.

18 / 44

Operators Boolean Operators

Boolean Operators
Short-Circuit Evaluation

If the first argument of the && operator is false than the second one is not
evaluated – there is no need to do so, the whole expression is false. Similarly,
if the first argument of the || operator is true, then the second one is ignored
– the whole expression is true. This is called a short-circuit evaluation and
in some cases can have a side-effect.
int a,b;
int main(void)
{

(a=0)&&(b=4); //Both variables will be zero.
(a=4)&&(b=3); //The "a" variable will be 4 and "b" will be 3.
(a=0)||(b=0); //Both variables will be zero.
(a=3)||(b=4); //The "a" variable will be 3 and "b" will be 0.

return 0;
}

19 / 44

Operators Bitwise Operators

Bitwise Operators

The bitwise operators are similar to boolean operators but operate on pairs of
corresponding bits of their arguments instead of the whole values. The argu-
ments have to be integers. The bitwise operators may be used in shorthand
assignments like the arithmetic operators.

Operator Description
|, &, ˆ The bitwise or, bitwise and, and bitwise exclusive or (xor)

operators.
~ Unary bitwise complement operator.

>>, << The bitwise left and right shift operators. Warrning: In
C language both of those operators may be applied to
negative numbers. Particularly, shifting right a negative
number results in negative number – the sign bit (Most
Significant Bit in two’s compliment) is copied on the left.

20 / 44

Operators Bitwise Operators

The & Operator
Animation

.The Bitwise & Operator – an Example..

......5 & 3 = 00000101 & 00000011 =

The bitwise & operator evaluates pairs of bits in its arguments. If both bits
in a specific pair are set (equal one), then a bit on the same position in
the result will be also set. Otherwise the bit will be cleared (its value will
be zero). This operator is often used to test the value of a specific bit or
group of bits in the first argument. The second argument in that case is of
a known value and is called a mask. The whole operation is called masking.

21 / 44

Operators Bitwise Operators

The & Operator
Animation

.The Bitwise & Operator – an Example..

......5 & 3 = 00000101 & 00000011 = 0

The bitwise & operator evaluates pairs of bits in its arguments. If both bits
in a specific pair are set (equal one), then a bit on the same position in
the result will be also set. Otherwise the bit will be cleared (its value will
be zero). This operator is often used to test the value of a specific bit or
group of bits in the first argument. The second argument in that case is of
a known value and is called a mask. The whole operation is called masking.

21 / 44

Operators Bitwise Operators

The & Operator
Animation

.The Bitwise & Operator – an Example..

......5 & 3 = 00000101 & 00000011 = 00

The bitwise & operator evaluates pairs of bits in its arguments. If both bits
in a specific pair are set (equal one), then a bit on the same position in
the result will be also set. Otherwise the bit will be cleared (its value will
be zero). This operator is often used to test the value of a specific bit or
group of bits in the first argument. The second argument in that case is of
a known value and is called a mask. The whole operation is called masking.

21 / 44

Operators Bitwise Operators

The & Operator
Animation

.The Bitwise & Operator – an Example..

......5 & 3 = 00000101 & 00000011 = 000

The bitwise & operator evaluates pairs of bits in its arguments. If both bits
in a specific pair are set (equal one), then a bit on the same position in
the result will be also set. Otherwise the bit will be cleared (its value will
be zero). This operator is often used to test the value of a specific bit or
group of bits in the first argument. The second argument in that case is of
a known value and is called a mask. The whole operation is called masking.

21 / 44

Operators Bitwise Operators

The & Operator
Animation

.The Bitwise & Operator – an Example..

......5 & 3 = 00000101 & 00000011 = 0000

The bitwise & operator evaluates pairs of bits in its arguments. If both bits
in a specific pair are set (equal one), then a bit on the same position in
the result will be also set. Otherwise the bit will be cleared (its value will
be zero). This operator is often used to test the value of a specific bit or
group of bits in the first argument. The second argument in that case is of
a known value and is called a mask. The whole operation is called masking.

21 / 44

Operators Bitwise Operators

The & Operator
Animation

.The Bitwise & Operator – an Example..

......5 & 3 = 00000101 & 00000011 = 00000

The bitwise & operator evaluates pairs of bits in its arguments. If both bits
in a specific pair are set (equal one), then a bit on the same position in
the result will be also set. Otherwise the bit will be cleared (its value will
be zero). This operator is often used to test the value of a specific bit or
group of bits in the first argument. The second argument in that case is of
a known value and is called a mask. The whole operation is called masking.

21 / 44

Operators Bitwise Operators

The & Operator
Animation

.The Bitwise & Operator – an Example..

......5 & 3 = 00000101 & 00000011 = 000000

The bitwise & operator evaluates pairs of bits in its arguments. If both bits
in a specific pair are set (equal one), then a bit on the same position in
the result will be also set. Otherwise the bit will be cleared (its value will
be zero). This operator is often used to test the value of a specific bit or
group of bits in the first argument. The second argument in that case is of
a known value and is called a mask. The whole operation is called masking.

21 / 44

Operators Bitwise Operators

The & Operator
Animation

.The Bitwise & Operator – an Example..

......5 & 3 = 00000101 & 00000011 = 0000000

The bitwise & operator evaluates pairs of bits in its arguments. If both bits
in a specific pair are set (equal one), then a bit on the same position in
the result will be also set. Otherwise the bit will be cleared (its value will
be zero). This operator is often used to test the value of a specific bit or
group of bits in the first argument. The second argument in that case is of
a known value and is called a mask. The whole operation is called masking.

21 / 44

Operators Bitwise Operators

The & Operator
Animation

.The Bitwise & Operator – an Example..

......5 & 3 = 00000101 & 00000011 = 00000001

The bitwise & operator evaluates pairs of bits in its arguments. If both bits
in a specific pair are set (equal one), then a bit on the same position in
the result will be also set. Otherwise the bit will be cleared (its value will
be zero). This operator is often used to test the value of a specific bit or
group of bits in the first argument. The second argument in that case is of
a known value and is called a mask. The whole operation is called masking.

21 / 44

Operators Bitwise Operators

The & Operator
Animation

.The Bitwise & Operator – an Example..

......5 & 3 = 00000101 & 00000011 = 00000001 = 1

The bitwise & operator evaluates pairs of bits in its arguments. If both bits
in a specific pair are set (equal one), then a bit on the same position in
the result will be also set. Otherwise the bit will be cleared (its value will
be zero). This operator is often used to test the value of a specific bit or
group of bits in the first argument. The second argument in that case is of
a known value and is called a mask. The whole operation is called masking.

21 / 44

Operators Bitwise Operators

The | Operator
Animation

.The Bitwise | Operator – an Example..

......5 | 3 = 00000101 | 00000011 =

Similarly to & operator the | operator evaluates every pair of bits in both of
its arguments. However if both bits in a specific pair are cleared the bit on
the same position in the result is also cleared. Otherwise it is set.

22 / 44

Operators Bitwise Operators

The | Operator
Animation

.The Bitwise | Operator – an Example..

......5 | 3 = 00000101 | 00000011 = 0

Similarly to & operator the | operator evaluates every pair of bits in both of
its arguments. However if both bits in a specific pair are cleared the bit on
the same position in the result is also cleared. Otherwise it is set.

22 / 44

Operators Bitwise Operators

The | Operator
Animation

.The Bitwise | Operator – an Example..

......5 | 3 = 00000101 | 00000011 = 00

Similarly to & operator the | operator evaluates every pair of bits in both of
its arguments. However if both bits in a specific pair are cleared the bit on
the same position in the result is also cleared. Otherwise it is set.

22 / 44

Operators Bitwise Operators

The | Operator
Animation

.The Bitwise | Operator – an Example..

......5 | 3 = 00000101 | 00000011 = 000

Similarly to & operator the | operator evaluates every pair of bits in both of
its arguments. However if both bits in a specific pair are cleared the bit on
the same position in the result is also cleared. Otherwise it is set.

22 / 44

Operators Bitwise Operators

The | Operator
Animation

.The Bitwise | Operator – an Example..

......5 | 3 = 00000101 | 00000011 = 0000

Similarly to & operator the | operator evaluates every pair of bits in both of
its arguments. However if both bits in a specific pair are cleared the bit on
the same position in the result is also cleared. Otherwise it is set.

22 / 44

Operators Bitwise Operators

The | Operator
Animation

.The Bitwise | Operator – an Example..

......5 | 3 = 00000101 | 00000011 = 00000

Similarly to & operator the | operator evaluates every pair of bits in both of
its arguments. However if both bits in a specific pair are cleared the bit on
the same position in the result is also cleared. Otherwise it is set.

22 / 44

Operators Bitwise Operators

The | Operator
Animation

.The Bitwise | Operator – an Example..

......5 | 3 = 00000101 | 00000011 = 000001

Similarly to & operator the | operator evaluates every pair of bits in both of
its arguments. However if both bits in a specific pair are cleared the bit on
the same position in the result is also cleared. Otherwise it is set.

22 / 44

Operators Bitwise Operators

The | Operator
Animation

.The Bitwise | Operator – an Example..

......5 | 3 = 00000101 | 00000011 = 0000011

Similarly to & operator the | operator evaluates every pair of bits in both of
its arguments. However if both bits in a specific pair are cleared the bit on
the same position in the result is also cleared. Otherwise it is set.

22 / 44

Operators Bitwise Operators

The | Operator
Animation

.The Bitwise | Operator – an Example..

......5 | 3 = 00000101 | 00000011 = 00000111

Similarly to & operator the | operator evaluates every pair of bits in both of
its arguments. However if both bits in a specific pair are cleared the bit on
the same position in the result is also cleared. Otherwise it is set.

22 / 44

Operators Bitwise Operators

The | Operator
Animation

.The Bitwise | Operator – an Example..

......5 | 3 = 00000101 | 00000011 = 00000111 = 7

Similarly to & operator the | operator evaluates every pair of bits in both of
its arguments. However if both bits in a specific pair are cleared the bit on
the same position in the result is also cleared. Otherwise it is set.

22 / 44

Operators Bitwise Operators

The ^ Operator
Animation

.The Bitwise ˆ Operator – an Example..

......5 ˆ 3 = 00000101 ˆ 00000011 =

The bitwise exclusive or (ˆ) operator is similar to the previously described
bitwise operators, but in its case, if both bits in a specific pair have different
value the resulting bit is set, otherwise it is cleared.

23 / 44

Operators Bitwise Operators

The ^ Operator
Animation

.The Bitwise ˆ Operator – an Example..

......5 ˆ 3 = 00000101 ˆ 00000011 = 0

The bitwise exclusive or (ˆ) operator is similar to the previously described
bitwise operators, but in its case, if both bits in a specific pair have different
value the resulting bit is set, otherwise it is cleared.

23 / 44

Operators Bitwise Operators

The ^ Operator
Animation

.The Bitwise ˆ Operator – an Example..

......5 ˆ 3 = 00000101 ˆ 00000011 = 00

The bitwise exclusive or (ˆ) operator is similar to the previously described
bitwise operators, but in its case, if both bits in a specific pair have different
value the resulting bit is set, otherwise it is cleared.

23 / 44

Operators Bitwise Operators

The ^ Operator
Animation

.The Bitwise ˆ Operator – an Example..

......5 ˆ 3 = 00000101 ˆ 00000011 = 000

The bitwise exclusive or (ˆ) operator is similar to the previously described
bitwise operators, but in its case, if both bits in a specific pair have different
value the resulting bit is set, otherwise it is cleared.

23 / 44

Operators Bitwise Operators

The ^ Operator
Animation

.The Bitwise ˆ Operator – an Example..

......5 ˆ 3 = 00000101 ˆ 00000011 = 0000

The bitwise exclusive or (ˆ) operator is similar to the previously described
bitwise operators, but in its case, if both bits in a specific pair have different
value the resulting bit is set, otherwise it is cleared.

23 / 44

Operators Bitwise Operators

The ^ Operator
Animation

.The Bitwise ˆ Operator – an Example..

......5 ˆ 3 = 00000101 ˆ 00000011 = 00000

The bitwise exclusive or (ˆ) operator is similar to the previously described
bitwise operators, but in its case, if both bits in a specific pair have different
value the resulting bit is set, otherwise it is cleared.

23 / 44

Operators Bitwise Operators

The ^ Operator
Animation

.The Bitwise ˆ Operator – an Example..

......5 ˆ 3 = 00000101 ˆ 00000011 = 000001

The bitwise exclusive or (ˆ) operator is similar to the previously described
bitwise operators, but in its case, if both bits in a specific pair have different
value the resulting bit is set, otherwise it is cleared.

23 / 44

Operators Bitwise Operators

The ^ Operator
Animation

.The Bitwise ˆ Operator – an Example..

......5 ˆ 3 = 00000101 ˆ 00000011 = 0000011

The bitwise exclusive or (ˆ) operator is similar to the previously described
bitwise operators, but in its case, if both bits in a specific pair have different
value the resulting bit is set, otherwise it is cleared.

23 / 44

Operators Bitwise Operators

The ^ Operator
Animation

.The Bitwise ˆ Operator – an Example..

......5 ˆ 3 = 00000101 ˆ 00000011 = 00000110

The bitwise exclusive or (ˆ) operator is similar to the previously described
bitwise operators, but in its case, if both bits in a specific pair have different
value the resulting bit is set, otherwise it is cleared.

23 / 44

Operators Bitwise Operators

The ^ Operator
Animation

.The Bitwise ˆ Operator – an Example..

......5 ˆ 3 = 00000101 ˆ 00000011 = 00000110 = 6

The bitwise exclusive or (ˆ) operator is similar to the previously described
bitwise operators, but in its case, if both bits in a specific pair have different
value the resulting bit is set, otherwise it is cleared.

23 / 44

Operators Bitwise Operators

The ˜ Operator
Animation

.The Bitwise ˜ Operator – an Example..

......̃ 5 = ˜ 00000101 =

This bitwise operator is unary. It flips all bits in its argument.

24 / 44

Operators Bitwise Operators

The ˜ Operator
Animation

.The Bitwise ˜ Operator – an Example..

......̃ 5 = ˜ 00000101 = 1

This bitwise operator is unary. It flips all bits in its argument.

24 / 44

Operators Bitwise Operators

The ˜ Operator
Animation

.The Bitwise ˜ Operator – an Example..

......̃ 5 = ˜ 00000101 = 11

This bitwise operator is unary. It flips all bits in its argument.

24 / 44

Operators Bitwise Operators

The ˜ Operator
Animation

.The Bitwise ˜ Operator – an Example..

......̃ 5 = ˜ 00000101 = 111

This bitwise operator is unary. It flips all bits in its argument.

24 / 44

Operators Bitwise Operators

The ˜ Operator
Animation

.The Bitwise ˜ Operator – an Example..

......̃ 5 = ˜ 00000101 = 1111

This bitwise operator is unary. It flips all bits in its argument.

24 / 44

Operators Bitwise Operators

The ˜ Operator
Animation

.The Bitwise ˜ Operator – an Example..

......̃ 5 = ˜ 00000101 = 11111

This bitwise operator is unary. It flips all bits in its argument.

24 / 44

Operators Bitwise Operators

The ˜ Operator
Animation

.The Bitwise ˜ Operator – an Example..

......̃ 5 = ˜ 00000101 = 111110

This bitwise operator is unary. It flips all bits in its argument.

24 / 44

Operators Bitwise Operators

The ˜ Operator
Animation

.The Bitwise ˜ Operator – an Example..

......̃ 5 = ˜ 00000101 = 1111101

This bitwise operator is unary. It flips all bits in its argument.

24 / 44

Operators Bitwise Operators

The ˜ Operator
Animation

.The Bitwise ˜ Operator – an Example..

......̃ 5 = ˜ 00000101 = 11111010

This bitwise operator is unary. It flips all bits in its argument.

24 / 44

Operators Bitwise Operators

The ˜ Operator
Animation

.The Bitwise ˜ Operator – an Example..

......̃ 5 = ˜ 00000101 = 11111010 = 250

This bitwise operator is unary. It flips all bits in its argument.

24 / 44

Operators Bitwise Operators

The << Operator
Illustration

.The Bitwise << Operator – an Example..

......5 << 2 = 00000101 << 2 = 00010100 = 20

The << operator shifts values of all bits of its first argument to the left.
The values as shifted as many positions as it is indicated by the second
argument. In the result the values of the first argument’s most significant
bits are dropped and the least significant are padded with zeros. The shifting
to the left is equivalent to the multiplication by a power of two. In the
example it is the 22, so the 5 is multiplied by 4. The operator can only be
applied to integers.

25 / 44

Operators Bitwise Operators

The >> Operator
Illustration

.The >> Operator – an Example..

......5 >> 2 = 00000101 >> 2 = 00000001 = 1

The >> operator shifts values of all bits in its first argument to the right.
The values are shifted as many positions as it is indicated by the second
argument. The least significant bits of the first argument are dropped. The
most significant bits are padded according to the sign of the argument. If
it is negative number, than the bits are padded with ones, otherwise with
zeros. Such an operation is equivalent to the integer division by a power
of two. Its result is always an integer. In the example the 5 is divided by
4. The fraction part of the result is truncated. The operator can only be
applied to integers.

26 / 44

Operators Bitwise Operators

Bitwise Operators
Summary

The symbols of bitwise and logical operators look very similar and thus may
be confusing. Burce Eckel, the autor of ”Thinking in Java” book devised a
rule, that can help to apply the right operator: ”Bits are small, so only one
character is needed for a bitwise operator.”

27 / 44

Operators The Ternary Operator

The Ternary Operator
The ternary operator (conditional operator) is similar to the conditional
statement that will be discussed in the next lecture. Unlike the statement,
the operator yields a result. The pattern shows how to apply the operator:

variable=condition?first_expression:second_expression;

If the condition evaluates to truth, the operator yields the result of the
evaluation of the first expression, otherwise it will return the result of the
evaluation of the second expression. The result will be stored in the variable.
It is possible to skip the assignment, if only the side-effect of evaluation of
the second or the first expression is of interest.
int a=5, b=3, max;
int main(void)
{

max=(a>b)?a:b;
return 0;

}
28 / 44

Operators Type Casting

Type Casting

Type casting is used for changing the type of a value. Type conversion
may be implicit or explicit. The former one is made by compiler without
participation of the programmer. The later is forced by the programmer
with the use of the casting operator.
int a;
int main(void)
{

a=12.3;
return 0;

}
In the example the original type of the 12.3 number, i.e. double is implicitly
converted to int. It means that the fraction part of the number will be lost.
Such a side-effect always happens when a ”larger” type is converted to a
”smaller” one.

29 / 44

Operators Type Casting

Type Casting
Explicit Conversion

In some cases it is necessary to force the type conversion. It can be accom-
plished with the use of the cast operator, i.e. by placing the name of the
desired type in the parentheses before a variable or an expression.
double a;
int x = 4, y = 3;
int main(void)
{

a=(double)x/y;
return 0;

}
In the example the type of the value of the x variable is converted to the
double. Thanks to that the result of division is a floating-point number,
not an integer with truncated fraction part.

30 / 44

Operators Other Operators

The Address Operator

The address operator returns the memory address of the variable that it
is applied to. The symbol of an address operator is &, just the same as
the bitwise and. The compiler recognizes those operators by the context
in which they are used. The address operator is unary and the bitwise and
operator is binary. The memory address is needed by the scanf() function
to store in a variable the data acquired from a keyboard. But this is only
one of many applications of the address operator.

31 / 44

Operators Other Operators

The sizeof Operator

The sizeof operator returns the size of variable that it is applied to. The
size is in bytes. It is preferred to put the name of variable in parentheses,
but it is not necessary. Also instead of variable’s name, the identifier of its
type may be used.
long unsigned int a,b,c;

int main(void)
{

a=sizeof b;
a=sizeof(c);
return 0;

}

32 / 44

Operators Operators Precedence

Operators Precedence

The precedence of operators in the C language is defined by their prior-
ities. However, it may be changed with the use of parentheses. As for
the discussed operators the post-increment and the post-decrement opera-
tors are of the highest priority. Then, the pre-increment and pre-decrement
operators. Next, all the unary operators (including the sizeof and cast
operators). Later, all the arithmetic operators, just like in the mathematics.
Subsequently, the bitwise shift operators and next the relation operators (the
equality and inequality operators have lower priority than the rest of them).
Later the bitwise operators (in order: the and, the exclusive or and the or)
and after them the boolean operators, in the same order, except for exclusive
or, which is nonexistent. Next goes the ternary operator. The lowest priority
have the assignment operator and assignment shorthands.

33 / 44

Basic Input/Output

Basic Input/Output Operations

In this part of the lecture the scanf() and printf() functions will be dis-
cussed. Both of them are defined in the stdio.h header file. The scanf()
function allows the program to store in a variable a value typed by the user
on the keyboard. The printf() function displays values on a computer
screen. Other input/output functions will be discussed in later lectures.

34 / 44

Basic Input/Output

The scanf() Function
The scanf() function allows the user to enter a value to a variable with the
use of a keyboard.
#include<stdio.h>

int a;

int main(void)
{

scanf("%d",&a);
return 0;

}
In the simplest case the function takes two arguments that are separated by
a comma. The first one is a format string which defines the type of the
entered value. It is a character (or characters) placed in a quotation marks
and prefixed by a percentage sign (%). The second argument is the address
of the variable, where the value should be stored. 35 / 44

Basic Input/Output

The scanf() Function
The Most Important Formating Strings

The table contains examples of formatting strings that will be used during
the lectures.

Formatting String Description
%d A decimal integer of the int type.
%ld A decimal integer of the long int type.
%hd A decimal integer of the short int type.
%hhd A decimal integer of the char type.
%u A decimal natural number of the unsigned int type.
%lu A decimal natural number of the unsigned long int

type.
%hu A decimal natural number of the unsigned short int

type.
%hhu The decimal natural number of the unsigned char type.
%c A character.
%f A floating-point number of the float type.
%lf A floating-point number of the double type.

36 / 44

Basic Input/Output

The scanf() Function
Entering Single Characters

When applying a scanf() function for entering several single characters the
programmer has to remember that each of them is confirmed by the Enter
key, which also leaves a single character that can be read by subsequent calls
of the scanf() function. To avoid this unwanted effect a solution presented
in the listing may be applied.
char a,b;

int main(void)
{

scanf("%c",&a);
scanf(" %c",&b);
return 0;

}
The solution consist in adding a space between the first quotation mark (")
and the percentage sign (%) in the second formating string.

37 / 44

Basic Input/Output

The printf() Function

The printf() function is similar to the puts() function. Both of them dis-
play a string (a series of characters in quotation marks) on screen. However,
the printf() function does not move the cursor to the beginning of the
next line. Moreover, it can display values of variables and expressions. To
this end the programmer has to place in the main string as many formatting
strings as values she or he wants to display. Then, after the string she or he
has to place all the values, variables and expressions and separate them by
commas.

38 / 44

Basic Input/Output

The printf() Function
An Expample

#include <stdio.h>

int a,b;

int main(void)
{

puts("Please, enter an integer:");
scanf("%d",&a);
puts("Please, enter a second integer");
scanf("%d",&b);
printf("%d & %d = %d\n",a,b,a&b);
return 0;

}

39 / 44

Basic Input/Output

The printf() Function
Formatting Strings

Formatting String Description
%d A decimal integer of the int type.
%ld A decimal integer of the long int type.
%u A natural number unsigned int.
%c A character.
%f A floating-point number of the double type. The string may con-

tain additional information about formating, for example %.3f means
that only the first three digits of the number’s fraction part will be
displayed.

%lf A floating-point number of the long double type. It also may con-
tain additional information about formatting.

%e, %E A floating-point number of the double type expressed in the scientific
notation, for example 3e-9 (for the %e formatting) or 3E-9 (for the
%E formatting).

%le, %lE A floating-point number of the long double type expressed in the
scientific notation (please, note the examples above).

%x, %X A natural number in hexadecimal, for example a5 (for the %x format-
ting) or A5 (for the %X formatting).

%o A natural number in octal.

40 / 44

Basic Input/Output

The printf() Function
Special Characters

For moving the cursor to beginning of the next line on the screen or displaying
a tabulator, special characters have to be used. Those characters usually
consist of two regular characters: a backslash and an another character. The
table contains descriptions of some of them.

Special character Description
\n A newline character.
\r A beginning of the line character.
\\ The \ character (A single \ sign will be displayed on

the screen.
\" The quotation mark.
\t The tabulator.

41 / 44

Basic Input/Output

Questions

?

42 / 44

Basic Input/Output

Thanks

Many thanks to Grzegorz Łukawski, PhD and Leszek Ciopiński, MSc for
helping me to complete the Polish version of this slides.

43 / 44

Basic Input/Output

The End

Thank You for Your attention!

44 / 44

	Initialization of a Variable
	Constants (Once Again)
	Operators
	Relational Operators
	Arithmetic Operators
	Boolean Operators
	Bitwise Operators
	The Ternary Operator
	Type Casting
	Other Operators
	Operators Precedence

	Basic Input/Output

