
.

......

Fundamentals of Programming 1
Introduction to 2D Graphics — Part Two

The Allegro Library

Arkadiusz Chrobot

Department of Computer Science

June 3, 2020

1 / 126

Outline

...1 Introduction

...2 Fractals

...3 Calculation of π

...4 Sine Wave

...5 Animation

...6 Simple Textures

2 / 126

Introduction

Introduction

In the second part of the lecture example programs are presented that
apply the elements of the Allegro library, described in the first part, to
create 2D images. Two of those programs use the animation support
offered by the library.

3 / 126

Fractals

Fractals

Fractals can be described as a complex geometrical objects. Mathematics
provides many definitions of the concept of a fractal as well as many
algorithms for creating fractals. The most characteristic property of
fractals is their repetitive structure. In this lecture three examples of
fractals, generated by different algorithms are presented.

4 / 126

Fractals

Fractals — ifs

Fractals can be created with the help of an Iterated Function System
(ifs). The algorithm computes coordinates of new points belonging to a
fractal by using affine mappings of the following form:

{
x′ = a · x + b · y + c
y′ = d · x + e · y + f

The x′ and y′ are coordinates of a new point of the fractal and the x
and y are coordinates of a fractal point that is already known. In the
ifs algorithm several affine mappings are defined and one of them is
randomly chosen for calculating the coordinates of a next point of the
fractal. The more points are calculated, the more detailed is the image
of the fractal.

5 / 126

Fractals

Fractals — ifs

The program that demonstrates how a fractal is created with the help of
the ifs uses four affine mappings with the following a, b, c, d, e and f
coefficients:

a b c d e f
1 -0,67 -0,02 0 -0,18 0,81 10
2 0,4 0,4 0 -1 0,4 0
3 -0,4 -0,4 0 -0,1 0,4 0
4 -0,1 0 0 0,44 0,44 -2

The coefficients are taken from the book „Fraktale i chaos“ by Jerzy
Kudrewicz available only in Polish.

6 / 126

Fractals

Fractals — ifs

#include<allegro.h>
#include<allegro/keyboard.h>
#include<stdlib.h>
#include<time.h>

#define WIDTH 1366

#define HEIGHT 768

#define SCALE 15

7 / 126

Fractals

Fractals — ifs
Comment

Aside from the header files associated with the Allegro library there are
also included in the program the header files needed for using the PRNG.
The width and the height constants describe the width and the height
of the screen in pixels. The scale constant is the scaling factor for the
image, which has to be zoomed, otherwise it would be relatively small.

8 / 126

Fractals

Fractals — ifs

int initialize(int card, int width, int height)
{

srand(time(NULL));
if(allegro_init()) {

allegro_message("allegro_init: %s\n",allegro_error);
return -1;

}
if(install_keyboard()) {

allegro_message("install_keyboard: %s\n",allegro_error);
allegro_exit();
return -1;

}
set_color_depth(32);
if(set_gfx_mode(card,width,height,0,0)) {

allegro_message("%s\n",allegro_error);
allegro_exit();
return -1;

}
return 0;

}

9 / 126

Fractals

Fractals — ifs
Comment

The initialize() function is responsible for initializing the Allegro li-
brary and the PRNG. It is implemented in the same or similar fashion in
the other example programs. Initialization of the PRNG is the first action
performed inside the functions body. The task is accomplished with the
invocation of the srand() function. Next, the Allegro library is initial-
ized with the use of allegro_init macro. Then the keyboard handling
is activated with the use of install_keyboard() function. After that
the colour depth is set by calling the set_color_depth() function. The
rgba colour model is applied in the program. The last task performed
by the initialize() function is setting a specified graphical mode by
invoking the set_gfx_mode() function. The said function takes as its
first three arguments the parameters of the initialize() function. The
value of the two last arguments is zero, because the animation support
offered by the Allegro library is not used in the program.

10 / 126

Fractals

Fractals — ifs
Comment

If any of the subroutines used in the initialize() function fails then
a message is printed with the use of allegro_message() function, the
allegro_exit() function is called to finalize the Allegro library and a
proper exception code is returned.

11 / 126

Fractals

Fractals — ifs

void draw_with_ifs(double x, double y)
{

const int GREEN_COLOUR = makecol(0,255,0);
while(!(key[KEY_Q]||key[KEY_ESC])) {

switch(rand()%4) {
case 0:

x=-0.678*x-0.02*y;
y=-0.18*x+0.81*y+10;
break;

case 1:
x=0.4*x+0.4*y;
y=-0.1*x+0.4*y;
break;

case 2:
x=-0.4*x-0.4*y;
y=-0.1*x+0.4*y;
break;

case 3:
x=-0.1*x;
y=0.44*x+0.44*y-2;
break;

}
putpixel(screen,(SCREEN_W>>1)-(SCALE*x),(SCREEN_H-35)-(SCALE*y),GREEN_COLOUR);

}
}

12 / 126

Fractals

Fractals — ifs
Comment

The draw_with_ifs() function is responsible for drawing a fractal on
the screen. The coordinates of the first point belonging to the fractal
(which is not drawn) are passed to the function by parameters. At the
beginning of its body is defined the green_colour constant, which stores
the code of the green colour returned by the makecol() function. In the
while loop the coordinates of subsequent points belonging to the fractal
are computed and the fractal is drawn. The loop stops when the user
presses the q key. Inside the loop one on the affine mappings is chosen
randomly and then it is applied for calculating the coordinates of a new
point belonging to the fractal. Next, those coordinates are converted to
the coordinates of a pixel belonging to the fractal image. Those numbers
are passed as a second and third arguments of the putpixel() function
that changes the colour of the pixel. The first argument of this function
is the screen variable, which is a pointer to the bitmap associated with
the screen. The last argument of the putpixel() function is the colour
code. 13 / 126

Fractals

Fractals — ifs
Comment

Because the coordinates of a point are floating point numbers relative
to the origin of the “regular” Cartesian coordinate system, they have to
be converted to the coordinates of a pixel on the screen. The horizontal
coordinate of the pixel is calculated by scaling the value of the abscissa
of the point and subtracting from the result the half of the width of the
screen. The resulting data is indirectly casted to the int type. The
vertical coordinate is calculated similarly. The value of the ordinate of
the point is scaled and then subtracted from the hight of the screen
reduced by 35 pixels. The last value was chosen experimentally. Thanks
to those conversions the fractal image is displayed centered and is not
inverted.

14 / 126

Fractals

Fractals — ifs

int main(void) {
if(initialize(GFX_AUTODETECT_FULLSCREEN,WIDTH,HEIGHT)<0)

return -1;
draw_with_ifs(0.0,0.0);
allegro_exit();
return 0;

}
END_OF_MAIN()

15 / 126

Fractals

Fractals — ifs
Comment

In the main() function the initialize() function is invoked first. As
its first argument the gfx_autodetect_fullscreen constant is given.
It means that the program should use a full screen graphical mode, pro-
vided its initialization is successful. The constants that define the width
and height of the screen are the two other arguments of the function.
After the Allegro library is initialized, the draw_with_ifs() function
is called. Its arguments are the coordinated of the starting point of the
fractal. After this function exits the allegro_exit() function is invoked
to finalize the Allegro library.

16 / 126

Fractals

Fractals — ifs
Summary

The presented program creates a fractal called a Christmas Tree. With
the help of Iterated Function Systems it is possible to create other shapes
of that type, like for example Barnsley’s Fern. In the case of the Barns-
ley’s fractal not only a different set of coefficients for the system of affine
mappings is needed but also a slightly different way of choosing the sys-
tems randomly have to be applied. Plant-like looking fractals can be also
drawn with the use of formal languages called L–Systems, which were in-
vented by a Hungarian biologist and botanists Aristid Lidenmayer. In
computer graphics they were popularized by a Polish computer scientist
working in Canada, Przemysław Prusinkiewicz. Fractals are used for ex-
ample in in computer games for creating a background that looks like a
realistic landscape.

17 / 126

Fractals

Fractals — Mandelbrot Set

The Mandelbrot Set is a set of points on a plane for which a sequence
given by a following recursive (self–repeating) equation does not diverge:

{
z0 = 0
zn+1 = z2

n + c

In this equation z is a complex variable and c is a complex constant. The
set was discovered by a French mathematician who was born in Warsaw
in 1924. The image of the fractal is created by scaling the coordinates
of a large number of points on a complex plane in such a way that their
real and imaginary parts (abscissa and ordinate) belong, respectively,
to the following intervals: (−2.5, 1) and (−1, 1) and then substituting
them for c in the equation and calculating a number of initial terms
of the sequence. If the modulus of every calculated term is less than 2
(|zn| ≤ 2) then the point c belongs the set.

18 / 126

Fractals

Fractals — Mandelbrot Set

#include<allegro.h>
#include<allegro/keyboard.h>

#define WIDTH 1366

#define HEIGHT 768

#define MAXITER 8000

19 / 126

Fractals

Fractals — Mandelbrot Set
Comment

The beginning of the program that generates the image of Mandelbrot
Set is similar to the beginning of the program that creates the Christmas
Tree fractal using the ifs. However, instead of the constant for scaling,
the maxiter constant is defined that describes how many of the initial
terms of the sequence defined in the previous slide should be calculated
by the program. Also the header files necessary for using the PRNG are
not included.

20 / 126

Fractals

Fractals — Mandelbrot Set

int initialize(int card, int width, int height)
{

if(allegro_init()) {
allegro_message("allegro_init: %s\n",allegro_error);
return -1;

}
if(install_keyboard()) {

allegro_message("install_keyboard: %s\n",allegro_error);
allegro_exit();
return -1;

}
set_color_depth(32);
if(set_gfx_mode(card,width,height,0,0)) {

allegro_message("%s\n",allegro_error);
allegro_exit();
return -1;

}
return 0;

}

21 / 126

Fractals

Fractals — Mandelbrot Set
Comment

The initializing function is also similar to the one used in the previous
program. The only difference is that this one doesn’t initialize the PRNG.

22 / 126

Fractals

Fractals — Mandelbrot Set

double scale_x0(int x0)
{

return 3.5*(((double)x0)/(SCREEN_W-1))-2.5;
}

23 / 126

Fractals

Fractals — Mandelbrot Set

double scale_y0(int y0)
{

return 2.0*(((double)y0)/(SCREEN_H-1))-1.0;
}

24 / 126

Fractals

Fractals — Mandelbrot Set
Comment

The scale_x0() and scale_y0() functions are responsible for convert-
ing the coordinates of a pixel to the coordinates of a point that lies on a
(−2, 5; 1) × (−1; 1) plane.

25 / 126

Fractals

Fractals — Mandelbrot Set

unsigned int calculate_mandelbrot(int xp, int yp)
{

double x,y,x2,y2;
unsigned int iteration = 0;
double x0 = scale_x0(xp);
double y0 = scale_y0(yp);

x=y=x2=y2=0.0;

while(x2+y2<=4.0 && iteration<MAXITER) {
double tmp = x2-y2+x0;
y=2.0*x*y+y0;
x=tmp;
iteration++;
x2=x*x;
y2=y*y;

}

return iteration==MAXITER?0:iteration;
}

26 / 126

Fractals

Fractals — Mandelbrot Set
Comment

The function calculate_mandelbrot() calculates successive terms of
the sequence for a pixel which coordinates are passed to it by param-
eters. First, these coordinates are converted (scaled) with the use of
scale_x0() and scale_y0() functions. Next, in the while loop the suc-
cessive terms of the sequence are calculated until the iteration counter
reaches the value of the maxiter constant or the modulus of the cur-
rent term is greater or equal two. The latter condition is expressed as:
x2+y2<=4.0. That expression can be derived from the formula: |zn ≤ 2|
as follows: |zn ≤ 2| Ñ |xn + i · yn| ≤ 2 Ñ

√
x2

n + y2
n ≤ 2 Ñ x2

n + y2
n ≤ 4.

In the loop body the successive terms of the sequence are calculated
and the number of the loop iterations is counted. The expressions used
for calculating the terms can be derived assuming that z = x + i · y,
and c = x0 + i · y0. So, the real part of the next sequence term equals
x2−y2+x0 and the imaginary part 2·x ·y+y0. The function returns the
number of iterations of the loop for a given pixel or zero, if the number
reached the value of maxiter constant. 27 / 126

Fractals

Fractals — Mandelbrot Set

int main(void) {
if(initialize(GFX_AUTODETECT_FULLSCREEN,WIDTH,HEIGHT)<0)

return -1;
unsigned int x,y;
unsigned char color;
for(y=0;y<SCREEN_H;y++)

for(x=0;x<SCREEN_W;x++) {
color=calculate_mandelbrot(x,y);
putpixel(screen,x,y,palette_color[color]);

}
while(!(key[KEY_Q]||key[KEY_ESC]))

;
allegro_exit();
return 0;

}
END_OF_MAIN()

28 / 126

Fractals

Fractals — Mandelbrot Set
Comment

In the main() function aside from Allegro library initialization and fi-
nalization the Mandelbrot Set image is drawn. In the for loops for
each of the pixel are calculated successive terms of the sequence with the
help of the calculate_mandelbrot() function. The function returns the
number of iterations after which the while loop stopped or zero. The
returned value is used for calculating the code of the pixel colour. In the
program a predefined palette of colours is applied which is stored in the
palette_color array. The array has 256 elements, so the number of it-
erations has to be converted into a natural number ranging from 0 to 255.
This is accomplished by storing the result of calculate_mandelbrot()
function in a variable of the unsigned char type. After the image is
generated the program waits int the while loop for the user to press the
Esc or q key. Please note, that no other activities take place in the loop
aside from checking the state of the aforementioned keys.

29 / 126

Fractals

Fractals — Mandelbrot Set 2

Creating the Mandelbrot Set image involves performing calculations with
the use of complex numbers. The ISO C99 standard introduces to the
C language elements that make implementation of such calculations eas-
ier. They are collected in the complex.h header file. Some of them are
applied in the next program, which also draws Mandelbrot Set. Those
elements are: the complex macro for creating the double complex type,
the i constant of the

√
−1 value and the cabs() function that calculates

the modulus of a complex number. For basic arithmetic operations on
the double complex type variables the same operators can be applied
as for variables of other numerical data types. Next slides present the
program that creates the Mandelbrot Set image using complex number
operations. Due to the similarity of the program with the previous one,
only the differences between them are described.

30 / 126

Fractals

Fractals — Mandelbrot Set 2

#include<allegro.h>
#include<allegro/keyboard.h>
#include<complex.h>

#define WIDTH 1366

#define HEIGHT 768

#define MAXITER 8000

31 / 126

Fractals

Fractals — Mandelbrot Set 2
Comment

The code presented in the previous slide includes to the program the
complex.h header file, which contains elements supporting complex num-
ber operations.

32 / 126

Fractals

Fractals — Mandelbrot Set 2

int initialize(int card, int width, int height)
{

if(allegro_init()) {
allegro_message("allegro_init: %s\n",allegro_error);
return -1;

}
if(install_keyboard()) {

allegro_message("install_keyboard: %s\n",allegro_error);
allegro_exit();
return -1;

}
set_color_depth(32);
if(set_gfx_mode(card,width,height,0,0)) {

allegro_message("%s\n",allegro_error);
allegro_exit();
return -1;

}
return 0;

}

33 / 126

Fractals

Fractals — Mandelbrot Set 2

double scale_x0(int x0)
{

return 3.5*(((double)x0)/(SCREEN_W-1))-2.5;
}

34 / 126

Fractals

Fractals — Mandelbrot Set 2

double scale_y0(int y0)
{

return 2.0*(((double)y0)/(SCREEN_H-1))-1.0;
}

35 / 126

Fractals

Fractals — Mandelbrot Set 2

unsigned int calculate_mandelbrot(int xp, int yp)
{

double complex z;
unsigned int iteration = 0;
double complex c = scale_x0(xp) + I*scale_y0(yp);

z=0.0+0.0*I;

while(cabs(z)<=2.0 && iteration<MAXITER) {
z = z*z+c;
iteration++;

}

return iteration==MAXITER?0:iteration;
}

36 / 126

Fractals

Fractals — Mandelbrot Set 2
Comment

The calculate_mandelbrot() function applies the double complex
type variables to calculate successive terms of the sequence. First, from
the coordinates of a pixel is created the value of the c constant. Next, in
the z variable is stored the value of the first term of the sequence. Then
in the while loop the successive terms of the sequence are calculated
and the number of the loop iterations is counted. The function code
is more legible than its equivalent from the previous program, but its
performance is worse.

37 / 126

Fractals

Fractals — Mandelbrot Set 2

int main(void)
{

if(initialize(GFX_AUTODETECT_FULLSCREEN,WIDTH,HEIGHT)<0)
return -1;

unsigned int x,y;
unsigned char color;
for(y=0; y<SCREEN_H; y++)

for(x=0; x<SCREEN_W; x++) {
color=calculate_mandelbrot(x,y);
putpixel(screen,x,y,palette_color[color]);

}
while(!(key[KEY_Q]||key[KEY_ESC]))

;
allegro_exit();
return 0;

}
END_OF_MAIN()

38 / 126

Fractals

Fractals — Mandelbrot Set 2
Comment

Other ways of creating the Mandelbrot Set and drawing fractals are
described on the following web page: https://lodev.org/cgtutor/. The
theoretical description of the Mandelbrot Set is partially taken from the
Polish and English pages of Wikipedia.

39 / 126

https://lodev.org/cgtutor/

Calculation of π

Calculation of π

The π number is one of the most frequently appearing constants in math-
ematics. Although its definition is simple — it is the ratio of the circle’s
circumference to its diameter — calculating its approximated value is not
easy. There are many algorithms for that problem. The next program
calculates the value of π using one of the statistical methods which are
collectively know as Monte Carlo Methods. The name was coined by
Polish mathematician Stanisław Ulam who also invented some of them.

40 / 126

Calculation of π

Calculation of π
The method that is applied in this program is not the most efficient one
as its steps needs to be repeated multiple times to achieve at least rough
approximation of the value of the π. However, it can be demonstrated in
an interesting way. In this method a disc inscribed in a square is given.
The length of the disc’s radius is r. The centre of the disc is in the origin
of the coordinate system. Every side of the square has a length of 2r
(please refer to the next slide). The ratio of the square area (Psq) to
the area of the disc (Pdc) is Psq

Pdc
= (2·r)2

π·r2 . If areas of the square and the
disc were known then the value of the π could be calculated with the
use of the following formula: π = 4·Pdc

Psq
. It is possible to approximate

the two missing values by choosing randomly points inside the square
and verifying if they also belong to the disc. The square area is the
total number of chosen points, and the disc area is the number of the
chosen square points that belong also to this figure. More about this
method can be found on the web page of Eve Astrid Andersson (http:
//www.eveandersson.com/pi/).

41 / 126

http://www.eveandersson.com/pi/
http://www.eveandersson.com/pi/

Calculation of π

Calculation of π

.. x.

y

.(0, 0) .
(−r, 0)

.
(r, 0)

.
r

.

2r

42 / 126

Calculation of π

Calculation of π

#include<allegro.h>
#include<allegro/keyboard.h>
#include<stdlib.h>
#include<stdbool.h>
#include<time.h>
#include<math.h>

#define WIDTH 1366
#define HEIGHT 768

43 / 126

Calculation of π

Calculation of π
Comment

The beginning of the program is similar to the beginnings of previously
presented programs. Aside from the header files required by Allegro li-
brary also the header files necessary for using the prng are included,
together with header files that contain declarations of needed mathe-
matical functions and the definition of the bool data type.

44 / 126

Calculation of π

Calculation of π

int initialize(int card, int width, int height)
{

srand(time(NULL));
if(allegro_init()) {

allegro_message("allegro_init(): %s\n",allegro_error);
return -1;

}
if(install_keyboard()) {

allegro_message("install_keyboard(): %s\n",allegro_error);
allegro_exit();
return -1;

}
set_color_depth(32);
if(set_gfx_mode(card,width,height,0,0)) {

allegro_message("set_gfx_mode(): %s\n",allegro_error);
allegro_exit();
return -1;

}
return 0;

}

45 / 126

Calculation of π

Calculation of π
Comment

The definition of the initialize() function is the same as in the first
program presented in this lecture.

46 / 126

Calculation of π

Calculation of π

bool is_in_disc(double x, double y, const double radius)
{

return sqrt(pow(x,2)+pow(y,2))<=radius;
}

47 / 126

Calculation of π

Calculation of π
Comment

The is_in_disc() function verifies if a point, which coordinates are
passed by the first two parameters, is inside a disc of a radius, which
length is passed by the last parameter. According to the definition of
a disc, all points that belong to such a figure lie within the distance
measured from the disc’s centre that is less than or equal to the radius.
Because the centre of the disc, in the discussed method, is in the origin
of the coordinate system, the distance from the disc centre to a point
of the coordinates (x, y) can be calculated with the use of the following
Euclidean formula:

√
x2 + y2. If the resulting value is less than or equal

to the length of the radius then the point belongs to the disc, otherwise it
doesn’t. The pow() function used in the program is the exponentiation
function. It takes two numbers of the double type as arguments and
returns the value of the first raised to the power of the second. The
result is also a double type number.

48 / 126

Calculation of π

Calculation of π

void draw_pi(void)
{

const int GREEN_COLOUR = makecol(0,255,0),
RED_COLOUR = makecol(255,0,0),
WHITE_COLOUR = makecol(255,255,255),
SCREEN_MIDDLE_X = SCREEN_W>>1,
SCREEN_MIDDLE_Y = SCREEN_H>>1;

const double RADIUS = 300.0;
unsigned long int in_square=0, in_disc=0;
while(!keypressed()) {

double x=-RADIUS+rand()%600+rand()/(1.0+RAND_MAX);
double y=-RADIUS+rand()%600+rand()/(1.0+RAND_MAX);
in_square++;
if(is_in_circle(x,y,RADIUS)) {

putpixel(screen,x+SCREEN_MIDDLE_X,y+SCREEN_MIDDLE_Y,RED_COLOUR);
in_disc++;

} else
putpixel(screen,x+SCREEN_MIDDLE_X,y+SCREEN_MIDDLE_Y,GREEN_COLOUR);

if(!(in_square%100000))
textprintf_ex(screen,font,550,50,WHITE_COLOUR,0,"The PI number is: %1.20lf",

(4.0*in_disc)/in_square);
}

}

49 / 126

Calculation of π

Calculation of π
Comment

The draw_pi() function makes the calculation of the π visible and also
prints the current approximation of the number on the screen. In the
function body three constants describing the codes of green, red and
white colours are defined. The next two constants define the coordinates
of the middle of the screen. They are used for converting coordinates of
points to coordinates of pixels in such a way, that the resulting image
is displayed in the centre of the screen. The last constant defined in
the function describes the length of the radius. It is 300 points. In the
function are also declared two variables which store the number of points
belonging to the square (in_square) and to the disc (in_disc). Inside
the while loop, which is performed until the user presses any key, the
coordinates of a point in the square are randomly chosen and the value
of the variable that counts them is incremented by one. The conditional
statement checks if the point also belongs to the circle.

50 / 126

Calculation of π

Calculation of π
Comment

If it is the case then the colour of the pixel corresponding to that point is
set to red and the value of the in_disc variable, which is the counter of
the points in the disc, is incremented by one. Otherwise, the pixel colour
is set to green. Please notice, that the coordinates of the middle of the
screen are added to the coordinates of the point. Also the coordinates
of the point, which are of the double type are indirectly casted to the
int type, which means that many of the randomly chosen points are
mapped into the same pixel. The calculated value of the π number
is displayed each 100.000th iteration of the loop with the use of the
textprintf_ex() function. The value is calculated using the formula
described in previous slides. The approximated area of the square (Psq)
is stored in the in_square variable and the approximated area of the
disc (Pdc) is stored in the in_disc variable.

51 / 126

Calculation of π

Calculation of π

int main(void)
{

if(initialize(GFX_AUTODETECT_FULLSCREEN,WIDTH,HEIGHT))
return -1;

draw_pi();
allegro_exit();
return 0;

}
END_OF_MAIN()

52 / 126

Calculation of π

Calculation of π
Comment

In the main() function are invoked the other functions defined in the
program.

53 / 126

Sine Wave

Sine Wave

The next program plots a sine wave. This example serves the purpose
of describing the general method of plotting a function graph on the
computer screen. It is not enough to calculate the coordinates of points
belonging to the graph and to set colour of pixels that correspond to
those points. That way only a discrete function graph can be created —
one that consists of many separate points. The correct way of plotting
a function consists in creating the graph from very small line segments
joined together.

54 / 126

Sine Wave

Sine Wave

#include<allegro.h>
#include<allegro/keyboard.h>
#include<math.h>

#define WIDTH 1366
#define HEIGHT 768

55 / 126

Sine Wave

Sine Wave
Comment

The program source code begins similarly to the code of other programs
presented in this lecture. The math.h header file is necessary for using
the sine function.

56 / 126

Sine Wave

Sine Wave

int initialize(int card, int width, int height)
{

if(allegro_init()) {
allegro_message("allegro_init(): %s\n",allegro_error);
return -1;

}
if(install_keyboard()) {

allegro_message("install_keyboard(): %s\n",allegro_error);
allegro_exit();
return -1;

}
set_color_depth(32);
if(set_gfx_mode(card,width,height,0,0)) {

allegro_message("set_gfx_mode(): %s\n",allegro_error);
allegro_exit();
return -1;

}
return 0;

}

57 / 126

Sine Wave

Sine Wave
Comment

The definition of the initialize() function is the same as in other
example programs that don’t require using the PRNG.

58 / 126

Sine Wave

Sine Wave

void draw_sinus(BITMAP* bitmap)
{

const double DEGREE_TO_RADIAN = M_PI/180.0, HALF_OF_SCREEN = SCREEN_H>>1, X_RATIO = SCREEN_W/360.0;
double x_start=0.0,y_start=0.0,x_end,y_end;
const int GREEN_COLOUR = makecol(0,255,0);
for(x_end=1;x_end<=360;x_end++) {

y_end = HALF_OF_SCREEN*sin(x_end*DEGREE_TO_RADIAN);
line(bitmap,x_start*X_RATIO,HALF_OF_SCREEN-y_start,X_RATIO*x_end,HALF_OF_SCREEN-y_end,

GREEN_COLOUR);
x_start = x_end;
y_start = y_end;

}
}

59 / 126

Sine Wave

Sine Wave
Comment

The draw_sinus() function plots the sine wave on the screen. At the be-
ginning of its body three constants are declared. The deegre_to_radian
is used for converting degrees to radians. The sin() function requires as
an argument an angle measured in radians. The half_of_screen con-
stant1 has a value that represents the half of the screen hight in pixels.
The x_ratio constant is the ratio of the screen width to the number
of degrees in the full angle. In other words this constant expresses the
number of pixels per one degree. Finally, the last constant is the green
colour code. This is the colour of the function graph. The x_start and
y_start variables are used for storing the coordinates of the starting
point of currently plotted segment. The x_end and y_end variables store
the coordinates of the ending point of that segment.

1Its type can be actually changed to int.
60 / 126

Sine Wave

Sine Wave
Comment

The function is plotted in the for loop. The starting point of the first
segment has the coordinates of the (0, 0). The coordinates of the ending
point are calculated during the first iteration of the loop. Plotting the
sine wave directly would result in a “slightly jagged” line appearing on
the screen, since the values of the sine function belong to the [−1, 1]
interval. This is why the ordinate of every point is multiplied by the
value of half_of_screen constant. This causes the graph to be plotted
across the full hight of the screen. The argument of the sin() function
is an angle measured in radians. Hence the program multiplies the angle
measured in degrees by the value of the deegre_to_radian constant and
passes the result to the function. After the coordinates of the ending
point are calculated the segment is drawn on the screen with the use of
the line() function.

61 / 126

Sine Wave

Sine Wave
Comment

The abscissas of the starting and the ending pixel of the segment are
obtained by multiplying the angle measured in degrees by the x_ratio
constant, so the graph is plotted across the full width of the screen. The
ordinates are also subtracted from the half of the hight of the screen. This
results in the graph being not inverted and displayed in the centre of the
screen. In the next iteration of the for loop the coordinates of the ending
point of the next segment of the graph are calculated. The coordinates
of the ending point of the previous segment become the coordinates of
the starting point of the next segment. Those steps are repeated until
the whole graph is finished.

62 / 126

Sine Wave

Sine Wave

void wait_for_any_key(void)
{

clear_keybuf();
while(!keypressed())

;
}

63 / 126

Sine Wave

Sine Wave
Comment

The wait_for_any_key() function stops the program until the user
presses any key on the keyboard. The clear_keybuf() function is
invoked to clean the keyboard buffer and thus to make sure that the
wait_for_any_key() function will work correctly. Next, the latter func-
tion waits in the while loop for the user to press any key. No other
actions are performed in the loop.

64 / 126

Sine Wave

Sine Wave

int main(void)
{

if(initialize(GFX_AUTODETECT_FULLSCREEN,WIDTH,HEIGHT))
return -1;

draw_sinus(screen);
wait_for_any_key();
allegro_exit();
return 0;

}
END_OF_MAIN()

65 / 126

Sine Wave

Sine Wave
Comment

In the main() function all the other functions defined in the program are
called.

66 / 126

Animation

Animation — Rectangle

The next program shows an animation of a rectangle that moves from
the left side of the screen to the right side and it repeats that movement
until the user presses q or Esc key.

67 / 126

Animation

Animation — Rectangle

#include<allegro.h>
#include<allegro/keyboard.h>

#define WIDTH 1366
#define HEIGHT 768
#define NUMBER_OF_PAGES 4

BITMAP *pages[NUMBER_OF_PAGES];

68 / 126

Animation

Animation — Rectangle
Comment

Unlike the program plotting a sine wave, this one doesn’t include the
header file with mathematical functions definitions. Instead, a constant
is defined that specifies the number of pages, or in other words bitmaps,
used by the animation support in the Allegro library. The constant is
used in the definition of an array which elements are pointers to bitmap
structures.

69 / 126

Animation

Animation — Rectangle

int initialize(int card, int width, int height)
{

if(allegro_init()) {
allegro_message("allegro_init(): %s\n",allegro_error);
return -1;

}
if(install_keyboard()) {

allegro_message("install_keyboard(): %s\n",allegro_error);
allegro_exit();
return -1;

}
set_color_depth(32);
if(set_gfx_mode(card,width,height,0,NUMBER_OF_PAGES*height)) {

allegro_message("set_gfx_mode(): %s\n",allegro_error);
allegro_exit();
return -1;

}
return 0;

}

70 / 126

Animation

Animation — Rectangle
Comment

The definition of the initialize() function is similar to its equivalents
in presented programs that do not use the PRNG. However, as the two
last arguments for the set_gfx_mode() function are passed the dimen-
sions of the virtual screen. They are necessary for enabling the animation
support and for creating new bitmaps. Please notice, that it is enough
if only one of those arguments is not zero.

71 / 126

Animation

Animation — Rectangle

int create_pages_array(BITMAP *pages[NUMBER_OF_PAGES])
{

int i;
for(i=0; i<NUMBER_OF_PAGES; i++) {

pages[i] = create_video_bitmap(SCREEN_W,SCREEN_H);
if(pages[i]==NULL)

return -1;
}
return 0;

}

72 / 126

Animation

Animation — Rectangle
Comment

The create_pages_array() function creates bitmaps in a loop and as-
signs their addresses to the elements of the array of pointers to bitmap
structures. If it fails to create any of them it returns a value specifying
the exception and exits.

73 / 126

Animation

Animation — Rectangle

void destroy_pages_array(BITMAP *pages[NUMBER_OF_PAGES])
{

int i;
for(i=0; i<NUMBER_OF_PAGES; i++)

destroy_bitmap(pages[i]);
}

74 / 126

Animation

Animation — Rectangle
Comment

The destroy_bitmap_array() function deletes the bitmaps created by
the create_bitmap_array() function.

75 / 126

Animation

Animation — Rectangle

void animate_rectangle(BITMAP *pages[NUMBER_OF_PAGES], int speed, int rectangle_width, int rectangle_height)
{

int page_number = 0;
int x = 0;
clear_keybuf();
const int YELLOW_COLOUR = makecol(255,255,0);
while(key[KEY_ESC]==0&&key[KEY_Q]==0) {

BITMAP *active_page = pages[page_number];
clear_bitmap(active_page);
rect(active_page,x,SCREEN_H>>1,rectangle_width+x,rectangle_height+(SCREEN_H>>1),YELLOW_COLOUR);
x=(x+speed)%SCREEN_W;
if(show_video_bitmap(active_page))

return;
page_number = (page_number+1)%NUMBER_OF_PAGES;

}
}

76 / 126

Animation

Animation — Rectangle
Comment

The animate_rectangle() function displays a rectangle that moves
from the left edge of the screen to the right. The first argument of this
function is the array of pointers to pages. The value of the second one
specifies the speed of the animation (how quickly the rectangle moves).
Values of the last two arguments specify dimensions of the rectangle.
The page_number variable is used for indexing the array and also for
specifying which of the pages is currently active. The x variable stores
the abscissa of the top-left corner of the rectangle. The yellow_colour
constant stores the code of the yellow colour. This is the colour of the
rectangle. The clear_keybuf() function is invoked before the while
loop to clear the keyboard buffer. Inside the loop the subsequent frames
of the animation are created until the user presses the Esc or the q key.

77 / 126

Animation

Animation — Rectangle
Comment

Inside the while loop the page_number variable specifies the element
of the array that stores the address of the active page. This address is
assigned to the active_page pointer and the page is cleared (the colour
of all its pixels is set to black). Next the rectangle is drawn to the
bitmap (the active page). Its top edge is at the half screen hight. Then
the abscissa of the rectangle top-left corner location in the next frame
is calculated with the use of the modular arithmetic. This allows the
rectangle to “show up” at the left edge of the screen every time it “passes
through” the right edge. After the abscissa is calculated the content of
the active page is displayed on the screen. Then the function calculates
a new value of the page_number variable to determine the next active
page. This time it also uses the modular arithmetic, so each bitmap
becomes the active page once every number_of_pages iterations of the
loop.

78 / 126

Animation

Animation — Rectangle

int main(void)
{

if(initialize(GFX_AUTODETECT_FULLSCREEN,WIDTH,HEIGHT)<0)
return -1;

if(create_pages_array(pages))
return -1;

animate_rectangle(pages,1,100,50);
destroy_pages_array(pages);
allegro_exit();
return 0;

}
END_OF_MAIN()

79 / 126

Animation

Animation — Rectangle
Comment

In the main() function the functions defined earlier in the program are
called. Please note the order of invocations of the create_pages_array()
and destroy_pages_array() functions.

80 / 126

Animation

Animation — Ball

The next example program also creates an animation, but this time it is
an animation of a ball that bounces off the edges of the screen according
to the law of reflection, which applies to the light rays: the angle of
reflection is equal the angle of incidence. To simulate the movement
of the ball, which is drawn as a circle, the program has to know the
coordinates of the ball centre (x, y), its velocity vector (dx, dy) and the
length of its radius (r). Those data are necessary for calculating the
location of the middle of the ball, its direction (angle) and velocity in
the next frame of the animation. Dependencies between the first two of
those data items are shown in the figure in the next slide.

81 / 126

Animation

Animation — Ball

..

(x, y)

.

dx

.

dy

.

v

.

(x + dx, y + dy)

82 / 126

Animation

Animation — Ball

Hitting any of the screen edges forces the ball to change its movement
direction. The collision is detected by comparing the current coordinates
of the ball centre with abscissas or ordinates of horizontal or vertical
edges. For example, verifying if the ball “touches” the left edge of the
screen requires subtracting the ball radius length from the current ab-
scissa of its middle and comparing the result with zero. If it is less than
or equal zero then the ball has a contact with the edge. Similarly, in case
of the right edge of the screen, the radius length is added to the current
abscissa of the ball centre and the result is compared with the value of
the screen_w constant2. To detect collision of the ball with any of the
horizontal edges, it is necessary to compare the value of similar expres-
sions with zero or the value of the screen_h constant. The next slide
presents a figure that illustrates the overall concept of collision detection
in the discussed program.

2For a more accurate collision detection, the result should be compared with the
value of the constant minus one. However, such an accuracy is not required.

83 / 126

Animation

Animation — Ball

..

(x, y)

.

r

.

(x − r, y)

.

(x, y)

.

r

.

(x, y − r)

.

(x, y)

.

r

.

(x + r, y)

.

(x, y)

.

r

.
(x, y + r)

84 / 126

Animation

Animation — Ball

#include<allegro.h>
#include<allegro/keyboard.h>
#include<stdlib.h>
#include<time.h>

#define WIDTH 1366
#define HEIGHT 768
#define NUMBER_OF_PAGES 4

85 / 126

Animation

Animation — Ball
Comment

The beginning of this program is similar to the beginning of the previous
one, but the header files required for using the PRNG are included.

86 / 126

Animation

Animation — Ball

struct ball_data {
int x,y,dx,dy;
unsigned char radius;

} ball;

BITMAP *pages[NUMBER_OF_PAGES];

87 / 126

Animation

Animation — Ball
Comment

In the program, aside from the array of pointers to the bitmap structures,
the ball variable, which is a structure of the ball_data type, is declared.
The members of this structure store data about the current coordinates
of the ball centre, its velocity vector and the length of its radius.

88 / 126

Animation

Animation — Ball

int initialize(int card, int width, int height)
{

srand(time(NULL));
if(allegro_init()) {

allegro_message("allegro_init(): %s\n",allegro_error);
return -1;

}
if(install_keyboard()) {

allegro_message("install_keyboard(): %s\n",allegro_error);
allegro_exit();
return -1;

}
set_color_depth(32);
if(set_gfx_mode(card,width,height,0,NUMBER_OF_PAGES*height)) {

allegro_message("set_gfx_mode(): %s\n",allegro_error);
allegro_exit();
return -1;

}
return 0;

}

89 / 126

Animation

Animation — Ball
Comment

The definition of initialize() function is similar to its equivalent from
the previously presented program, but it additionally invokes functions
that initialize the PRNG.

90 / 126

Animation

Animation — Ball

void set_ball(struct ball_data *ball)
{

ball->radius = 20;
ball->x = rand()%(SCREEN_W>>1)+ball->radius;
ball->y = rand()%(SCREEN_H>>1)+ball->radius;
ball->dx = 10;
ball->dy = -10;

}

91 / 126

Animation

Animation — Ball
Comment

The set_ball() function initializes the structure that stores data about
the ball. This variable is passed to the function by a pointer. The length
of the ball radius is set to 20 pixels. The components of the velocity
vector are set to 10 and −10 pixels respectively. Since the absolute
values of the components are the same, the ball incidence angle is always
45◦. Because of the signs of these values, the ball will initially move in
the direction of the top-right corner of the screen. The coordinates of
the centre of the ball are chosen randomly in such a way, that the ball is
initially drawn entirely in the top-left quarter of the screen.

92 / 126

Animation

Animation — Ball

int create_pages_array(BITMAP *pages[NUMBER_OF_PAGES])
{

int i;
for(i=0; i<NUMBER_OF_PAGES; i++) {

pages[i] = create_video_bitmap(SCREEN_W,SCREEN_H);
if(pages[i]==NULL)

return -1;
}
return 0;

}

93 / 126

Animation

Animation — Ball

void destroy_pages_array(BITMAP *pages[NUMBER_OF_PAGES])
{

int i;
for(i=0; i<NUMBER_OF_PAGES; i++)

destroy_bitmap(pages[i]);
}

94 / 126

Animation

Animation — Ball
Comment

The functions presented in the two earlier slides are described in the
previously discussed program.

95 / 126

Animation

Animation — Ball

void draw_ball(BITMAP *page, struct ball_data ball)
{

clear_bitmap(page);
circle(page,ball.x,ball.y,ball.radius,makecol(255,255,0));

}

96 / 126

Animation

Animation — Ball
Comment

The draw_ball() function draws a yellow circle to a bitmap, using the
data from the structure passed by its second parameter. By the first
parameter is passed the pointer to this bitmap. Before the circle is
drawn, the colour of each bitmap pixel is set to black.

97 / 126

Animation

Animation — Ball

void update_ball_position(struct ball_data *ball)
{

ball->x += ball->dx;
ball->y += ball->dy;
if(ball->x-ball->radius<=0||ball->x+ball->radius>=SCREEN_W)

ball->dx = -ball->dx;
if(ball->y-ball->radius<=0||ball->y+ball->radius>=SCREEN_H)

ball->dy = -ball->dy;

}

98 / 126

Animation

Animation — Ball
Comment

The update_ball_position() function calculates the coordinates of the
ball centre in the next frame of the animation. It uses data from the
structure passed by its parameter. Additionally the function checks if
the ball has hit any of the screen edges. If so, the ball has to bounce off
the edge, which means that it has to change the direction of its movement.
To this end, the following rules are applied:

If the ball has a contact with any of the horizontal edges, the sign
of the second component of the velocity vector will be reversed.
If the ball has a contact with any of the vertical edges, the sign of
the first component of the velocity vector will be reversed.

99 / 126

Animation

Animation — Ball

void animate_ball(struct ball_data ball, BITMAP *pages[NUMBER_OF_PAGES])
{

int page_number = 0;
clear_keybuf();
while(key[KEY_ESC]==0&&key[KEY_Q]==0) {

BITMAP *active_page = pages[page_number];
draw_ball(active_page,ball);
if(show_video_bitmap(active_page))

return;
update_ball_position(&ball);
page_number = (page_number+1)%NUMBER_OF_PAGES;

}
}

100 / 126

Animation

Animation — Ball
Comment

The animate_ball() function and the animate_rectangle() function
from the previous program are very similar. The while loops inside
these functions stop for the same reason. The difference is, that the
animate_ball() function draws, with the help of the draw_ball() func-
tion, a circle instead of a rectangle. Moreover, the location of the circle
in the next frame of the animation is calculated with the use of the
update_ball_position() function.

101 / 126

Animation

Animation — Ball

int main(void)
{

if(initialize(GFX_AUTODETECT_FULLSCREEN,WIDTH,HEIGHT)<0)
return -1;

if(create_pages_array(pages))
return -1;

set_ball(&ball);
animate_ball(ball,pages);
destroy_pages_array(pages);
allegro_exit();
return 0;

}
END_OF_MAIN()

102 / 126

Animation

Animation — Ball
Comment

Inside the main() function the functions defined earlier in the program
are invoked. Before the function that creates the animation is called, the
set_ball() function is invoked. It initializes the structure that stores
information about the circle that represents the ball in the program.

103 / 126

Simple Textures

Simple Textures

A pattern that covers a surface is called a texture in Computer Graph-
ics. It turns out that complex, intriguing textures can be created with
the help of simple mathematical expressions. The next program demon-
strates some of these textures.

104 / 126

Simple Textures

Simple Textures

#include<allegro.h>
#include<allegro/keyboard.h>

#define WIDTH 1366
#define HEIGHT 768

105 / 126

Simple Textures

Simple Textures
Comment

The program starts with preprocessor directives that include header files
necessary for using the basic functions of the Allegro library and the
keyboard support. They are followed by definitions of constants that
define the computer display resolution.

106 / 126

Simple Textures

Simple Textures

int initialize(int card, int width, int height)
{

if(allegro_init()) {
allegro_message("allegro_init(): %s\n",allegro_error);
return -1;

}
if(install_keyboard()) {

allegro_message("install_keyboard(): %s\n",allegro_error);
allegro_exit();
return -1;

}
set_color_depth(32);
if(set_gfx_mode(card,width,height,0,0)) {

allegro_message("set_gfx_mode(): %s\n",allegro_error);
allegro_exit();
return -1;

}
return 0;

}

107 / 126

Simple Textures

Simple Textures
Comment

The definition of the initialize() function is the same as in the other
presented programs that don’t use the PRNG or the animation support.

108 / 126

Simple Textures

Simple Textures

void wait_for_any_key(void)
{

clear_keybuf();
while(!keypressed())

;
}

109 / 126

Simple Textures

Simple Textures
Comment

The wait_for_key() function has been described in the part of the
lecture where the sine wave plotting program has been discussed.

110 / 126

Simple Textures

Simple Textures

void draw_text(BITMAP *bitmap, FONT *font, const char *message)
{

int red = makecol(255,0,0);
textout_centre_ex(bitmap,font,message,SCREEN_W>>1,SCREEN_H>>1,red,-1);

}

111 / 126

Simple Textures

Simple Textures
Comment

The draw_text() function displays in the middle of the screen a message
in red. The content of this message is passed to the function by its last
parameter.

112 / 126

Simple Textures

Simple Textures

void or_draw(BITMAP* bitmap)
{

int x,y;
for(x=0; x<SCREEN_W; x++)

for(y=0; y<SCREEN_H; y++) {
int expression = (x|y)&255;
int colour = makecol(expression,expression,expression);
putpixel(bitmap,x,y,colour);

}
}

113 / 126

Simple Textures

Simple Textures
Comment

The or_draw() function draws on the screen a grayscale image consist-
ing of recurring “tiles”. Colours of the majority of the image pixels are
bright. It is a consequence of the way the colour codes of these pix-
els are calculated. In this operation the bitwise or operator — | — is
used. Its arguments are coordinates of a pixel in the image. The result
is scaled-down and its final value ranges from 0 to 255. The scaling can
be performed with the help of the remainder operator, but to speed up
the calculations the bitwise and operator — & — is used instead. The
second argument of this operator is the number 255. The scaled-down
result is then used as the value of arguments passed to the makecol()
function that returns the code of the pixel colour.

114 / 126

Simple Textures

Simple Textures

void and_draw(BITMAP* bitmap)
{

int x,y;
for(x=0; x<SCREEN_W; x++)

for(y=0; y<SCREEN_H; y++) {
int expression = (x&y)&255;
int colour = makecol(expression,expression,expression);
putpixel(bitmap,x,y,colour);

}
}

115 / 126

Simple Textures

Simple Textures
Comment

The and_draw() function draws an image similar to the one created by
the or_draw() function, but instead of the bitwise or it uses the bitwise
and operator to calculate the colour of each pixel. The resulting image
is darker then the previous one.

116 / 126

Simple Textures

Simple Textures

void xor_draw(BITMAP* bitmap)
{

int x,y;
for(x=0; x<SCREEN_W; x++)

for(y=0; y<SCREEN_H; y++) {
int expression = (x^y)&255;
int colour = makecol(expression,expression,expression);
putpixel(bitmap,x,y,colour);

}
}

117 / 126

Simple Textures

Simple Textures
Comment

The xor_draw() function uses the bitwise exclusive or operator — ^ —
to calculate the colour of each pixel. The resulting image is brighter than
the one created with the use of the bitwise and operator, but darker than
the one created with the use of bitwise or operator.

118 / 126

Simple Textures

Simple Textures

void multiply_draw(BITMAP* bitmap)
{

int x,y;
for(x=0; x<SCREEN_W; x++)

for(y=0; y<SCREEN_H; y++) {
int expression = (x*y)&255;
int colour = makecol(expression,expression,expression);
putpixel(bitmap,x,y,colour);

}
}

119 / 126

Simple Textures

Simple Textures
Comment

The multiply_draw() function uses the multiplication operator to cal-
culate the colour of each pixel on the screen. The resulting image is
different than those generated by previously described functions. It is
called the moiré pattern.

120 / 126

Simple Textures

Simple Textures

void draw_sierpinski_triangle(BITMAP* bitmap)
{

int x,y;
int white = makecol(255,255,255);
for(x=0; x<SCREEN_W; x++)

for(y=0; y<SCREEN_H; y++) {
if((x&y)==0)

putpixel(bitmap,x,y,white);
}

}

121 / 126

Simple Textures

Simple Textures
Comment

The last function defined in the program (aside from the main() function)
draws a fractal image called a Sierpiński Triangle. Its name originates
from the surname of its discoverer, a Polish mathematician Wacław Sier-
piński. There are many algorithms for drawing this fractal, but the one
applied in this function is one of the simplest. If the output of bitwise
and operator, which arguments are a pixel coordinates, is zero then the
pixel colour will be set to white. Otherwise it will stay black. This rule
is applied to all pixels on the screen.

122 / 126

Simple Textures

Simple Textures

int main(void)
{

if(initialize(GFX_AUTODETECT_FULLSCREEN,WIDTH,HEIGHT))
return -1;

or_draw(screen);
draw_text(screen,font,"or");
wait_for_any_key();
and_draw(screen);
draw_text(screen,font,"and");
wait_for_any_key();
xor_draw(screen);
draw_text(screen,font,"xor");
wait_for_any_key();
multiply_draw(screen);
draw_text(screen,font,"*");
wait_for_any_key();
clear(screen);
draw_sierpinski_triangle(screen);
wait_for_any_key();
allegro_exit();
return 0;

}
END_OF_MAIN() 123 / 126

Simple Textures

Simple Textures
Comment

In the main() function all the other functions defined in the program
are called. After each of them exits (with the exception of the last one)
the name or the symbol of the operator used for drawing the image is
displayed on the screen with the help of the draw_text() function. Then
the program waits until the user presses any key. Before the function that
draws the Sierpiński Triangle is invoked the screen is cleared with the use
of the clear() function. After the fractal is drawn the program once
again waits for the user to press any key. When the user does it the
Allegro library is finalized and the program ends.

124 / 126

The End

Questions

?

125 / 126

The End

The End

Thank You for Your Attention!

126 / 126

	Introduction
	Fractals
	Calculation of Pi
	Sine Wave
	Animation
	Simple Textures

