
.

......

Fundamentals of Programming 1
Terminal Handling — curses Library

Arkadiusz Chrobot

Department of Computer Science

January 22, 2020

1 / 66

Outline

...1 Introduction

...2 Initialization and Finalization

...3 Windows Handling

...4 Displaying Text

...5 Keyboard Handling

...6 Colours

...7 Examples

2 / 66

Introduction

Introduction
The C language was created for the Unix operating system, which orig-
inally interacted with the user only via terminals consisting of the key-
board and the computer monitor (the video display). The monitors were
using a text mode to convey information to the user. In the text mode
only characters can be displayed. The resolution of the monitor’s screen
in such a mode is expressed in the number of characters that can be
displayed simultaneously on the screen. The most commonly used reso-
lution was the 80×25, which means 80 columns and 25 rows. In each row
and column only one character can be displayed. Some of the monitors
allowed using colors for the characters and their background. Contem-
porary computers display information on the screen in a graphics mode,
but the text mode is still available. In some cases working with the text
mode is more efficient than working with the graphics mode. Some fea-
tures offered by the graphics mode applications, like the Graphical User
Interface (GUI) can be also, to some extend, adapted to the text mode
based programs. The curses library has been created for this purpose.

3 / 66

Introduction

The curses Library

There are at least three versions of the curses library. The ncurses (new
curses) library is available for Unix compatible operating systems, like
Linux. The pdcurses library (public domain curses) is for the MS Win-
dows operating systems family. The original curses library is created
for the Unix system. Modern versions of this library support using a
mouse device and elements known from the GUI, that are in the Unix
terminology called widgets. An addition to the library that contains
a set of widgets is called CDK (Curses Development Kit). In the lec-
ture only the basics features of the curses library and its derivatives
are presented. A description of more advanced elements of the libraries
can be found, for example, in this website: http://tldp.org/HOWTO/
NCURSES-Programming-HOWTO/.

4 / 66

http://tldp.org/HOWTO/NCURSES-Programming-HOWTO/
http://tldp.org/HOWTO/NCURSES-Programming-HOWTO/

Initialization and Finalization

Initialization and Finalization

To use the curses library the program has to include the curses.h header
file. The primary function for initializing the library is the initscr().
It takes no arguments and returns an address (a pointer to) a structure
of the window type. This value is often ignored, but it is worth checking,
if it’s not null. If it is, then the library initialization has not been
successful. Other functions associated with the library initialization are
described in the next slide.

5 / 66

Initialization and Finalization

Initialization an Finalization
echo()/noecho() Both functions take no argument and return an int value. The

former enables displaying on the screen characters typed on the
keyboard, the latter has the reverse effect.

keypad() The function enables support for additional keys on the keyboard,
like arrow keys and function keys. It returns an int value and
takes two arguments — a pointer to the window structure (ex-
plained latter) and a bool value, that switches the support on/off.

halfdelay() The function enables a keyboard handling mode in which each
typed character is available to the program immediately. More-
over, the function takes as an argument a timeout value of the
int type. It is the time expressed in tenths of a second when the
keyboard reading functions are waiting for a user to press a key.
The function returns an int value.

curs_set() The function sets the size and shape of the cursor. It takes an int
value as an argument. If it is 0 then the cursor will be invisible.
If the argument is 1 then the cursor will be of the size of the
underscore character. Finally, if the argument is 2 then the cursor
will be a block occupying a single character place on the screen.

All functions from the table return values expressed by two constants:
ok and err. The former indicates that the function has successfully
completed its task, the latter that an exception has occurred.

6 / 66

Initialization and Finalization

Initialization and Finalization

The endwin() function finalizes the use of the curses library. It takes no
arguments and returns the ok or err constants to indicate the status of
finalizing the library.

7 / 66

Windows Handling

Main Window

After the curses library is initialized with the use of the initscr() func-
tion, the stdscr global variable becomes available. The variable is a
pointer to a structure of the window type associated with the screen.
The type of the structure is defined in the library. Variables of this type
describe properties of a single window. The stdscr variable points to a
structure that describes the state of the main window, that covers the
whole screen. Some of the library functions allow displaying characters,
moving the cursor and many other operations concerning the main win-
dow. The starting point of the main window is the top left corner of the
screen with (0, 0) coordinates. The vertical coordinates grows “down-
wards” and the horizontal in the “left to right” fashion. The number of
rows in determined by the lines constant and the number of columns is
determined by the cols constant.

8 / 66

Windows Handling

New Windows

The newwin() function creates new windows, which surfaces should be
smaller or equal the size of the main window, and which don’t “stick out”
outside this window. The new windows mustn’t overlap. If a overlapping
windows are needed then an additional library named panel should be
used. However, this library is not be discussed in this lecture. The
newwin() function takes four arguments. The first one is the number
of rows in the new window, the second one is the number of columns,
the third and forth are coordinates of the point in the main window
where the top left corner of the new window should be placed. Please
notice, that all the functions of curses library expect the coordinates to
be passed to them in a reversed order – first the column number, then
the row number. The newwin() function returns the address of a window
structure associated with the new window or null, if it fails to create
the window.

9 / 66

Windows Handling

Deleting a Window

The main window is removed by the endwin() function. The win-
dows created with the use of the newwin() function are deleted by the
delwin() function. It takes as an argument a pointer to the structure of
the window type associated with the window to be deleted and it returns
a value of the int type, which is interpreted in the same way as the
value returned by other functions from the curses library (the err and
ok constants).

10 / 66

Windows Handling

Window Handling
With the help of the mvwin() function a window can be moved rela-
tively to the main window. The function takes three arguments – a
pointer to the structure of the window type associated with the window
to be moved, and the new coordinates (y, x) of the top left corner of the
window. Windows can be cleared with the use of the erase() and the
werase() functions. The former clears the main window and doesn’t
take any arguments the latter clears a window associated with a struc-
ture pointed by the argument of the function. In the curses library
terminology, a window is just an area of the screen and it’s invisible.
The simplest way of making it visible is to draw its edges with the use of
box() function, which takes three arguments – a pointer to the structure
of the window type associated with the window, a character which is used
for drawing the horizontal edges of the window and a character that is
used for drawing the vertical edges of the window. Those characters are
specified by constants which names start with the acs_ prefix. However,
if a zero is passed as the two last arguments of the function a default
characters will be applied. 11 / 66

Windows Handling

Refreshing a Window

With every window in the curses library is associated an area in the
memory, which is called a virtual window. Any operation that changes
the state of the window, changes the virtual window first. To make the
changes visible on the screen, the window content has to be refreshed,
or in other words, the changes have to be copied form the virtual win-
dow to the window on the screen. The refresh() function refreshes
the main window, while the wrefresh() function refreshes any win-
dow that structure is pointed by the argument of the function. If the
number of windows that requires refreshing is significant, it is better to
call the wnoutrefresh() function for each of them and then invoke the
doupdate() function only once. The former takes a pointer to a struc-
ture associated with the refreshed window as its argument and the latter
takes no arguments. Each described function returns ok on success or
err on failure.

12 / 66

Windows Handling

Cursor Position

The move() function changes the cursor position in the main window.
I takes new coordinates of the cursor as its arguments. The wmove()
also changes position of the cursor but inside a specific window. It takes
three arguments – a pointer to the structure associated with the window
and the coordinates of the cursor inside the window. Those coordinates
are relative to the top left corner of the window. Both function return
one of the two constants: ok or err. To get the current coordinates of
the cursor the getyx macro can be used. It takes three arguments – the
pointer to the structure associated with a window, and two variables of
the int type. The coordinates are store in the variables. If the macro is
unsuccessful in obtaining them it stores -1 in its arguments.

13 / 66

Displaying Text

Displaying Text

The curses library provides some functions for displaying a single char-
acter or a string of characters on the screen. Aside from performing a
similar operations to their counterparts declared in the stdio.h header
file, some of them allow giving a specific attributes to the displayed char-
acters like making them bold or printing them in italics. Each function
from curses library that displays a text returns the ok on success or err
in case of failure.

14 / 66

Displaying Text

Displaying Single Characters

Several functions in the curses library are similar to the putchar() func-
tion from the standard C language library. The simplest ones are the
addch() and waddch(). The former takes only one argument — the
character that should be displayed in the main window. The character
is actually displayed after the main window is refreshed and in the place
on the screen where the cursor is located. The latter function performs
a similar operation but in a window. An address of the structure asso-
ciated with the window is passed to the function as its first argument.
The second argument is the character. Both function allow specifying
attributes of the character with the use of the bitwise or operator — |.
The first argument of the operator is the character to be displayed and
the second one is a constant specifying the attribute. There are many
such constants defined in the cuses library, for example: a_bold — the
character will be bold, a_underline — the character will be underlined.

15 / 66

Displaying Text

Displaying Single Characters

The mvaddch() and mvwaddch() functions perform similar operations to
the functions described in the previous slide. They however take two
additional arguments. The former function takes as a first two argu-
ments the coordinates of the place in the main window where the char-
acter should be displayed. The latter function aside from the coordinates
takes also, as the first argument, the structure associated with a window
where the character should be displayed. All functions that display sin-
gle characters can also display a special characters defined in the curses
library by constants which names start with the acs_ prefix, for exam-
ple: acs_bullet and acs_larrow. Those constants are also accepted as
arguments by functions that display strings.

16 / 66

Displaying Text

Displaying Strings
The curses library provides counterparts of the puts() function:

addstr() The function takes a string as its argument. The string is displayed in
the main window starting from the place where the cursor currently is
and after the window is refreshed.

addnstr() Performs similar operation to the previous function, but takes addi-
tional argument which is the maximum number of characters in the
string that can be displayed.

waddstr() Similar to the addstr() function but takes as the 1st argument an
address of a structure associated with window where the string should
be displayed.

waddnstr() Similar to the waddstr() function but takes an additional, last argu-
ment which is the number of characters in the string to be displayed.

mvaddstr() Similar to the addstr() function, but takes as its two first arguments
the coordinates of the place in the main window from which the string
should be displayed.

mvaddnstr() Similar to the mvaddstr() function but takes an additional forth ar-
gument that limits the number of character of the string that should
be displayed.

mvwaddstr() Similar to the mvaddstr() function, but takes as an argument an ad-
dress of a structure associated with a window where the string should
be displayed.

mvwaddnstr() Similar to mvwaddstr() function, but as the last argument takes the
maximum number of characters in the string to be displayed. 17 / 66

Displaying Text

Displaying Strings

The curses library also provides counterparts of the printf() function:

printw() The function takes the same arguments as printf() and displays their
values int the main window after it is refreshed and starting from the
current position of cursor.

wprintw() Similar to printw() but takes as the first argument a pointer to a
structure associated with a window where the values should be dis-
played.

mvprintw() Similar to printw() but as the two first arguments takes the coordi-
nates of the place in the main window, from where the string should
be displayed.

mvwprintw() Similar to the mvprintw() but takes as the first argument the pointer
to a structure associated with a window where the string should be
displayed.

18 / 66

Displaying Text

Attributes of Characters

The way of specifying attributes for single characters is explained in the
previous slides. It can also be applied to describe attributes of strings of
characters displayed by the addstr() and similar functions. However,
the printw() and derivative functions require using separate functions
for managing attributes. In case of the main window the attrset(),
attron() and attroff() functions can be applied. All those functions
return the ok constant on success or err on failure. Each of them takes
also an int value as an argument. The value is usually defined as a
constant and it is an attribute. The attron() function switches on an
attribute. If it is invoked several times with different attributes, then all
those attributes will be switched on. The attrset() function switches
on a new attribute, but also switches off all attributes that have been
already turned on. The attroff() function just switches off an attribute
passed to it as an argument.

19 / 66

Displaying Text

Attributes of Characters

There are counterparts of functions described in previous slide, which
control attributes in any window. Their names start with the w letter
and they take two arguments — a pointer to a structure associated with a
window where the attributes have to be changed and an attribute defined
usually by an appropriate constant.

20 / 66

Keyboard Handling

Keyboard Handling

The curses library provides also functions for controlling and reading
the keyboard input. The functions can read single characters or whole
strings. The behaviour of those functions depends on the initialization of
the keyboard handling by the curses library. For example if the noecho()
function is called then the functions reading the input won’t display
the typed characters on the screen. However, if the echo() function is
invoked, then those functions will print the input on the screen, but only
after a window where it should be displayed is refreshed.

21 / 66

Keyboard Handling

Reading Single Characters
Some versions of the curses library switch on by default a mode where
the characters associated with pressed keys are available immediately to
the program. Other apply the default mode used also by the functions
from the standard C library — each key must be confirmed by the Enter
key. The former mode can be switched on by invoking the cbreak()
function, which takes no arguments and returns ok on success or err on
failure. The standard mode of the keyboard handling can be switched on
with the use of the nocbrake() function, which is invoked in the same
way as the cbreak(). The nodelay() function can switch on or off the
nonblocking mode of handling the keyboard. In nonblocking mode the
program doesn’t wait until the user presses a key. The function takes two
arguments — a pointer to a structure associated with a window where
the keyboard input should be printed and a value of the bool type,
which specifies if the mode should be switched on of off. On success
the nodelay() function returns ok. On failure it returns err. Another
function that has an impact on the keyboard handling is the halfdealy()
which is described in previous slides. 22 / 66

Keyboard Handling

Reading Single Characters

Single characters can be read from the keyboard with the use of the
getch() function. It returns the ascii value of pressed key as an int
value and takes no arguments. If the echo is switched on, the function
also prints the read character in the main window at the current position
of the cursor. If the nonblocking mode is turned on and the user hasn’t
pressed any key, then the function returns the err value. The wgetch()
function is similar to the getch() function, but takes as an argument
a pointer to a structure associated with a window where the character
should be displayed if the echo is enabled. The mvgetch() function
is also similar to getch(), but takes as arguments coordinates of the
place in the main window, where the character should be displayed. The
mvwgetch() function is similar to the mvgetch() function but as its first
argument takes a pointer to a structure associated with a window where
the character should be displayed if the echo is enabled.

23 / 66

Keyboard Handling

Reading Single Characters

For the values of the special keys like function keys and arrow keys are
defined constants in the curses library. For example the key_left con-
stant describes the value associated with the key that moves the cursor
one position to the left. There is also a macro named key_f which takes
as a argument the number of a function key and expands to its value.
Those constants and the macro should be used only if handling the spe-
cial keys is enabled.

24 / 66

Keyboard Handling

Reading a String
The curses library provides also the counterparts of the gets() function:

getstr() The function reads a string and stores it in an array of characters
passed to the function as its argument. Using the function can be dan-
gerous because getstr() doesn’t limit the number of entered characters.
It’s better to avoid using it.

getnstr() Similar to the getstr() function but takes an additional argument,
which is the maximum number of characters that can be read from
the keyboard. It’s a safer replacement of the getstr() function.

wgetstr() Similar to the getstr() function but prints the string from keyboard
in a window which structure is pointed by its first argument. It’s better
to avoid using it.

wgetnstr() The safer implementation of the wgetstr() function. It takes as the
last argument the maximum number of characters that can be read
from the keyboard.

mvgetstr() Similar to the getstr() function. It takes as its two first arguments
the coordinates of a place in the main window from which it should
start printing the string read from the keyboard. Avoid using it.

mvwgetstr() Similar to the mvgetstr() function, but takes as the first argument
the pointer to structure associated with window where the string read
from the keyboard should be printed. Also avoid using it.

25 / 66

Keyboard Handling

Reading a String

mvgetnstr() The safer version of the mvgetstr() function. The maximum number
of characters that can be read from the keyboard is passed to it as its
last argument.

mvwgetnstr() The safer version of the mvwgetstr() function. The maximum number
of characters that can be read from the keyboard is passed to it as its
last argument.

All functions described in this and previous slide return ok on success
and err in case of failure.

26 / 66

Keyboard Handling

Reading a String

The curses library provides also the counterparts of the scanf() func-
tion:

scanw() The function takes the same arguments as the scanf() function. It
prints the keyboard input in main window, provided the echo is en-
abled.

wscanw() Similar to the scanw() function, but it takes as its first argument a
pointer to the structure associated with a window where the keyboard
input should be displayed, provided the echo is enabled.

mvscanw() Similar to the scanw() function, but as its two first arguments takes a
coordinates of a place in the main window from which it should start
printing the keyboard input, provided the echo is enabled.

mvwscanw() Similar to the mvscanw() function, but takes as the first argument a
pointer to a structure associated with a window in which the keyboard
input should be displayed, provided the echo is enabled.

All the functions described in the table return ok on success or err on
failure.

27 / 66

Colours

Colours Handling
Colours are attributes of displayed characters. Not all terminals allow
using them. To check if the colours are available in a specific terminal
the has_colors() function can be used. It returns a bool value. If
it is true then the terminal can display colours. After checking the
availability of colours the start_color() function should be invoked.
It takes no arguments and returns ok if it is able to initialize colours
handling. Otherwise it returns err. The number of available colours
is given by the colors constant. However, the curses library doesn’t
allow using a single colour. Pairs of colors have to be configured before
colours can be applied. The first colour in the pair is the colour of a
character, the second is the colour of the character’s background. The
maximum number of colour pairs is given by the color_pairs constant.
The init_pair() function configures a single pair of colours. It takes
three arguments of the short int type. The first is the number of the
pair and it should be greater than zero. The next two are the number of
the character colour and the number of its background colour.

28 / 66

Colours

Colours Handling

The init_pair() function returns ok on success or err on failure. The
color_pair macro allows the programmer to chose a pair of colors. It
takes as its argument the number of the pair and returns the colours
in the pair as an attribute that can be assigned to displayed characters
with, for example, the use of the attron() function. The table contains
the list of constants that define colours and their description.

color_black black colour
color_red red colour

color_green green colour
color_yellow yellow colour

color_blue blue colour
color_magenta crimson-like colour

color_cyan greenish-blue colour
color_white white colour

29 / 66

Examples

Examples

The source code of all presented examples is available on the course web
page. They are prepared to be used with the Code::Blocks programming
environment. All of them, except for one are also presented in full in
the slides. To preserver the legibility of the source code of programs the
exception handling is reduced to the necessary minimum — if a function
fails to complete its task then the program aborts. The better way of
handling an exception would be to reset the terminal setting to their
original values and then abort the program. The programs from the web
page are configured to be used with the ncurses library. To make them
work with the pdcurses library some modifications are necessary.

30 / 66

Examples

First Example — A Simple Program

#include<curses.h>
#include<locale.h>

int main(void)
{

if(setlocale(LC_ALL,"")==NULL)
return -1;

if(initscr()==NULL)
return -1;

printw("Hello, World!\n");
if(refresh()==ERR)

return -1;
getch();
if(endwin()==ERR)

return -1;
return 0;

}
31 / 66

Examples

Comment to the First Example

The program initializes the curses library, prints the famous “Hello,
World!” sentence and waits until the user presses any key, then it fi-
nalizes the curses library and exits. The “Hello, World!” sentence is
displayed after the main window is updated with the use of refresh()
function. Waiting for the user to press any key is accomplished with
the use of the getch() function. The setlocale() function used at the
beginning of the program is declared in the locale.h header file and
is used for setting the localization of the program. Since the program
displays messages in English the function usage is optional.

32 / 66

Examples

Second Example — Reading Keys

#include<curses.h>
#include<locale.h>

void print_keys(void)
{

int key;
do {

key = getch();
printw("The %c key was pressed.\n",key);
refresh();

} while(key!='q');
}

33 / 66

Examples

Second Example — Reading Keys

int main(void)
{

if(setlocale(LC_ALL,"")==NULL)
return -1;

if(initscr()==NULL)
return -1;

if(noecho()==ERR)
return -1;

print_keys();
if(endwin()==ERR)

return -1;
return 0;

}

34 / 66

Examples

Second Example — a Comment

In the main() function the curses library is initialized and the echo is
disabled with the use of the noecho() function. This means that the
getch() function is not displaying the characters associated with the
keys it reads in the main window. The aforementioned function is invoked
inside the do…while loop in the print_keys() function. The loop ter-
minates after the user presses the q key. The information about pressed
keys is displayed in the main window with the use of the printw() func-
tion. Please notice, that pressing some of the keys, like for example the
arrow keys causes the program to print more than one character on the
screen.

35 / 66

Examples

Third Example — Moving the Cursor
#include<curses.h>

void move_cursor(WINDOW *window)
{

int x=0,y=0;

getyx(window,y,x);
int key = 0;
do {

key = getch();
switch(key) {

case KEY_LEFT:
x=(x+(COLS-1))%COLS;
move(y,x);
break;

case KEY_RIGHT:
x=(x+1)%COLS; 36 / 66

Examples

Third Example — Moving the Cursor

move(y,x);
break;

case KEY_UP:
y=(y+(LINES-1))%LINES;
move(y,x);
break;

case KEY_DOWN:
y=(y+1)%LINES;
move(y,x);
break;

case KEY_F(3):
getyx(window,y,x);
printw("x: %d, y: %d",x,y);
break;

37 / 66

Examples

Third Example — Moving the Cursor

case KEY_F(2):
y=x=0;
erase();
break;

}
refresh();

} while(key!='q');
}

38 / 66

Examples

Third Example — Moving the Cursor

int main(void)
{

if(initscr()==NULL)
return -1;

if(keypad(stdscr,TRUE)==ERR)
return -1;

move_cursor(stdscr);
if(endwin()==ERR)

return -1;
return 0;

}

39 / 66

Examples

Third Example — a Comment

The program allows the user to move the cursor around the whole screen
with the use of the arrow keys. The curses library is initialized and fi-
nalized in the main() function. Also the keypad() function is invoked
there. It initializes the handling of special keys by appropriate functions.
The movement of the cursor is programmed in the move_cursor() func-
tion which takes as an argument the pointer to the structure associated
with the main window. Inside the function, the getyx macro is used for
getting the coordinates of the cursor current position. Those coordinates
are stored in the x and y variables. Then the key variable is declared
and initialized. The variable is used for storing a code of a pressed key
returned by the getch() function. The latter function is invoked in the
do…while loop. That code is recognized inside the switch statement.
If its value is equal to the value of one of the key_right, key_left,
key_up or key_down constants then the cursor is moved accordingly by
one place.

40 / 66

Examples

Third Example — a Comment

The movement consists in calculating coordinates of a new position of
the cursor and invoking the move() function with those coordinates as
its arguments. The modular arithmetics is used for calculating the coor-
dinates of the next position of the cursor, so if the cursor “passes” one of
the edges of the screen, it will appear on the other side of it. If the user
presses the f2 key, then the program will display coordinates of the pre-
vious position of the cursor. The coordinates are obtained with the use
of the getyx macro and displayed with the use of the printw() function.
Pressing the f3 key causes the program to clear the main window by in-
voking the erase() function and to zero out the variables that store the
coordinates of the cursor. Outside the switch statement but inside the
do…while loop the refresh() function is called for updating the content
of the main window. The loop terminates after the user presses the q
key.

41 / 66

Examples

Forth Example — Windows

#include<curses.h>
#include<locale.h>

void move_window(WINDOW *window, int x, int y)
{

int key=0;
do {

key = getch();
if(key==' ') {

x=(x+1)%10;
y=(y+1)%10;
erase();
refresh();
if(mvwin(window,y,x)==ERR)

printw("Window out of the allowed area!\n");
if(wrefresh(window)==ERR)

printw("Window update failure!\n");
}

} while(key!='q');
}

42 / 66

Examples

Forth Example — Windows
int main(void)
{

if(setlocale(LC_ALL,"")==NULL)
return -1;

if(initscr()==NULL)
return -1;

if(curs_set(0)==ERR)
return -1;

WINDOW *window = newwin(5,10,0,0);
if(window==NULL)

return -1;
if(box(window,0,0)==ERR)

return -1;
if(refresh()==ERR)

return -1;
if(wrefresh(window)==ERR)

return -1;
move_window(window,0,0);
if(delwin(window)==ERR)

return -1;
if(endwin()==ERR)

return -1;
return 0;

} 43 / 66

Examples

Forth Example — a Comment

The program localization and initialization of the curses library is per-
formed in the main() function. Then the cursor is made invisible with
the use of the curs_set() function. Next, a window of the size 5× 10 is
created in the top left corner of the screen with the use of the newwin()
function. Its edges are drawn with the use of the box() function. Then
the program updates the content of the main window and the newly cre-
ated window. Next, the move_window() function is invoked. The pointer
to the structure associated with the newly created window is passed to
the function, together with the coordinates of the left top corner of the
window. Inside the function, in the do…while loop the ascii code of
a character associated with the pressed key is read with the use of the
getch() function. If it is a space then coordinates of the new position of
the top left corner of the window are calculated. Next the main window
is cleared and the mvwin() function is invoked, that moves the newly
created window.

44 / 66

Examples

Forth Example — a Comment

The program checks if the function completed its task correctly, although
the terminal would have to have a very small resolution for making the
window impossible to move. The window is visible in the new position
after refreshing its content with the wrefresh() function. The result of
invoking the function is also checked. The loop terminates after the user
presses the q key. Before finalizing the curses library the program invokes
the delwin() function to delete the window created by the newwin()
function.

45 / 66

Examples

Fifth Example — Colours

#include<curses.h>
#include<locale.h>

void init_color_pairs(void)
{

short int i,j, pair_counter=1;
for(i=COLOR_BLACK;i<COLOR_WHITE;i++)

for(j=COLOR_BLACK;j<COLOR_WHITE;j++) {
if(init_pair(pair_counter,i,j)==ERR) {

printw("Failed to initialize the %d pair of colours!\n",
pair_counter);
refresh();

}
pair_counter++;

}
}

46 / 66

Examples

Fifth Example — Colours

void test_colors(void)
{

short int i;
for(i=1; i<COLOR_PAIRS; i++) {

attron(COLOR_PAIR(i));
printw("Test of the %d pair of colours.\n",i);
refresh();
attroff(COLOR_PAIR(i));
if(i%24==0) {

getch();
erase();

}
}

}

47 / 66

Examples

Fifth Example — Colours

int main(void)
{

if(setlocale(LC_ALL,"")==NULL)
return -1;

if(initscr()==NULL)
return -1;

if(curs_set(0)==ERR)
return -1;

if(!has_colors())
return -1;

if(start_color()==ERR)
return -1;

init_color_pairs();
printw("There are %d colours and %d colours pairs.\n",COLORS,COLOR_PAIRS);
refresh();
getch();
erase();
test_colors();
getch();
if(endwin()==ERR)

return -1;
return 0;

} 48 / 66

Examples

Fifth Example — a Comment

The program localization and initialization of the curses library is per-
formed in the main() function. Also the cursor is made invisible. Next,
the program checks if colours are available in the terminal with the use of
the has_colors() function. If so, then the colour handling is initialized
with the use of the start_color() function and then pairs of colours are
configured by the init_color_pairs() function which is defined in the
program. It configures all possible colour pairs with the use of nested
for loops. After the function completes its task the program informs
the user about the number of available colours and pairs of colors and
then waits until the user presses any key. The waiting is performed with
the use of the getch() function. If the user presses a key then the main
window is cleared and the test_colors() function is called.

49 / 66

Examples

Fifth Example — a Comment

Inside the for loop the test_colors() function switches on a pair of
colours for a displayed text, with the use of attron() function and next
print the text with the use of printw() and updates the contents of
the main window by invoking the refresh() function. Next, it switches
off the pair of colours with the use of the attroff() function. The if
statement inside the loop causes the program to stop and wait for the
user to press any key after each 24 printed lines. If the user presses
the key, the program clears the main window. After the test_colors()
function finishes the program finalizes the curses library and also exits.

50 / 66

Examples

Sixth Example — the Game of Life

The next example is a modified version of the game of life program that
has been presented in the lecture on the multidimensional arrays. In this
slides only the modified parts of the program source code are presented.
The full version of this program is available on the course website. The
only part of code that is changed and not presented here is the beginning,
where the stdio.h header file is replaced by the curses.h header file.

51 / 66

Examples

Sixth Example — the Game of Life

char *error_msg[] = {
"OK",
"initscr() error",
"noecho() error",
"halfdealy() error",
"start_color() error",
"init_pair() error",
"curs_set() error",
"endwin() error"

};

52 / 66

Examples

Sixth Example — a Comment

The error_msg array contains messages that describe exceptions caused
by curses library functions.

53 / 66

Examples

Sixth Example — the Game of Life
int initiate(void)
{

if(!initscr())
return -1;

if(noecho()==ERR)
return -2;

if(halfdelay(2)==ERR)
return -3;

if(has_colors()!=FALSE) {
if(start_color()==ERR)

return -4;
if(init_pair(1,COLOR_GREEN,COLOR_BLACK)==ERR ||

init_pair(2,COLOR_BLACK,COLOR_BLACK)==ERR)
return -5;

}
if(curs_set(0)==ERR)

return -6;
return 0;

} 54 / 66

Examples

Sixth Example — a Comment

The initiate() function is responsible for initializing the curses library.
The function also switches off the echo and check colours availability. If
there are available, then the color handling is enabled and two pairs of
colours are initialized (green characters on a black background and black
characters on a black background). The visibility of the cursor is turned
off and the terminal is switched to a mode where the keyboard reading
functions wait 0.2 seconds for the user to press any key. This mode is
enabled with the use of the halfdelay() function.

55 / 66

Examples

Sixth Example — the Game of Life

WINDOW *create_board_window(void)
{

int middle_y = LINES/2;
int middle_x = COLS/2;
int half_board = SIZE/2;
int start_x = middle_x - SIZE;
int start_y = middle_y - half_board;
return newwin(SIZE,2*SIZE,start_y,start_x);

}

56 / 66

Examples

Sixth Example — a Comment

The create_board_window() function crates a window in the main win-
dow where the state of the game is displayed. First the coordinates of
the middle point of the main window are calculated and stored in the
middle_x and middle_y variables. Next, the half of the length of the
board edge is calculated and stored in the half_board variable. Then,
the coordinates of the top left corner of the board window are calculated
and stored in the start_x and start_y variables. The width of the win-
dow is twice as big as the height, to make the board look on the screen
as a square. It is necessary because the width of the columns is twice as
small as the height of the rows. The create_board_window() function
returns the address of a structure associated with the board window.

57 / 66

Examples

Sixth Example — the Game of Life

void print_board(unsigned char board[SIZE][SIZE], WINDOW *board_window)
{

unsigned int i,j;

for(i=0; i<SIZE; i++)
for(j=0; j<SIZE; j++)

if(board[i][j]) {
(void)wattron(board_window,COLOR_PAIR(1));
(void)mvwaddch(board_window,i,2*j,ACS_BULLET);
(void)wattroff(board_window,COLOR_PAIR(1));

} else {
(void)wattron(board_window,COLOR_PAIR(2));
(void)mvwaddch(board_window,i,2*j,' ');
(void)wattroff(board_window,COLOR_PAIR(2));

}
}

58 / 66

Examples

Sixth Example — a Comment
The print_board() function is responsible for displaying the state of
the game which is stored in the matrix passed to the function by the
board parameter. The pointer to a structure associated with the board
window is passed to the function by its second parameter. Inside the
nested for loops the value of every element of matrix is verified. If
its value is not equal zero then it is displayed on the screen as a green
dot (the acs_bullet constant) on a black background. Otherwise it is
displayed as a black space on a black background. It won’t be visible, but
displaying it is necessary because in the previous iteration of the game
the cell represented by the element could be alive and in the current
iteration it should be dead, so its previous state should be overwritten
by the current one. Please notice, that the horizontal coordinates of the
places in the window are multiplied by two to compensate the ratio of
the width to the hight of the window. The void keyword in parentheses
before function calls means that the value returned by those functions is
ignored.

59 / 66

Examples

Sixth Example — the Game of Life

int main(int argc, char **argv)
{

int error = initiate();
if(error!=0) {

if(error<-1)
(void)endwin();

fprintf(stderr,"%s\n",error_msg[-error]);
return -1;

}
WINDOW *board_window = create_board_window();
if(!board_window) {

printw("board_window() error\n");
return -2;

}
if(argc==2) {

if(!strcmp(argv[1],"blinker"))
create_blinker(board);

else if(!strcmp(argv[1],"ten_in_row"))
create_ten_in_row(board);

else
seed_board(board);

} else
seed_board(board); 60 / 66

Examples

Sixth Example — the Game of Life

while(getch()==ERR) {
print_board(board,board_window);
get_next_step(board);
wrefresh(board_window);

}

if(delwin(board_window)==ERR) {
printw("delwin() error\n");
return -3;

}

if(endwin()==ERR) {
fprintf(stderr,"%s\n",error_msg[7]);
return -4;

}

return 0;
}

61 / 66

Examples

Sixth Example — a Comment

The main() function in this version of the program has been also mod-
ified. The initiate() function is called inside the main() function. If
the former returns a value different than zero then a message about an
exception associated with the initialization of curses library is displayed.
If the returned value is less than −1 then the endwin() function is called
and the program aborts. If the initialization is successful then a board
window is created with the use of the create_board_window() function.
If the function fails the program aborts. The while loop is also modified.
In the body of the loop a modified version of the print_board() func-
tion and the wrefresh() function are called. In the header of the loop
the condition is changed. The loop is performed until the user presses a
key.

62 / 66

Examples

Sixth Example — a Comment

The state of the keys on the keyboard is inspected in the condition of
the while loop with the use of the getch() function, which returns err
until the user presses a key. The halfdelay() function called inside the
initiate() function causes the getch() to wait 0.2 seconds for the user
to press a key in each iteration of the while loop. Hence, the program
displays subsequent states of the game with such a frequency. The user
sees an animation of the state. Its speed can be changed by modifying the
value of the halfdelay() function argument. After the loop finishes the
board window is deleted with the use of delwin() function, the curses
library is finalized and the program exits. The program runs only if the
terminal it uses has at least 32 lines (the number of elements in a single
dimension of the board). If the condition is not met, then it displays
only a message about an exception.

63 / 66

The End

Thanks

Many thanks to Grzegorz Łukawski, PhD, Leszek Ciopiński, MSc and
Maciej Lasota, MSc for helping me to complete the Polish version of this
slides.

64 / 66

The End

Questions

?

65 / 66

The End

The End

Thank You for Your attention!

66 / 66

	Introduction
	Initialization and Finalization
	Windows Handling
	Displaying Text
	Keyboard Handling
	Colours
	Examples

