
.

.

Fundamentals of Programming 1
Introduction to 2D Graphics — Part Two

The Allegro Library

Arkadiusz Chrobot

Department of Computer Science

June 3, 2020

.

Outline

Introduction

Fractals

Calculation of π

Sine Wave

Animation

Simple Textures

.

Introduction

In the second part of the lecture example programs are presented that apply
the elements of the Allegro library, described in the first part, to create 2D
images. Two of those programs use the animation support offered by the
library.

.

Fractals

Fractals can be described as a complex geometrical objects. Mathemat-
ics provides many definitions of the concept of a fractal as well as many
algorithms for creating fractals. The most characteristic property of frac-
tals is their repetitive structure. In this lecture three examples of fractals,
generated by different algorithms are presented.

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Fractals — ifs

Fractals can be created with the help of an Iterated Function System (ifs).
The algorithm computes coordinates of new points belonging to a fractal
by using affine mappings of the following form:

{
x′ = a · x + b · y + c
y′ = d · x + e · y + f

The x′ and y′ are coordinates of a new point of the fractal and the x
and y are coordinates of a fractal point that is already known. In the ifs
algorithm several affine mappings are defined and one of them is randomly
chosen for calculating the coordinates of a next point of the fractal. The
more points are calculated, the more detailed is the image of the fractal.

.

Fractals — ifs

The program that demonstrates how a fractal is created with the help of
the ifs uses four affine mappings with the following a, b, c, d, e and f
coefficients:

a b c d e f
1 -0,67 -0,02 0 -0,18 0,81 10
2 0,4 0,4 0 -1 0,4 0
3 -0,4 -0,4 0 -0,1 0,4 0
4 -0,1 0 0 0,44 0,44 -2

The coefficients are taken from the book „Fraktale i chaos“ by Jerzy Ku-
drewicz available only in Polish.

.

Fractals — ifs

#include<allegro.h>
#include<allegro/keyboard.h>
#include<stdlib.h>
#include<time.h>

#define WIDTH 1366

#define HEIGHT 768

#define SCALE 15

.

Fractals — ifs
Comment

Aside from the header files associated with the Allegro library there are
also included in the program the header files needed for using the PRNG.
The width and the height constants describe the width and the height
of the screen in pixels. The scale constant is the scaling factor for the
image, which has to be zoomed, otherwise it would be relatively small.

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Fractals — ifs

int initialize(int card, int width, int height)
{

srand(time(NULL));
if(allegro_init()) {

allegro_message("allegro_init: %s\n",allegro_error);
return -1;

}
if(install_keyboard()) {

allegro_message("install_keyboard: %s\n",allegro_error);
allegro_exit();
return -1;

}
set_color_depth(32);
if(set_gfx_mode(card,width,height,0,0)) {

allegro_message("%s\n",allegro_error);
allegro_exit();
return -1;

}
return 0;

}

.

Fractals — ifs
Comment

The initialize() function is responsible for initializing the Allegro library
and the PRNG. It is implemented in the same or similar fashion in the
other example programs. Initialization of the PRNG is the first action
performed inside the functions body. The task is accomplished with the
invocation of the srand() function. Next, the Allegro library is initialized
with the use of allegro_init macro. Then the keyboard handling is
activated with the use of install_keyboard() function. After that the
colour depth is set by calling the set_color_depth() function. The rgba
colour model is applied in the program. The last task performed by the
initialize() function is setting a specified graphical mode by invoking
the set_gfx_mode() function. The said function takes as its first three
arguments the parameters of the initialize() function. The value of
the two last arguments is zero, because the animation support offered by
the Allegro library is not used in the program.

.

Fractals — ifs
Comment

If any of the subroutines used in the initialize() function fails then
a message is printed with the use of allegro_message() function, the
allegro_exit() function is called to finalize the Allegro library and a
proper exception code is returned.

.

Fractals — ifs

void draw_with_ifs(double x, double y)
{

const int GREEN_COLOUR = makecol(0,255,0);
while(!(key[KEY_Q]||key[KEY_ESC])) {

switch(rand()%4) {
case 0:

x=-0.678*x-0.02*y;
y=-0.18*x+0.81*y+10;
break;

case 1:
x=0.4*x+0.4*y;
y=-0.1*x+0.4*y;
break;

case 2:
x=-0.4*x-0.4*y;
y=-0.1*x+0.4*y;
break;

case 3:
x=-0.1*x;
y=0.44*x+0.44*y-2;
break;

}
putpixel(screen,(SCREEN_W>>1)-(SCALE*x),(SCREEN_H-35)-(SCALE*y),GREEN_COLOUR);

}
}

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Fractals — ifs
Comment

The draw_with_ifs() function is responsible for drawing a fractal on the
screen. The coordinates of the first point belonging to the fractal (which is
not drawn) are passed to the function by parameters. At the beginning of
its body is defined the green_colour constant, which stores the code of
the green colour returned by the makecol() function. In the while loop
the coordinates of subsequent points belonging to the fractal are computed
and the fractal is drawn. The loop stops when the user presses the q key.
Inside the loop one on the affine mappings is chosen randomly and then it
is applied for calculating the coordinates of a new point belonging to the
fractal. Next, those coordinates are converted to the coordinates of a pixel
belonging to the fractal image. Those numbers are passed as a second and
third arguments of the putpixel() function that changes the colour of
the pixel. The first argument of this function is the screen variable, which
is a pointer to the bitmap associated with the screen. The last argument
of the putpixel() function is the colour code.

.

Fractals — ifs
Comment

Because the coordinates of a point are floating point numbers relative
to the origin of the “regular” Cartesian coordinate system, they have to
be converted to the coordinates of a pixel on the screen. The horizontal
coordinate of the pixel is calculated by scaling the value of the abscissa
of the point and subtracting from the result the half of the width of the
screen. The resulting data is indirectly casted to the int type. The vertical
coordinate is calculated similarly. The value of the ordinate of the point
is scaled and then subtracted from the hight of the screen reduced by
35 pixels. The last value was chosen experimentally. Thanks to those
conversions the fractal image is displayed centered and is not inverted.

.

Fractals — ifs

int main(void) {
if(initialize(GFX_AUTODETECT_FULLSCREEN,WIDTH,HEIGHT)<0)

return -1;
draw_with_ifs(0.0,0.0);
allegro_exit();
return 0;

}
END_OF_MAIN()

.

Fractals — ifs
Comment

In the main() function the initialize() function is invoked first. As
its first argument the gfx_autodetect_fullscreen constant is given. It
means that the program should use a full screen graphical mode, provided
its initialization is successful. The constants that define the width and
height of the screen are the two other arguments of the function. After
the Allegro library is initialized, the draw_with_ifs() function is called.
Its arguments are the coordinated of the starting point of the fractal. After
this function exits the allegro_exit() function is invoked to finalize the
Allegro library.

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Fractals — ifs
Summary

The presented program creates a fractal called a Christmas Tree. With the
help of Iterated Function Systems it is possible to create other shapes of
that type, like for example Barnsley’s Fern. In the case of the Barnsley’s
fractal not only a different set of coefficients for the system of affine map-
pings is needed but also a slightly different way of choosing the systems
randomly have to be applied. Plant-like looking fractals can be also drawn
with the use of formal languages called L–Systems, which were invented
by a Hungarian biologist and botanists Aristid Lidenmayer. In computer
graphics they were popularized by a Polish computer scientist working in
Canada, Przemysław Prusinkiewicz. Fractals are used for example in in
computer games for creating a background that looks like a realistic land-
scape.

.

Fractals — Mandelbrot Set

The Mandelbrot Set is a set of points on a plane for which a sequence
given by a following recursive (self–repeating) equation does not diverge:

{
z0 = 0
zn+1 = z2n + c

In this equation z is a complex variable and c is a complex constant. The
set was discovered by a French mathematician who was born in Warsaw
in 1924. The image of the fractal is created by scaling the coordinates of
a large number of points on a complex plane in such a way that their real
and imaginary parts (abscissa and ordinate) belong, respectively, to the
following intervals: (−2.5, 1) and (−1, 1) and then substituting them for c
in the equation and calculating a number of initial terms of the sequence.
If the modulus of every calculated term is less than 2 (|zn| ≤ 2) then the
point c belongs the set.

.

Fractals — Mandelbrot Set

#include<allegro.h>
#include<allegro/keyboard.h>

#define WIDTH 1366

#define HEIGHT 768

#define MAXITER 8000

.

Fractals — Mandelbrot Set
Comment

The beginning of the program that generates the image of Mandelbrot
Set is similar to the beginning of the program that creates the Christmas
Tree fractal using the ifs. However, instead of the constant for scaling,
the maxiter constant is defined that describes how many of the initial
terms of the sequence defined in the previous slide should be calculated by
the program. Also the header files necessary for using the PRNG are not
included.

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Fractals — Mandelbrot Set

int initialize(int card, int width, int height)
{

if(allegro_init()) {
allegro_message("allegro_init: %s\n",allegro_error);
return -1;

}
if(install_keyboard()) {

allegro_message("install_keyboard: %s\n",allegro_error);
allegro_exit();
return -1;

}
set_color_depth(32);
if(set_gfx_mode(card,width,height,0,0)) {

allegro_message("%s\n",allegro_error);
allegro_exit();
return -1;

}
return 0;

}

.

Fractals — Mandelbrot Set
Comment

The initializing function is also similar to the one used in the previous
program. The only difference is that this one doesn’t initialize the PRNG.

.

Fractals — Mandelbrot Set

double scale_x0(int x0)
{

return 3.5*(((double)x0)/(SCREEN_W-1))-2.5;
}

.

Fractals — Mandelbrot Set

double scale_y0(int y0)
{

return 2.0*(((double)y0)/(SCREEN_H-1))-1.0;
}

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Fractals — Mandelbrot Set
Comment

The scale_x0() and scale_y0() functions are responsible for converting
the coordinates of a pixel to the coordinates of a point that lies on a
(−2, 5; 1) × (−1; 1) plane.

.

Fractals — Mandelbrot Set

unsigned int calculate_mandelbrot(int xp, int yp)
{

double x,y,x2,y2;
unsigned int iteration = 0;
double x0 = scale_x0(xp);
double y0 = scale_y0(yp);

x=y=x2=y2=0.0;

while(x2+y2<=4.0 && iteration<MAXITER) {
double tmp = x2-y2+x0;
y=2.0*x*y+y0;
x=tmp;
iteration++;
x2=x*x;
y2=y*y;

}

return iteration==MAXITER?0:iteration;
}

.

Fractals — Mandelbrot Set
Comment

The function calculate_mandelbrot() calculates successive terms of
the sequence for a pixel which coordinates are passed to it by parameters.
First, these coordinates are converted (scaled) with the use of scale_x0()
and scale_y0() functions. Next, in the while loop the successive terms
of the sequence are calculated until the iteration counter reaches the value
of the maxiter constant or the modulus of the current term is greater
or equal two. The latter condition is expressed as: x2+y2<=4.0. That
expression can be derived from the formula: |zn ≤ 2| as follows: |zn ≤
2| Ñ |xn + i · yn| ≤ 2 Ñ

√
x2n + y2n ≤ 2 Ñ x2n + y2n ≤ 4. In the loop body

the successive terms of the sequence are calculated and the number of the
loop iterations is counted. The expressions used for calculating the terms
can be derived assuming that z = x + i · y, and c = x0 + i · y0. So, the
real part of the next sequence term equals x2 − y2 + x0 and the imaginary
part 2 · x · y + y0. The function returns the number of iterations of the
loop for a given pixel or zero, if the number reached the value of maxiter
constant.

.

Fractals — Mandelbrot Set

int main(void) {
if(initialize(GFX_AUTODETECT_FULLSCREEN,WIDTH,HEIGHT)<0)

return -1;
unsigned int x,y;
unsigned char color;
for(y=0;y<SCREEN_H;y++)

for(x=0;x<SCREEN_W;x++) {
color=calculate_mandelbrot(x,y);
putpixel(screen,x,y,palette_color[color]);

}
while(!(key[KEY_Q]||key[KEY_ESC]))

;
allegro_exit();
return 0;

}
END_OF_MAIN()

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Fractals — Mandelbrot Set
Comment

In the main() function aside from Allegro library initialization and finaliza-
tion the Mandelbrot Set image is drawn. In the for loops for each of the
pixel are calculated successive terms of the sequence with the help of the
calculate_mandelbrot() function. The function returns the number of
iterations after which the while loop stopped or zero. The returned value
is used for calculating the code of the pixel colour. In the program a pre-
defined palette of colours is applied which is stored in the palette_color
array. The array has 256 elements, so the number of iterations has to
be converted into a natural number ranging from 0 to 255. This is ac-
complished by storing the result of calculate_mandelbrot() function
in a variable of the unsigned char type. After the image is generated
the program waits int the while loop for the user to press the Esc or q
key. Please note, that no other activities take place in the loop aside from
checking the state of the aforementioned keys.

.

Fractals — Mandelbrot Set 2

Creating the Mandelbrot Set image involves performing calculations with
the use of complex numbers. The ISO C99 standard introduces to the C
language elements that make implementation of such calculations easier.
They are collected in the complex.h header file. Some of them are applied
in the next program, which also draws Mandelbrot Set. Those elements
are: the complex macro for creating the double complex type, the i
constant of the

√
−1 value and the cabs() function that calculates the

modulus of a complex number. For basic arithmetic operations on the
double complex type variables the same operators can be applied as for
variables of other numerical data types. Next slides present the program
that creates the Mandelbrot Set image using complex number operations.
Due to the similarity of the program with the previous one, only the dif-
ferences between them are described.

.

Fractals — Mandelbrot Set 2

#include<allegro.h>
#include<allegro/keyboard.h>
#include<complex.h>

#define WIDTH 1366

#define HEIGHT 768

#define MAXITER 8000

.

Fractals — Mandelbrot Set 2
Comment

The code presented in the previous slide includes to the program the
complex.h header file, which contains elements supporting complex num-
ber operations.

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Fractals — Mandelbrot Set 2

int initialize(int card, int width, int height)
{

if(allegro_init()) {
allegro_message("allegro_init: %s\n",allegro_error);
return -1;

}
if(install_keyboard()) {

allegro_message("install_keyboard: %s\n",allegro_error);
allegro_exit();
return -1;

}
set_color_depth(32);
if(set_gfx_mode(card,width,height,0,0)) {

allegro_message("%s\n",allegro_error);
allegro_exit();
return -1;

}
return 0;

}

.

Fractals — Mandelbrot Set 2

double scale_x0(int x0)
{

return 3.5*(((double)x0)/(SCREEN_W-1))-2.5;
}

.

Fractals — Mandelbrot Set 2

double scale_y0(int y0)
{

return 2.0*(((double)y0)/(SCREEN_H-1))-1.0;
}

.

Fractals — Mandelbrot Set 2

unsigned int calculate_mandelbrot(int xp, int yp)
{

double complex z;
unsigned int iteration = 0;
double complex c = scale_x0(xp) + I*scale_y0(yp);

z=0.0+0.0*I;

while(cabs(z)<=2.0 && iteration<MAXITER) {
z = z*z+c;
iteration++;

}

return iteration==MAXITER?0:iteration;
}

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Fractals — Mandelbrot Set 2
Comment

The calculate_mandelbrot() function applies the double complex
type variables to calculate successive terms of the sequence. First, from
the coordinates of a pixel is created the value of the c constant. Next, in
the z variable is stored the value of the first term of the sequence. Then
in the while loop the successive terms of the sequence are calculated and
the number of the loop iterations is counted. The function code is more
legible than its equivalent from the previous program, but its performance
is worse.

.

Fractals — Mandelbrot Set 2

int main(void)
{

if(initialize(GFX_AUTODETECT_FULLSCREEN,WIDTH,HEIGHT)<0)
return -1;

unsigned int x,y;
unsigned char color;
for(y=0; y<SCREEN_H; y++)

for(x=0; x<SCREEN_W; x++) {
color=calculate_mandelbrot(x,y);
putpixel(screen,x,y,palette_color[color]);

}
while(!(key[KEY_Q]||key[KEY_ESC]))

;
allegro_exit();
return 0;

}
END_OF_MAIN()

.

Fractals — Mandelbrot Set 2
Comment

Other ways of creating the Mandelbrot Set and drawing fractals are de-
scribed on the following web page: https://lodev.org/cgtutor/. The theo-
retical description of the Mandelbrot Set is partially taken from the Polish
and English pages of Wikipedia.

.

Calculation of π

The π number is one of the most frequently appearing constants in math-
ematics. Although its definition is simple — it is the ratio of the circle’s
circumference to its diameter — calculating its approximated value is not
easy. There are many algorithms for that problem. The next program
calculates the value of π using one of the statistical methods which are
collectively know as Monte Carlo Methods. The name was coined by Polish
mathematician Stanisław Ulam who also invented some of them.

.

Notes

.

Notes

.

Notes

.

Notes

https://lodev.org/cgtutor/

.

.

Calculation of π

The method that is applied in this program is not the most efficient one
as its steps needs to be repeated multiple times to achieve at least rough
approximation of the value of the π. However, it can be demonstrated in
an interesting way. In this method a disc inscribed in a square is given. The
length of the disc’s radius is r. The centre of the disc is in the origin of the
coordinate system. Every side of the square has a length of 2r (please refer
to the next slide). The ratio of the square area (Psq) to the area of the
disc (Pdc) is Psq

Pdc
= (2·r)2

π·r2 . If areas of the square and the disc were known
then the value of the π could be calculated with the use of the following
formula: π = 4·Pdc

Psq
. It is possible to approximate the two missing values

by choosing randomly points inside the square and verifying if they also
belong to the disc. The square area is the total number of chosen points,
and the disc area is the number of the chosen square points that belong
also to this figure. More about this method can be found on the web page
of Eve Astrid Andersson (http://www.eveandersson.com/pi/).

.

Calculation of π

.. x.

y

.(0, 0) .
(−r, 0)

.
(r, 0)

.
r

.

2r

.

Calculation of π

#include<allegro.h>
#include<allegro/keyboard.h>
#include<stdlib.h>
#include<stdbool.h>
#include<time.h>
#include<math.h>

#define WIDTH 1366
#define HEIGHT 768

.

Calculation of π
Comment

The beginning of the program is similar to the beginnings of previously
presented programs. Aside from the header files required by Allegro library
also the header files necessary for using the prng are included, together
with header files that contain declarations of needed mathematical func-
tions and the definition of the bool data type.

.

Notes

.

Notes

.

Notes

.

Notes

http://www.eveandersson.com/pi/

.

.

Calculation of π

int initialize(int card, int width, int height)
{

srand(time(NULL));
if(allegro_init()) {

allegro_message("allegro_init(): %s\n",allegro_error);
return -1;

}
if(install_keyboard()) {

allegro_message("install_keyboard(): %s\n",allegro_error);
allegro_exit();
return -1;

}
set_color_depth(32);
if(set_gfx_mode(card,width,height,0,0)) {

allegro_message("set_gfx_mode(): %s\n",allegro_error);
allegro_exit();
return -1;

}
return 0;

}

.

Calculation of π
Comment

The definition of the initialize() function is the same as in the first
program presented in this lecture.

.

Calculation of π

bool is_in_disc(double x, double y, const double radius)
{

return sqrt(pow(x,2)+pow(y,2))<=radius;
}

.

Calculation of π
Comment

The is_in_disc() function verifies if a point, which coordinates are
passed by the first two parameters, is inside a disc of a radius, which
length is passed by the last parameter. According to the definition of a
disc, all points that belong to such a figure lie within the distance measured
from the disc’s centre that is less than or equal to the radius. Because the
centre of the disc, in the discussed method, is in the origin of the coordi-
nate system, the distance from the disc centre to a point of the coordinates
(x, y) can be calculated with the use of the following Euclidean formula:√

x2 + y2. If the resulting value is less than or equal to the length of the
radius then the point belongs to the disc, otherwise it doesn’t. The pow()
function used in the program is the exponentiation function. It takes two
numbers of the double type as arguments and returns the value of the
first raised to the power of the second. The result is also a double type
number.

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Calculation of π

void draw_pi(void)
{

const int GREEN_COLOUR = makecol(0,255,0),
RED_COLOUR = makecol(255,0,0),
WHITE_COLOUR = makecol(255,255,255),
SCREEN_MIDDLE_X = SCREEN_W>>1,
SCREEN_MIDDLE_Y = SCREEN_H>>1;

const double RADIUS = 300.0;
unsigned long int in_square=0, in_disc=0;
while(!keypressed()) {

double x=-RADIUS+rand()%600+rand()/(1.0+RAND_MAX);
double y=-RADIUS+rand()%600+rand()/(1.0+RAND_MAX);
in_square++;
if(is_in_circle(x,y,RADIUS)) {

putpixel(screen,x+SCREEN_MIDDLE_X,y+SCREEN_MIDDLE_Y,RED_COLOUR);
in_disc++;

} else
putpixel(screen,x+SCREEN_MIDDLE_X,y+SCREEN_MIDDLE_Y,GREEN_COLOUR);

if(!(in_square%100000))
textprintf_ex(screen,font,550,50,WHITE_COLOUR,0,"The PI number is: %1.20lf",

(4.0*in_disc)/in_square);
}

}

.

Calculation of π
Comment

The draw_pi() function makes the calculation of the π visible and also
prints the current approximation of the number on the screen. In the
function body three constants describing the codes of green, red and white
colours are defined. The next two constants define the coordinates of the
middle of the screen. They are used for converting coordinates of points
to coordinates of pixels in such a way, that the resulting image is displayed
in the centre of the screen. The last constant defined in the function
describes the length of the radius. It is 300 points. In the function are also
declared two variables which store the number of points belonging to the
square (in_square) and to the disc (in_disc). Inside the while loop,
which is performed until the user presses any key, the coordinates of a
point in the square are randomly chosen and the value of the variable that
counts them is incremented by one. The conditional statement checks if
the point also belongs to the circle.

.

Calculation of π
Comment

If it is the case then the colour of the pixel corresponding to that point is set
to red and the value of the in_disc variable, which is the counter of the
points in the disc, is incremented by one. Otherwise, the pixel colour is set
to green. Please notice, that the coordinates of the middle of the screen are
added to the coordinates of the point. Also the coordinates of the point,
which are of the double type are indirectly casted to the int type, which
means that many of the randomly chosen points are mapped into the same
pixel. The calculated value of the π number is displayed each 100.000th
iteration of the loop with the use of the textprintf_ex() function. The
value is calculated using the formula described in previous slides. The
approximated area of the square (Psq) is stored in the in_square variable
and the approximated area of the disc (Pdc) is stored in the in_disc
variable.

.

Calculation of π

int main(void)
{

if(initialize(GFX_AUTODETECT_FULLSCREEN,WIDTH,HEIGHT))
return -1;

draw_pi();
allegro_exit();
return 0;

}
END_OF_MAIN()

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Calculation of π
Comment

In the main() function are invoked the other functions defined in the
program.

.

Sine Wave

The next program plots a sine wave. This example serves the purpose of
describing the general method of plotting a function graph on the computer
screen. It is not enough to calculate the coordinates of points belonging to
the graph and to set colour of pixels that correspond to those points. That
way only a discrete function graph can be created — one that consists of
many separate points. The correct way of plotting a function consists in
creating the graph from very small line segments joined together.

.

Sine Wave

#include<allegro.h>
#include<allegro/keyboard.h>
#include<math.h>

#define WIDTH 1366
#define HEIGHT 768

.

Sine Wave
Comment

The program source code begins similarly to the code of other programs
presented in this lecture. The math.h header file is necessary for using the
sine function.

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Sine Wave

int initialize(int card, int width, int height)
{

if(allegro_init()) {
allegro_message("allegro_init(): %s\n",allegro_error);
return -1;

}
if(install_keyboard()) {

allegro_message("install_keyboard(): %s\n",allegro_error);
allegro_exit();
return -1;

}
set_color_depth(32);
if(set_gfx_mode(card,width,height,0,0)) {

allegro_message("set_gfx_mode(): %s\n",allegro_error);
allegro_exit();
return -1;

}
return 0;

}

.

Sine Wave
Comment

The definition of the initialize() function is the same as in other ex-
ample programs that don’t require using the PRNG.

.

Sine Wave

void draw_sinus(BITMAP* bitmap)
{

const double DEGREE_TO_RADIAN = M_PI/180.0, HALF_OF_SCREEN = SCREEN_H>>1, X_RATIO = SCREEN_W/360.0;
double x_start=0.0,y_start=0.0,x_end,y_end;
const int GREEN_COLOUR = makecol(0,255,0);
for(x_end=1;x_end<=360;x_end++) {

y_end = HALF_OF_SCREEN*sin(x_end*DEGREE_TO_RADIAN);
line(bitmap,x_start*X_RATIO,HALF_OF_SCREEN-y_start,X_RATIO*x_end,HALF_OF_SCREEN-y_end,

GREEN_COLOUR);
x_start = x_end;
y_start = y_end;

}
}

.

Sine Wave
Comment

The draw_sinus() function plots the sine wave on the screen. At the be-
ginning of its body three constants are declared. The deegre_to_radian
is used for converting degrees to radians. The sin() function requires as
an argument an angle measured in radians. The half_of_screen con-
stant1 has a value that represents the half of the screen hight in pixels.
The x_ratio constant is the ratio of the screen width to the number
of degrees in the full angle. In other words this constant expresses the
number of pixels per one degree. Finally, the last constant is the green
colour code. This is the colour of the function graph. The x_start and
y_start variables are used for storing the coordinates of the starting point
of currently plotted segment. The x_end and y_end variables store the
coordinates of the ending point of that segment.

1Its type can be actually changed to int.

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Sine Wave
Comment

The function is plotted in the for loop. The starting point of the first
segment has the coordinates of the (0, 0). The coordinates of the ending
point are calculated during the first iteration of the loop. Plotting the
sine wave directly would result in a “slightly jagged” line appearing on
the screen, since the values of the sine function belong to the [−1, 1]
interval. This is why the ordinate of every point is multiplied by the value
of half_of_screen constant. This causes the graph to be plotted across
the full hight of the screen. The argument of the sin() function is an angle
measured in radians. Hence the program multiplies the angle measured
in degrees by the value of the deegre_to_radian constant and passes
the result to the function. After the coordinates of the ending point are
calculated the segment is drawn on the screen with the use of the line()
function.

.

Sine Wave
Comment

The abscissas of the starting and the ending pixel of the segment are
obtained by multiplying the angle measured in degrees by the x_ratio
constant, so the graph is plotted across the full width of the screen. The
ordinates are also subtracted from the half of the hight of the screen. This
results in the graph being not inverted and displayed in the centre of the
screen. In the next iteration of the for loop the coordinates of the ending
point of the next segment of the graph are calculated. The coordinates
of the ending point of the previous segment become the coordinates of
the starting point of the next segment. Those steps are repeated until the
whole graph is finished.

.

Sine Wave

void wait_for_any_key(void)
{

clear_keybuf();
while(!keypressed())

;
}

.

Sine Wave
Comment

The wait_for_any_key() function stops the program until the user presses
any key on the keyboard. The clear_keybuf() function is invoked to
clean the keyboard buffer and thus to make sure that the wait_for_any_key()
function will work correctly. Next, the latter function waits in the while
loop for the user to press any key. No other actions are performed in the
loop.

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Sine Wave

int main(void)
{

if(initialize(GFX_AUTODETECT_FULLSCREEN,WIDTH,HEIGHT))
return -1;

draw_sinus(screen);
wait_for_any_key();
allegro_exit();
return 0;

}
END_OF_MAIN()

.

Sine Wave
Comment

In the main() function all the other functions defined in the program are
called.

.

Animation — Rectangle

The next program shows an animation of a rectangle that moves from the
left side of the screen to the right side and it repeats that movement until
the user presses q or Esc key.

.

Animation — Rectangle

#include<allegro.h>
#include<allegro/keyboard.h>

#define WIDTH 1366
#define HEIGHT 768
#define NUMBER_OF_PAGES 4

BITMAP *pages[NUMBER_OF_PAGES];

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Animation — Rectangle
Comment

Unlike the program plotting a sine wave, this one doesn’t include the header
file with mathematical functions definitions. Instead, a constant is defined
that specifies the number of pages, or in other words bitmaps, used by
the animation support in the Allegro library. The constant is used in the
definition of an array which elements are pointers to bitmap structures.

.

Animation — Rectangle

int initialize(int card, int width, int height)
{

if(allegro_init()) {
allegro_message("allegro_init(): %s\n",allegro_error);
return -1;

}
if(install_keyboard()) {

allegro_message("install_keyboard(): %s\n",allegro_error);
allegro_exit();
return -1;

}
set_color_depth(32);
if(set_gfx_mode(card,width,height,0,NUMBER_OF_PAGES*height)) {

allegro_message("set_gfx_mode(): %s\n",allegro_error);
allegro_exit();
return -1;

}
return 0;

}

.

Animation — Rectangle
Comment

The definition of the initialize() function is similar to its equivalents
in presented programs that do not use the PRNG. However, as the two last
arguments for the set_gfx_mode() function are passed the dimensions of
the virtual screen. They are necessary for enabling the animation support
and for creating new bitmaps. Please notice, that it is enough if only one
of those arguments is not zero.

.

Animation — Rectangle

int create_pages_array(BITMAP *pages[NUMBER_OF_PAGES])
{

int i;
for(i=0; i<NUMBER_OF_PAGES; i++) {

pages[i] = create_video_bitmap(SCREEN_W,SCREEN_H);
if(pages[i]==NULL)

return -1;
}
return 0;

}

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Animation — Rectangle
Comment

The create_pages_array() function creates bitmaps in a loop and as-
signs their addresses to the elements of the array of pointers to bitmap
structures. If it fails to create any of them it returns a value specifying the
exception and exits.

.

Animation — Rectangle

void destroy_pages_array(BITMAP *pages[NUMBER_OF_PAGES])
{

int i;
for(i=0; i<NUMBER_OF_PAGES; i++)

destroy_bitmap(pages[i]);
}

.

Animation — Rectangle
Comment

The destroy_bitmap_array() function deletes the bitmaps created by
the create_bitmap_array() function.

.

Animation — Rectangle

void animate_rectangle(BITMAP *pages[NUMBER_OF_PAGES], int speed, int rectangle_width, int rectangle_height)
{

int page_number = 0;
int x = 0;
clear_keybuf();
const int YELLOW_COLOUR = makecol(255,255,0);
while(key[KEY_ESC]==0&&key[KEY_Q]==0) {

BITMAP *active_page = pages[page_number];
clear_bitmap(active_page);
rect(active_page,x,SCREEN_H>>1,rectangle_width+x,rectangle_height+(SCREEN_H>>1),YELLOW_COLOUR);
x=(x+speed)%SCREEN_W;
if(show_video_bitmap(active_page))

return;
page_number = (page_number+1)%NUMBER_OF_PAGES;

}
}

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Animation — Rectangle
Comment

The animate_rectangle() function displays a rectangle that moves from
the left edge of the screen to the right. The first argument of this function
is the array of pointers to pages. The value of the second one speci-
fies the speed of the animation (how quickly the rectangle moves). Val-
ues of the last two arguments specify dimensions of the rectangle. The
page_number variable is used for indexing the array and also for specifying
which of the pages is currently active. The x variable stores the abscissa of
the top-left corner of the rectangle. The yellow_colour constant stores
the code of the yellow colour. This is the colour of the rectangle. The
clear_keybuf() function is invoked before the while loop to clear the
keyboard buffer. Inside the loop the subsequent frames of the animation
are created until the user presses the Esc or the q key.

.

Animation — Rectangle
Comment

Inside the while loop the page_number variable specifies the element of
the array that stores the address of the active page. This address is assigned
to the active_page pointer and the page is cleared (the colour of all its
pixels is set to black). Next the rectangle is drawn to the bitmap (the
active page). Its top edge is at the half screen hight. Then the abscissa of
the rectangle top-left corner location in the next frame is calculated with
the use of the modular arithmetic. This allows the rectangle to “show
up” at the left edge of the screen every time it “passes through” the right
edge. After the abscissa is calculated the content of the active page is
displayed on the screen. Then the function calculates a new value of the
page_number variable to determine the next active page. This time it also
uses the modular arithmetic, so each bitmap becomes the active page once
every number_of_pages iterations of the loop.

.

Animation — Rectangle

int main(void)
{

if(initialize(GFX_AUTODETECT_FULLSCREEN,WIDTH,HEIGHT)<0)
return -1;

if(create_pages_array(pages))
return -1;

animate_rectangle(pages,1,100,50);
destroy_pages_array(pages);
allegro_exit();
return 0;

}
END_OF_MAIN()

.

Animation — Rectangle
Comment

In the main() function the functions defined earlier in the program are
called. Please note the order of invocations of the create_pages_array()
and destroy_pages_array() functions.

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Animation — Ball

The next example program also creates an animation, but this time it is an
animation of a ball that bounces off the edges of the screen according to
the law of reflection, which applies to the light rays: the angle of reflection
is equal the angle of incidence. To simulate the movement of the ball,
which is drawn as a circle, the program has to know the coordinates of the
ball centre (x, y), its velocity vector (dx, dy) and the length of its radius (r).
Those data are necessary for calculating the location of the middle of the
ball, its direction (angle) and velocity in the next frame of the animation.
Dependencies between the first two of those data items are shown in the
figure in the next slide.

.

Animation — Ball

..

(x, y)

.

dx

.

dy

.

v

.

(x + dx, y + dy)

.

Animation — Ball

Hitting any of the screen edges forces the ball to change its movement
direction. The collision is detected by comparing the current coordinates
of the ball centre with abscissas or ordinates of horizontal or vertical edges.
For example, verifying if the ball “touches” the left edge of the screen
requires subtracting the ball radius length from the current abscissa of its
middle and comparing the result with zero. If it is less than or equal zero
then the ball has a contact with the edge. Similarly, in case of the right
edge of the screen, the radius length is added to the current abscissa of
the ball centre and the result is compared with the value of the screen_w
constant2. To detect collision of the ball with any of the horizontal edges,
it is necessary to compare the value of similar expressions with zero or
the value of the screen_h constant. The next slide presents a figure
that illustrates the overall concept of collision detection in the discussed
program.

2For a more accurate collision detection, the result should be compared with the
value of the constant minus one. However, such an accuracy is not required.

.

Animation — Ball

..

(x, y)

.

r

.

(x − r, y)

.

(x, y)

.

r

.

(x, y − r)

.

(x, y)

.

r

.

(x + r, y)

.

(x, y)

.

r

.
(x, y + r)

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Animation — Ball

#include<allegro.h>
#include<allegro/keyboard.h>
#include<stdlib.h>
#include<time.h>

#define WIDTH 1366
#define HEIGHT 768
#define NUMBER_OF_PAGES 4

.

Animation — Ball
Comment

The beginning of this program is similar to the beginning of the previous
one, but the header files required for using the PRNG are included.

.

Animation — Ball

struct ball_data {
int x,y,dx,dy;
unsigned char radius;

} ball;

BITMAP *pages[NUMBER_OF_PAGES];

.

Animation — Ball
Comment

In the program, aside from the array of pointers to the bitmap structures,
the ball variable, which is a structure of the ball_data type, is declared.
The members of this structure store data about the current coordinates of
the ball centre, its velocity vector and the length of its radius.

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Animation — Ball

int initialize(int card, int width, int height)
{

srand(time(NULL));
if(allegro_init()) {

allegro_message("allegro_init(): %s\n",allegro_error);
return -1;

}
if(install_keyboard()) {

allegro_message("install_keyboard(): %s\n",allegro_error);
allegro_exit();
return -1;

}
set_color_depth(32);
if(set_gfx_mode(card,width,height,0,NUMBER_OF_PAGES*height)) {

allegro_message("set_gfx_mode(): %s\n",allegro_error);
allegro_exit();
return -1;

}
return 0;

}

.

Animation — Ball
Comment

The definition of initialize() function is similar to its equivalent from
the previously presented program, but it additionally invokes functions that
initialize the PRNG.

.

Animation — Ball

void set_ball(struct ball_data *ball)
{

ball->radius = 20;
ball->x = rand()%(SCREEN_W>>1)+ball->radius;
ball->y = rand()%(SCREEN_H>>1)+ball->radius;
ball->dx = 10;
ball->dy = -10;

}

.

Animation — Ball
Comment

The set_ball() function initializes the structure that stores data about
the ball. This variable is passed to the function by a pointer. The length
of the ball radius is set to 20 pixels. The components of the velocity vector
are set to 10 and −10 pixels respectively. Since the absolute values of the
components are the same, the ball incidence angle is always 45◦. Because
of the signs of these values, the ball will initially move in the direction of
the top-right corner of the screen. The coordinates of the centre of the ball
are chosen randomly in such a way, that the ball is initially drawn entirely
in the top-left quarter of the screen.

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Animation — Ball

int create_pages_array(BITMAP *pages[NUMBER_OF_PAGES])
{

int i;
for(i=0; i<NUMBER_OF_PAGES; i++) {

pages[i] = create_video_bitmap(SCREEN_W,SCREEN_H);
if(pages[i]==NULL)

return -1;
}
return 0;

}

.

Animation — Ball

void destroy_pages_array(BITMAP *pages[NUMBER_OF_PAGES])
{

int i;
for(i=0; i<NUMBER_OF_PAGES; i++)

destroy_bitmap(pages[i]);
}

.

Animation — Ball
Comment

The functions presented in the two earlier slides are described in the pre-
viously discussed program.

.

Animation — Ball

void draw_ball(BITMAP *page, struct ball_data ball)
{

clear_bitmap(page);
circle(page,ball.x,ball.y,ball.radius,makecol(255,255,0));

}

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Animation — Ball
Comment

The draw_ball() function draws a yellow circle to a bitmap, using the
data from the structure passed by its second parameter. By the first
parameter is passed the pointer to this bitmap. Before the circle is drawn,
the colour of each bitmap pixel is set to black.

.

Animation — Ball

void update_ball_position(struct ball_data *ball)
{

ball->x += ball->dx;
ball->y += ball->dy;
if(ball->x-ball->radius<=0||ball->x+ball->radius>=SCREEN_W)

ball->dx = -ball->dx;
if(ball->y-ball->radius<=0||ball->y+ball->radius>=SCREEN_H)

ball->dy = -ball->dy;

}

.

Animation — Ball
Comment

The update_ball_position() function calculates the coordinates of the
ball centre in the next frame of the animation. It uses data from the
structure passed by its parameter. Additionally the function checks if the
ball has hit any of the screen edges. If so, the ball has to bounce off the
edge, which means that it has to change the direction of its movement.
To this end, the following rules are applied:

▶ If the ball has a contact with any of the horizontal edges, the sign of
the second component of the velocity vector will be reversed.

▶ If the ball has a contact with any of the vertical edges, the sign of the
first component of the velocity vector will be reversed.

.

Animation — Ball

void animate_ball(struct ball_data ball, BITMAP *pages[NUMBER_OF_PAGES])
{

int page_number = 0;
clear_keybuf();
while(key[KEY_ESC]==0&&key[KEY_Q]==0) {

BITMAP *active_page = pages[page_number];
draw_ball(active_page,ball);
if(show_video_bitmap(active_page))

return;
update_ball_position(&ball);
page_number = (page_number+1)%NUMBER_OF_PAGES;

}
}

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Animation — Ball
Comment

The animate_ball() function and the animate_rectangle() function
from the previous program are very similar. The while loops inside
these functions stop for the same reason. The difference is, that the
animate_ball() function draws, with the help of the draw_ball() func-
tion, a circle instead of a rectangle. Moreover, the location of the cir-
cle in the next frame of the animation is calculated with the use of the
update_ball_position() function.

.

Animation — Ball

int main(void)
{

if(initialize(GFX_AUTODETECT_FULLSCREEN,WIDTH,HEIGHT)<0)
return -1;

if(create_pages_array(pages))
return -1;

set_ball(&ball);
animate_ball(ball,pages);
destroy_pages_array(pages);
allegro_exit();
return 0;

}
END_OF_MAIN()

.

Animation — Ball
Comment

Inside the main() function the functions defined earlier in the program
are invoked. Before the function that creates the animation is called, the
set_ball() function is invoked. It initializes the structure that stores
information about the circle that represents the ball in the program.

.

Simple Textures

A pattern that covers a surface is called a texture in Computer Graphics.
It turns out that complex, intriguing textures can be created with the help
of simple mathematical expressions. The next program demonstrates some
of these textures.

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Simple Textures

#include<allegro.h>
#include<allegro/keyboard.h>

#define WIDTH 1366
#define HEIGHT 768

.

Simple Textures
Comment

The program starts with preprocessor directives that include header files
necessary for using the basic functions of the Allegro library and the key-
board support. They are followed by definitions of constants that define
the computer display resolution.

.

Simple Textures

int initialize(int card, int width, int height)
{

if(allegro_init()) {
allegro_message("allegro_init(): %s\n",allegro_error);
return -1;

}
if(install_keyboard()) {

allegro_message("install_keyboard(): %s\n",allegro_error);
allegro_exit();
return -1;

}
set_color_depth(32);
if(set_gfx_mode(card,width,height,0,0)) {

allegro_message("set_gfx_mode(): %s\n",allegro_error);
allegro_exit();
return -1;

}
return 0;

}

.

Simple Textures
Comment

The definition of the initialize() function is the same as in the other
presented programs that don’t use the PRNG or the animation support.

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Simple Textures

void wait_for_any_key(void)
{

clear_keybuf();
while(!keypressed())

;
}

.

Simple Textures
Comment

The wait_for_key() function has been described in the part of the lecture
where the sine wave plotting program has been discussed.

.

Simple Textures

void draw_text(BITMAP *bitmap, FONT *font, const char *message)
{

int red = makecol(255,0,0);
textout_centre_ex(bitmap,font,message,SCREEN_W>>1,SCREEN_H>>1,red,-1);

}

.

Simple Textures
Comment

The draw_text() function displays in the middle of the screen a message
in red. The content of this message is passed to the function by its last
parameter.

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Simple Textures

void or_draw(BITMAP* bitmap)
{

int x,y;
for(x=0; x<SCREEN_W; x++)

for(y=0; y<SCREEN_H; y++) {
int expression = (x|y)&255;
int colour = makecol(expression,expression,expression);
putpixel(bitmap,x,y,colour);

}
}

.

Simple Textures
Comment

The or_draw() function draws on the screen a grayscale image consisting
of recurring “tiles”. Colours of the majority of the image pixels are bright. It
is a consequence of the way the colour codes of these pixels are calculated.
In this operation the bitwise or operator — | — is used. Its arguments are
coordinates of a pixel in the image. The result is scaled-down and its final
value ranges from 0 to 255. The scaling can be performed with the help of
the remainder operator, but to speed up the calculations the bitwise and
operator — & — is used instead. The second argument of this operator
is the number 255. The scaled-down result is then used as the value of
arguments passed to the makecol() function that returns the code of the
pixel colour.

.

Simple Textures

void and_draw(BITMAP* bitmap)
{

int x,y;
for(x=0; x<SCREEN_W; x++)

for(y=0; y<SCREEN_H; y++) {
int expression = (x&y)&255;
int colour = makecol(expression,expression,expression);
putpixel(bitmap,x,y,colour);

}
}

.

Simple Textures
Comment

The and_draw() function draws an image similar to the one created by
the or_draw() function, but instead of the bitwise or it uses the bitwise
and operator to calculate the colour of each pixel. The resulting image is
darker then the previous one.

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Simple Textures

void xor_draw(BITMAP* bitmap)
{

int x,y;
for(x=0; x<SCREEN_W; x++)

for(y=0; y<SCREEN_H; y++) {
int expression = (x^y)&255;
int colour = makecol(expression,expression,expression);
putpixel(bitmap,x,y,colour);

}
}

.

Simple Textures
Comment

The xor_draw() function uses the bitwise exclusive or operator — ^ —
to calculate the colour of each pixel. The resulting image is brighter than
the one created with the use of the bitwise and operator, but darker than
the one created with the use of bitwise or operator.

.

Simple Textures

void multiply_draw(BITMAP* bitmap)
{

int x,y;
for(x=0; x<SCREEN_W; x++)

for(y=0; y<SCREEN_H; y++) {
int expression = (x*y)&255;
int colour = makecol(expression,expression,expression);
putpixel(bitmap,x,y,colour);

}
}

.

Simple Textures
Comment

The multiply_draw() function uses the multiplication operator to calcu-
late the colour of each pixel on the screen. The resulting image is different
than those generated by previously described functions. It is called the
moiré pattern.

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Simple Textures

void draw_sierpinski_triangle(BITMAP* bitmap)
{

int x,y;
int white = makecol(255,255,255);
for(x=0; x<SCREEN_W; x++)

for(y=0; y<SCREEN_H; y++) {
if((x&y)==0)

putpixel(bitmap,x,y,white);
}

}

.

Simple Textures
Comment

The last function defined in the program (aside from the main() function)
draws a fractal image called a Sierpiński Triangle. Its name originates from
the surname of its discoverer, a Polish mathematician Wacław Sierpiński.
There are many algorithms for drawing this fractal, but the one applied in
this function is one of the simplest. If the output of bitwise and operator,
which arguments are a pixel coordinates, is zero then the pixel colour will
be set to white. Otherwise it will stay black. This rule is applied to all
pixels on the screen.

.

Simple Textures

int main(void)
{

if(initialize(GFX_AUTODETECT_FULLSCREEN,WIDTH,HEIGHT))
return -1;

or_draw(screen);
draw_text(screen,font,"or");
wait_for_any_key();
and_draw(screen);
draw_text(screen,font,"and");
wait_for_any_key();
xor_draw(screen);
draw_text(screen,font,"xor");
wait_for_any_key();
multiply_draw(screen);
draw_text(screen,font,"*");
wait_for_any_key();
clear(screen);
draw_sierpinski_triangle(screen);
wait_for_any_key();
allegro_exit();
return 0;

}
END_OF_MAIN()

.

Simple Textures
Comment

In the main() function all the other functions defined in the program
are called. After each of them exits (with the exception of the last one)
the name or the symbol of the operator used for drawing the image is
displayed on the screen with the help of the draw_text() function. Then
the program waits until the user presses any key. Before the function that
draws the Sierpiński Triangle is invoked the screen is cleared with the use of
the clear() function. After the fractal is drawn the program once again
waits for the user to press any key. When the user does it the Allegro
library is finalized and the program ends.

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Questions

?

.

The End

Thank You for Your Attention!

.

.

.

Notes

.

Notes

.

Notes

.

Notes

	Introduction
	Fractals
	Calculation of Pi
	Sine Wave
	Animation
	Simple Textures

