Notes

Fundamentals of Programming 1

Introduction to 2D Graphics — Part One
The Allegro Library

Arkadiusz Chrobot

Department of Computer Science

June 3, 2020

Outline
Notes
Introduction
Initialization and Finalization
Drawing Primitives
Keyboard Handling
Animation
Text Displaying
Example
Introduction
Notes
Contemporary computer systems use advanced graphics processing units to
generate real-like images and three dimensional animations. However, this
lecture is about two dimensional graphics. In the second part are presented
simple, yet interesting programs that generate more or less complex images
and animations. The first part of the lecture is about the Allegro library
that provides means for writing software for processing graphics. The li-
brary is based on a similar one, which was available for Atari ST computers.
It is mainly used for creating 2D and even 3D computer games. That's
why it provides subroutines for processing graphics, sound, keyboard input,
mouse input and even creating GUIs. In the lecture only the basic ele-
ments of the library are discussed. More information about it can be found
on the following web page: http://liballeg.org/. The library is open-source
software and can be downloaded from the that page.
Initialization and Finalization
Notes

Any program using the Allegro library has to include the allegro.h header
file. If it needs to process the keyboard input then it also should include the

allegro/keyboard.h header file (the notation means: the keyboard.h
file in the allegro directory). The main subroutine that initializes the
library is the allegro_init macro, which takes no arguments and returns

an int number. If the number is different than zero, then it means that
the initialization has failed. A string explaining the cause of the failure is
stored in a global variable named allegro_error. It is an array of char-

acters. The information can be displayed on the screen with the use of the
allegro_message () function, which is invoked similarly to the printf ()

function. In a text mode it prints the message directly on the screen, while
in the graphical mode it creates a window with the information. It can be
used in the program only before the set_gfx_mode () function is invoked.



http://liballeg.org/

Initialization and Finalization
Notes

The set_color_depth() function allows the programmer to define the
colour depth, i.e. the number of bits allocated in computer memory for

storing information about a single pixel colour. The function takes an int
number as its argument, but only following values are valid: 8, 15, 16, 24
and 32. The last value is used in the example programs. It means that the

information about a colour occupies four bytes in the memory. The first
one stores the level of red, the second one stores the level of green and the

third one stores the level of blue. Those are primary colours, which means
that any other colour can be expressed as a combination of the four. The
last byte stores so-called alpha channel and it describes how opaque the

pixel is. This colour description format is called the RGBA colour space.
The set_color_depth() function returns no value.

Initialization and Finalization
Notes

The set_gfx_mode () function turns on a specific graphical mode. It takes
five arguments. The first one is one of the following constants:

GFX_AUTODETECT — the function tries to turn on a graphical mode of

a specified resolution, in a window or in a full screen,

GFX_AUTODETECT_FULLSCREEN — the function tries to turn on a graph-

ical mode of a specified resolution in a full screen,

GFX_AUTODETECT_WINDOWED — the function tries to turn on a graph-

ical mode of a specified resolution in a window,
GFX_SAFE — the function tries to turn on any graphical mode that will

work,

GFX_TEXT — the function tries to turn on any text mode that will
work.

Initialization and Finalization
Notes

Two next arguments of the set_gfx_mode () function are of int type and

they describe the resolution of the graphical mode. The first one describes
the number of pixels in the horizontal direction, the second one defines

the number of pixels in the vertical direction. Two last arguments are
also of the int type and define the resolution of so-called virtual screen,
which is used for animations. The resolution of this screen is based on

the resolution of the real screen. If a program doesn’t create animations,
then those arguments should be zero. If the set_gfx_mode () function
returns value different than zero then turning on the graphical mode has

failed. A program should call allegro_exit () to finish using the Allegro
library. This function returns no value. The END_OF_MAIN macro ought

to be also used in the program. It has to be expanded just after the
main() function definition. This macro takes no arguments and performs
finalization operations specific to the operating system under which the

program using Allegro library works.

Image Organization
Notes

In the graphical mode the screen is divided into points called pixels, which
stands for picture elements. A program that utilizes the Allegro library can
access the screen using the screen global variable. The data type of the

variable is BIMAP* which means it is a pointer to a BIMAP structure. The
structure represents a set of pixels called a bitmap. The number of pixels

in the screen is determined by two constants:
SCREEN_H — the number of pixels in the vertical direction,

SCREEN_W — the number of pixels in the horizontal direction.

Each pixel has coordinates that are a pair of natural numbers. The origin
of the coordinate system is in the top left corner of the screen. The val-

ues of abscissa grow from the left to the right, and the values of ordinate
grow from the top to the bottom. The maximal value of the ordinate is
SCREEN_H-1. For the abscissa it is SCcREEN_w-1. The origin has coordi-

nates of (0,0).




Drawing Primitives
Notes

A simple element of an image is called a primitive in the computer graphics.

The most primary primitive is a pixel. The putpixel() function sets a
colour of a single pixel. The first argument of the function is a pointer to

a bitmap structure (BITMAP *), where the colour for the pixel should be
changed. Often the screen variable is used as this argument. Two next
arguments are of the int type and they are coordinates of the pixel. The

last argument is also of the int type and it is the code of the colour. It can
be acquired in several different ways. One of them is using the makecol ()

function which takes three int numbers as arguments. Those numbers
are levels of the red, green and blue. Despite their types the values of
those arguments should be ranging from 0 to 255. The value returned

by the function is of the int type and it is the colour code. Other way
of acquiring a colour code is to use predefined colour codes stored in the

palette_color array, which has 256 elements.

Drawing Primitives
Notes

A line segment can be drawn in an image with the use of the line()
function, which takes six arguments. The first one is the pointer to a

bitmap structure. Two next, of the int type are the coordinates of the
starting point of the segment, while other two of the same type are the

coordinates of the ending point. The last argument is the code of the
colour of the segment. A circle can be drawn with the use of circle()
function, which takes five arguments. The first one is a pointer to a

bitmap structure. All other arguments are of the int type. The second
and third argument are the coordinates of the center of the circle. The
forth argument is the length of the circle radius. The last one is the code

of the circle colour. A rectangle, including a square, can be drawn with
the use of the rect () function. It takes six arguments. The first one is

a pointer to a bitmap structure. The rest of the arguments is of the int
type. The second and third argument are the coordinates of the top left
corner of the rectangle. The forth and fifth are the coordinates of the top

right corner. The sixth argument is the code of the rectangle colour. All
introduced functions for drawing primitives return no values.

Keyboard Handling

Notes

The keyboard input handling is initialized by the install_keyboard ()

function, which takes no arguments and returns zero on success or a
nonzero number on failure. The information about pressed keys is not
immediately available to software, but it is first stored in a dedicated RAM

area called the keyboard buffer. The keypressed() function check if
there are any data about pressed keys in the keyboard buffer. It returns an
int number and takes no arguments. If the keyboard buffer is empty the

keypressed () function returns zero, otherwise a nonzero value. Infor-
mation about a single pressed key is returned by the readkey() function

that takes no arguments and returns an int value. The least significant
byte of the value is the ASCII code of the character associated with the
key and the second byte stores the so-called scan code of the key. Often

the function is used for holing the program until the user presses any key.
In that case it is worth to know, that some keys store more then two bytes

of informations in the keyboard buffer, so the function doesn’t always stop
and wait for new data about pressed keys.

Keyboard Handling

Notes

To avoid the issue described in the previous slide the clear_keybuf ()
function should always be called before the readkey() function. The
former takes no arguments and returns no value, but empties the keyboard

buffer. The state of every key can be monitored with the help of the
key array. Each element of the array is of char type and if its value

is different from zero, then the key to which it corresponds is currently
pressed, otherwise it is not. There are defined constants that can be used
as indices for the array. The names of those constants start with the

KEY_ prefix and correspond to the keys on the keyboard. For example the
KEY_ESC constant indicates the element of the key array that describes

the state of the Escape key and the KEY_Q constant indicates the element
associated with the g key. Description of the rest of those constants can
be found in a manual published on the web page which URL is in the first

slide.




Animation
Notes

The Allegro library provides means for quickly drawing subsequent frames
of an animation. The animation should be displayed with the frequency

of at least 24 frames per second, to be perceived by a human brain as
fluent. The effect can be achieved with the help of pages implemented

in the Allegro library. A page is a bitmap on which a single frame of an
animation is drawn. The Allegro library enables fast switching of pages. If
two pages are available, the content of the first one can be displayed on the

screen, and in the meanwhile the next frame of animation can be drawn on
the second page. After the new frame is finished the pages switch places.

The second one is displayed and the first one is used for drawing the next
frame. The process continues as long as the animation lasts.

Animation
Notes

There are a few functions in the Allegro library that handle the pages.

The create_bitmap() function creates a single bitmap. It takes two
arguments of the int type, which define the resolution of the bitmap.

The first one is the number of pixels in horizontal direction, the second
one is the number of pixels in the vertical direction. The function returns
an address of a newly created bitmap or nuLL if it fails. The bitmap has to

be destroyed before the program stops running or changes a display mode.
This can be done with the help of the destroy_bitmap() function, which

takes the pointer to the bitmap structure as its argument and returns
no value. The clear_bitmap() function clears a bitmap by setting all
its pixels to the default, black color. The function takes a pointer to

the bitmap structure and returns no value. The show_video_bitmap()
function displays a bitmap on the screen. It takes a pointer to the bitmap
structure as an argument and returns an int number. If the value is not

a zero then it means the function failed to complete its task.

Text Displaying

Notes

The Allegro library also provides functions for displaying text on the screen
in a graphical mode. In this lecture only two of them are described. The
textout_centre_ex() function takes seven arguments. The first one is

a pointer to a bitmap structure. The second one is a pointer to a structure
describing a font for the text. The pointer is of the FONT * type. The third

argument is a pointer of the char * type to a text. The forth and fifth
arguments are of the int type and they are coordinates on the bitmap
of the middle of the text. The last two arguments are also of the int

type and they are, respectively, the code of the colour of the text and the
code of the colour of the text background. If the value of the last one is
—1 then the background will be transparent. The font variable can be

passed as the second argument of the function. It is a global variable that
points to a structure describing the default font used by the Allegro library

functions. The textout_centre_ex() returns no value.

Text Displaying

Notes

The textprintf_ex() function is another one that places a text on a
bitmap. Similarly to the function described in the previous slide, it takes

as its first argument a pointer to a structure describing the bitmap and as
it second argument the pointer to a structure describing a font. The next

two arguments are of the int type and they are coordinates of the pixel on
the bitmap from which the function should start displaying text. Another
pair of arguments is also of the int type and they are, respectively, the

code of the text colour and the code of its background colour. If the
latter has a value of -1 then the background will be transparent. The

rest of the arguments is the same as for the printf() function. The
textprintf_ex() function returns no value.




Example — a Simple Graphics

Notes
In the previous slides are described only those elements of the Allegro li-
brary that are applied in the example programs presented in the lecture.
Although there are not many of them, they can be useful for creating inter-
esting 2D graphics. As an example in this part of the lecture is presented
a program that draws a random circles in a full screen mode until the user
presses any key on the keyboard. The PRNG is used in the program for
randomly choosing the length of the radius, the coordinates of the middle
point and the colour of each of the circles.
Example — a Simple Graphics
Notes
#include<allegro.h>
#include<allegro/keyboard.h>
#include<stdlib.h>
#include<time.h>
#define WIDTH 1366
#define HEIGHT 768
Example — a Comment
Notes
In the beginning of the program four header files are included. The first two
have been already described in the lecture. The stdlib.h and time.h
header files are included because the program is using the PRNG. The
WIDTH and HEIGHT constants define, respectively, the number of pixels in
horizontal and vertical directions on the screen. In other words they define
the screen resolution in a full screen mode.
Example — a Simple Graphics
Notes

int initialize(int card, int width, int height)

srand (time (NULL)) ;
if (allegro_init()) {

allegro_message("allegro_init(): %s\n",allegro_error);
return -1;

if (install_keyboard()) {

allegro_message("install_keyboard(): %s\n",allegro_error);
allegro_exit();
return -1;

¥

set_color_depth(32);
if (set_gfx_mode(card,width,height,0,0)) {
allegro_message("set_gfx_mode(): %s\n",allegro_error);

allegro_exit();
return -1;
}

return 0;




Example — a Comment
Notes

The initialize() function initializes the PRNG, the Allegro library and
the keyboard input handling. It also defines the colour depth (32 bits)

and switches the monitor to a selected graphics mode. It achieves those
goals by using macros and functions described in the previous slides. The

initialize() function has three parameters of the int type. The first
one is a value determining the graphics card driver. By the parame-
ter is passed one of the constants mentioned in the description of the

set_gfx_mode() function. Values of the two other parameters are defin-
ing the resolution of the image. Two last arguments of the invocation of
the set_gfx_mode () function are zeros, because no animation support is

needed in the program. If one of the Allegro library functions used in the
initialize() function fails the user will be informed about that by the

allegro_message() function, that will display the description of the ex-
ception. Then a function finalizing the Allegro library will be invoked and
the initialize() function will return -1 and exit. If all aforementioned

functions successfully complete their tasks, the initialize() function
will return zero.

Example — a Simple Graphics
Notes

void draw_random_circles(BITMAP* bitmap)
{

clear_keybuf () ;

while(!keypressed()) {
int colour = makecol(rand()7256,rand()%256,rand()7%256) ;
circle(bitmap,rand()%SCREEN_W,rand () %SCREEN_H,rand () %50, colour) ;

Example — a Comment
Notes

The draw_random_circles() function, as its name suggests, is responsi-

ble for the core activity in the program. It returns no value, but it has one
parameter by which a pointer to a bitmap structure is passed. The circles

are drawn on the bitmap. In the function body, before the while loop, the
function responsible for clearing the keyboard buffer is called. Inside the
loop the following steps take place. The colour of a circle is established by

generating values for each of the primary colours. The values ranging from
0 to 255 are chosen randomly and passed as arguments to the makecol ()
function. The function returns the colour code which is assigned to the

colour variable. A circle is draw with the use of the circle() function.
Its first argument is the parameter of the draw_random_circles() func-

tion, which is a pointer to a bitmap structure. The coordinates of the mid-
dle of the circle are chosen randomly in the range from 0 to scREEN_w-1
(abscissa) and from 0 to scREEN_H-1 (ordinate). The length of the radius

is chosen randomly in the range from 0 to 49.

Example — a Comment
Notes

This means that some of the circles are drawn partially “outside” the

screen, due to the coordinates of their centers or are not drawn at all
because the length of their radii is zero.
The while loop stops after the user presses any key on the keyboard.




Example — a Simple Graphics

Notes
int main(void)
{
if (initialize (GFX_AUTODETECT_FULLSCREEN,WIDTH,HEIGHT))
return -1;
draw_random_circles(screen);
allegro_exit();
return O;
}
END_OF _MAIN()
Example — a Comment
Notes
In the main() function first the initialize() function is called. Its first
argument is the GFX_AUTODETECT_FULLSCREEN constant, which means
that the set_gfx_mode() function, invoked inside the initialize()
function, will try to turn on the full screen mode, which resolution is
defined by the wIDTH and HEIGHT constants that are passed as the sec-
ond and the third argument of the initialize() function. Next, the
draw_random_circles() function is invoked. The screen variable is
passed as its only argument. It means that all graphical operations inside
the function are mapped directly to the screen. After the draw_random_circles ()
exits the allegro_exit () function in called, which finalizes the Allegro
library. Please notice, that the END_OF_MAIN macro is expanded after the
end of the main() function definition.
Questions
Notes
?
THE END
Notes

Thank You for Your Attention!




	Introduction
	Initialization and Finalization
	Drawing Primitives
	Keyboard Handling
	Animation
	Text Displaying
	Example

