
.

.

Fundamentals of Programming 1
Terminal Handling — curses Library

Arkadiusz Chrobot

Department of Computer Science

January 22, 2020

.

Outline

Introduction

Initialization and Finalization

Windows Handling

Displaying Text

Keyboard Handling

Colours

Examples

.

Introduction

The C language was created for the Unix operating system, which originally
interacted with the user only via terminals consisting of the keyboard and
the computer monitor (the video display). The monitors were using a text
mode to convey information to the user. In the text mode only characters
can be displayed. The resolution of the monitor’s screen in such a mode is
expressed in the number of characters that can be displayed simultaneously
on the screen. The most commonly used resolution was the 80 × 25,
which means 80 columns and 25 rows. In each row and column only one
character can be displayed. Some of the monitors allowed using colors
for the characters and their background. Contemporary computers display
information on the screen in a graphics mode, but the text mode is still
available. In some cases working with the text mode is more efficient than
working with the graphics mode. Some features offered by the graphics
mode applications, like the Graphical User Interface (GUI) can be also,
to some extend, adapted to the text mode based programs. The curses
library has been created for this purpose.

.

The curses Library

There are at least three versions of the curses library. The ncurses (new
curses) library is available for Unix compatible operating systems, like
Linux. The pdcurses library (public domain curses) is for the MS Win-
dows operating systems family. The original curses library is created for
the Unix system. Modern versions of this library support using a mouse
device and elements known from the GUI, that are in the Unix terminology
called widgets. An addition to the library that contains a set of widgets is
called CDK (Curses Development Kit). In the lecture only the basics fea-
tures of the curses library and its derivatives are presented. A description of
more advanced elements of the libraries can be found, for example, in this
website: http://tldp.org/HOWTO/NCURSES-Programming-HOWTO/.

.

Notes

.

Notes

.

Notes

.

Notes

http://tldp.org/HOWTO/NCURSES-Programming-HOWTO/

.

.

Initialization and Finalization

To use the curses library the program has to include the curses.h header
file. The primary function for initializing the library is the initscr(). It
takes no arguments and returns an address (a pointer to) a structure of
the window type. This value is often ignored, but it is worth checking, if
it’s not null. If it is, then the library initialization has not been successful.
Other functions associated with the library initialization are described in
the next slide.

.

Initialization an Finalization

echo()/noecho() Both functions take no argument and return an int value. The former
enables displaying on the screen characters typed on the keyboard, the
latter has the reverse effect.

keypad() The function enables support for additional keys on the keyboard, like
arrow keys and function keys. It returns an int value and takes two
arguments — a pointer to the window structure (explained latter) and
a bool value, that switches the support on/off.

halfdelay() The function enables a keyboard handling mode in which each typed
character is available to the program immediately. Moreover, the func-
tion takes as an argument a timeout value of the int type. It is the
time expressed in tenths of a second when the keyboard reading func-
tions are waiting for a user to press a key. The function returns an
int value.

curs_set() The function sets the size and shape of the cursor. It takes an int
value as an argument. If it is 0 then the cursor will be invisible. If
the argument is 1 then the cursor will be of the size of the underscore
character. Finally, if the argument is 2 then the cursor will be a block
occupying a single character place on the screen.

All functions from the table return values expressed by two constants: ok
and err. The former indicates that the function has successfully completed
its task, the latter that an exception has occurred.

.

Initialization and Finalization

The endwin() function finalizes the use of the curses library. It takes no
arguments and returns the ok or err constants to indicate the status of
finalizing the library.

.

Main Window

After the curses library is initialized with the use of the initscr() func-
tion, the stdscr global variable becomes available. The variable is a
pointer to a structure of the window type associated with the screen. The
type of the structure is defined in the library. Variables of this type describe
properties of a single window. The stdscr variable points to a structure
that describes the state of the main window, that covers the whole screen.
Some of the library functions allow displaying characters, moving the cur-
sor and many other operations concerning the main window. The starting
point of the main window is the top left corner of the screen with (0, 0)
coordinates. The vertical coordinates grows “downwards” and the horizon-
tal in the “left to right” fashion. The number of rows in determined by
the lines constant and the number of columns is determined by the cols
constant.

.

Notes

.

Notes

.

Notes

.

Notes

.

.

New Windows

The newwin() function creates new windows, which surfaces should be
smaller or equal the size of the main window, and which don’t “stick out”
outside this window. The new windows mustn’t overlap. If a overlapping
windows are needed then an additional library named panel should be used.
However, this library is not be discussed in this lecture. The newwin()
function takes four arguments. The first one is the number of rows in the
new window, the second one is the number of columns, the third and forth
are coordinates of the point in the main window where the top left corner of
the new window should be placed. Please notice, that all the functions
of curses library expect the coordinates to be passed to them in a
reversed order – first the column number, then the row number. The
newwin() function returns the address of a window structure associated
with the new window or null, if it fails to create the window.

.

Deleting a Window

The main window is removed by the endwin() function. The windows
created with the use of the newwin() function are deleted by the delwin()
function. It takes as an argument a pointer to the structure of the window
type associated with the window to be deleted and it returns a value of
the int type, which is interpreted in the same way as the value returned
by other functions from the curses library (the err and ok constants).

.

Window Handling

With the help of the mvwin() function a window can be moved relatively
to the main window. The function takes three arguments – a pointer to the
structure of the window type associated with the window to be moved, and
the new coordinates (y, x) of the top left corner of the window. Windows
can be cleared with the use of the erase() and the werase() functions.
The former clears the main window and doesn’t take any arguments the
latter clears a window associated with a structure pointed by the argument
of the function. In the curses library terminology, a window is just an
area of the screen and it’s invisible. The simplest way of making it visible
is to draw its edges with the use of box() function, which takes three
arguments – a pointer to the structure of the window type associated with
the window, a character which is used for drawing the horizontal edges
of the window and a character that is used for drawing the vertical edges
of the window. Those characters are specified by constants which names
start with the acs_ prefix. However, if a zero is passed as the two last
arguments of the function a default characters will be applied.

.

Refreshing a Window

With every window in the curses library is associated an area in the memory,
which is called a virtual window. Any operation that changes the state of
the window, changes the virtual window first. To make the changes visible
on the screen, the window content has to be refreshed, or in other words,
the changes have to be copied form the virtual window to the window on
the screen. The refresh() function refreshes the main window, while
the wrefresh() function refreshes any window that structure is pointed
by the argument of the function. If the number of windows that requires
refreshing is significant, it is better to call the wnoutrefresh() function
for each of them and then invoke the doupdate() function only once. The
former takes a pointer to a structure associated with the refreshed window
as its argument and the latter takes no arguments. Each described function
returns ok on success or err on failure.

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Cursor Position

The move() function changes the cursor position in the main window. I
takes new coordinates of the cursor as its arguments. The wmove() also
changes position of the cursor but inside a specific window. It takes three
arguments – a pointer to the structure associated with the window and
the coordinates of the cursor inside the window. Those coordinates are
relative to the top left corner of the window. Both function return one of
the two constants: ok or err. To get the current coordinates of the cursor
the getyx macro can be used. It takes three arguments – the pointer to
the structure associated with a window, and two variables of the int type.
The coordinates are store in the variables. If the macro is unsuccessful in
obtaining them it stores -1 in its arguments.

.

Displaying Text

The curses library provides some functions for displaying a single character
or a string of characters on the screen. Aside from performing a similar
operations to their counterparts declared in the stdio.h header file, some
of them allow giving a specific attributes to the displayed characters like
making them bold or printing them in italics. Each function from curses
library that displays a text returns the ok on success or err in case of
failure.

.

Displaying Single Characters

Several functions in the curses library are similar to the putchar() function
from the standard C language library. The simplest ones are the addch()
and waddch(). The former takes only one argument — the character that
should be displayed in the main window. The character is actually displayed
after the main window is refreshed and in the place on the screen where
the cursor is located. The latter function performs a similar operation but
in a window. An address of the structure associated with the window is
passed to the function as its first argument. The second argument is the
character. Both function allow specifying attributes of the character with
the use of the bitwise or operator — |. The first argument of the operator
is the character to be displayed and the second one is a constant specifying
the attribute. There are many such constants defined in the cuses library,
for example: a_bold — the character will be bold, a_underline — the
character will be underlined.

.

Displaying Single Characters

The mvaddch() and mvwaddch() functions perform similar operations to
the functions described in the previous slide. They however take two addi-
tional arguments. The former function takes as a first two arguments the
coordinates of the place in the main window where the character should
be displayed. The latter function aside from the coordinates takes also,
as the first argument, the structure associated with a window where the
character should be displayed. All functions that display single characters
can also display a special characters defined in the curses library by con-
stants which names start with the acs_ prefix, for example: acs_bullet
and acs_larrow. Those constants are also accepted as arguments by
functions that display strings.

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Displaying Strings

The curses library provides counterparts of the puts() function:

addstr() The function takes a string as its argument. The string is displayed in the
main window starting from the place where the cursor currently is and after
the window is refreshed.

addnstr() Performs similar operation to the previous function, but takes additional
argument which is the maximum number of characters in the string that
can be displayed.

waddstr() Similar to the addstr() function but takes as the 1st argument an address
of a structure associated with window where the string should be displayed.

waddnstr() Similar to the waddstr() function but takes an additional, last argument
which is the number of characters in the string to be displayed.

mvaddstr() Similar to the addstr() function, but takes as its two first arguments the
coordinates of the place in the main window from which the string should
be displayed.

mvaddnstr() Similar to the mvaddstr() function but takes an additional forth argument
that limits the number of character of the string that should be displayed.

mvwaddstr() Similar to the mvaddstr() function, but takes as an argument an address of
a structure associated with a window where the string should be displayed.

mvwaddnstr() Similar to mvwaddstr() function, but as the last argument takes the max-
imum number of characters in the string to be displayed.

.

Displaying Strings

The curses library also provides counterparts of the printf() function:

printw() The function takes the same arguments as printf() and displays their
values int the main window after it is refreshed and starting from the current
position of cursor.

wprintw() Similar to printw() but takes as the first argument a pointer to a structure
associated with a window where the values should be displayed.

mvprintw() Similar to printw() but as the two first arguments takes the coordinates of
the place in the main window, from where the string should be displayed.

mvwprintw() Similar to the mvprintw() but takes as the first argument the pointer to a
structure associated with a window where the string should be displayed.

.

Attributes of Characters

The way of specifying attributes for single characters is explained in the
previous slides. It can also be applied to describe attributes of strings
of characters displayed by the addstr() and similar functions. However,
the printw() and derivative functions require using separate functions
for managing attributes. In case of the main window the attrset(),
attron() and attroff() functions can be applied. All those functions
return the ok constant on success or err on failure. Each of them takes
also an int value as an argument. The value is usually defined as a
constant and it is an attribute. The attron() function switches on an
attribute. If it is invoked several times with different attributes, then all
those attributes will be switched on. The attrset() function switches on
a new attribute, but also switches off all attributes that have been already
turned on. The attroff() function just switches off an attribute passed
to it as an argument.

.

Attributes of Characters

There are counterparts of functions described in previous slide, which con-
trol attributes in any window. Their names start with the w letter and they
take two arguments — a pointer to a structure associated with a window
where the attributes have to be changed and an attribute defined usually
by an appropriate constant.

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Keyboard Handling

The curses library provides also functions for controlling and reading the
keyboard input. The functions can read single characters or whole strings.
The behaviour of those functions depends on the initialization of the key-
board handling by the curses library. For example if the noecho() function
is called then the functions reading the input won’t display the typed char-
acters on the screen. However, if the echo() function is invoked, then
those functions will print the input on the screen, but only after a window
where it should be displayed is refreshed.

.

Reading Single Characters

Some versions of the curses library switch on by default a mode where the
characters associated with pressed keys are available immediately to the
program. Other apply the default mode used also by the functions from
the standard C library — each key must be confirmed by the Enter key.
The former mode can be switched on by invoking the cbreak() function,
which takes no arguments and returns ok on success or err on failure.
The standard mode of the keyboard handling can be switched on with the
use of the nocbrake() function, which is invoked in the same way as the
cbreak(). The nodelay() function can switch on or off the nonblocking
mode of handling the keyboard. In nonblocking mode the program doesn’t
wait until the user presses a key. The function takes two arguments — a
pointer to a structure associated with a window where the keyboard input
should be printed and a value of the bool type, which specifies if the mode
should be switched on of off. On success the nodelay() function returns
ok. On failure it returns err. Another function that has an impact on
the keyboard handling is the halfdealy() which is described in previous
slides.

.

Reading Single Characters

Single characters can be read from the keyboard with the use of the
getch() function. It returns the ascii value of pressed key as an int
value and takes no arguments. If the echo is switched on, the function
also prints the read character in the main window at the current position
of the cursor. If the nonblocking mode is turned on and the user hasn’t
pressed any key, then the function returns the err value. The wgetch()
function is similar to the getch() function, but takes as an argument a
pointer to a structure associated with a window where the character should
be displayed if the echo is enabled. The mvgetch() function is also similar
to getch(), but takes as arguments coordinates of the place in the main
window, where the character should be displayed. The mvwgetch() func-
tion is similar to the mvgetch() function but as its first argument takes a
pointer to a structure associated with a window where the character should
be displayed if the echo is enabled.

.

Reading Single Characters

For the values of the special keys like function keys and arrow keys are
defined constants in the curses library. For example the key_left constant
describes the value associated with the key that moves the cursor one
position to the left. There is also a macro named key_f which takes as a
argument the number of a function key and expands to its value. Those
constants and the macro should be used only if handling the special keys
is enabled.

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Reading a String

The curses library provides also the counterparts of the gets() function:

getstr() The function reads a string and stores it in an array of characters passed
to the function as its argument. Using the function can be dangerous
because getstr() doesn’t limit the number of entered characters. It’s
better to avoid using it.

getnstr() Similar to the getstr() function but takes an additional argument, which
is the maximum number of characters that can be read from the keyboard.
It’s a safer replacement of the getstr() function.

wgetstr() Similar to the getstr() function but prints the string from keyboard in
a window which structure is pointed by its first argument. It’s better to
avoid using it.

wgetnstr() The safer implementation of the wgetstr() function. It takes as the last
argument the maximum number of characters that can be read from the
keyboard.

mvgetstr() Similar to the getstr() function. It takes as its two first arguments the
coordinates of a place in the main window from which it should start printing
the string read from the keyboard. Avoid using it.

mvwgetstr() Similar to the mvgetstr() function, but takes as the first argument the
pointer to structure associated with window where the string read from the
keyboard should be printed. Also avoid using it.

.

Reading a String

mvgetnstr() The safer version of the mvgetstr() function. The maximum number of
characters that can be read from the keyboard is passed to it as its last
argument.

mvwgetnstr() The safer version of the mvwgetstr() function. The maximum number of
characters that can be read from the keyboard is passed to it as its last
argument.

All functions described in this and previous slide return ok on success and
err in case of failure.

.

Reading a String

The curses library provides also the counterparts of the scanf() function:

scanw() The function takes the same arguments as the scanf() function. It prints
the keyboard input in main window, provided the echo is enabled.

wscanw() Similar to the scanw() function, but it takes as its first argument a pointer
to the structure associated with a window where the keyboard input should
be displayed, provided the echo is enabled.

mvscanw() Similar to the scanw() function, but as its two first arguments takes a
coordinates of a place in the main window from which it should start printing
the keyboard input, provided the echo is enabled.

mvwscanw() Similar to the mvscanw() function, but takes as the first argument a pointer
to a structure associated with a window in which the keyboard input should
be displayed, provided the echo is enabled.

All the functions described in the table return ok on success or err on
failure.

.

Colours Handling

Colours are attributes of displayed characters. Not all terminals allow us-
ing them. To check if the colours are available in a specific terminal the
has_colors() function can be used. It returns a bool value. If it is true
then the terminal can display colours. After checking the availability of
colours the start_color() function should be invoked. It takes no argu-
ments and returns ok if it is able to initialize colours handling. Otherwise
it returns err. The number of available colours is given by the colors
constant. However, the curses library doesn’t allow using a single colour.
Pairs of colors have to be configured before colours can be applied. The
first colour in the pair is the colour of a character, the second is the colour
of the character’s background. The maximum number of colour pairs is
given by the color_pairs constant. The init_pair() function config-
ures a single pair of colours. It takes three arguments of the short int
type. The first is the number of the pair and it should be greater than
zero. The next two are the number of the character colour and the number
of its background colour.

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Colours Handling

The init_pair() function returns ok on success or err on failure. The
color_pair macro allows the programmer to chose a pair of colors. It
takes as its argument the number of the pair and returns the colours in
the pair as an attribute that can be assigned to displayed characters with,
for example, the use of the attron() function. The table contains the list
of constants that define colours and their description.

color_black black colour
color_red red colour

color_green green colour
color_yellow yellow colour

color_blue blue colour
color_magenta crimson-like colour

color_cyan greenish-blue colour
color_white white colour

.

Examples

The source code of all presented examples is available on the course web
page. They are prepared to be used with the Code::Blocks programming
environment. All of them, except for one are also presented in full in
the slides. To preserver the legibility of the source code of programs the
exception handling is reduced to the necessary minimum — if a function
fails to complete its task then the program aborts. The better way of
handling an exception would be to reset the terminal setting to their original
values and then abort the program. The programs from the web page are
configured to be used with the ncurses library. To make them work with
the pdcurses library some modifications are necessary.

.

First Example — A Simple Program

#include<curses.h>
#include<locale.h>

int main(void)
{

if(setlocale(LC_ALL,"")==NULL)
return -1;

if(initscr()==NULL)
return -1;

printw("Hello, World!\n");
if(refresh()==ERR)

return -1;
getch();
if(endwin()==ERR)

return -1;
return 0;

}

.

Comment to the First Example

The program initializes the curses library, prints the famous “Hello, World!”
sentence and waits until the user presses any key, then it finalizes the curses
library and exits. The “Hello, World!” sentence is displayed after the main
window is updated with the use of refresh() function. Waiting for the
user to press any key is accomplished with the use of the getch() func-
tion. The setlocale() function used at the beginning of the program is
declared in the locale.h header file and is used for setting the localiza-
tion of the program. Since the program displays messages in English the
function usage is optional.

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Second Example — Reading Keys

#include<curses.h>
#include<locale.h>

void print_keys(void)
{

int key;
do {

key = getch();
printw("The %c key was pressed.\n",key);
refresh();

} while(key!='q');
}

.

Second Example — Reading Keys

int main(void)
{

if(setlocale(LC_ALL,"")==NULL)
return -1;

if(initscr()==NULL)
return -1;

if(noecho()==ERR)
return -1;

print_keys();
if(endwin()==ERR)

return -1;
return 0;

}

.

Second Example — a Comment

In the main() function the curses library is initialized and the echo is
disabled with the use of the noecho() function. This means that the
getch() function is not displaying the characters associated with the keys
it reads in the main window. The aforementioned function is invoked inside
the do…while loop in the print_keys() function. The loop terminates
after the user presses the q key. The information about pressed keys is
displayed in the main window with the use of the printw() function.
Please notice, that pressing some of the keys, like for example the arrow
keys causes the program to print more than one character on the screen.

.

Third Example — Moving the Cursor
#include<curses.h>

void move_cursor(WINDOW *window)
{

int x=0,y=0;

getyx(window,y,x);
int key = 0;
do {

key = getch();
switch(key) {

case KEY_LEFT:
x=(x+(COLS-1))%COLS;
move(y,x);
break;

case KEY_RIGHT:
x=(x+1)%COLS;

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Third Example — Moving the Cursor

move(y,x);
break;

case KEY_UP:
y=(y+(LINES-1))%LINES;
move(y,x);
break;

case KEY_DOWN:
y=(y+1)%LINES;
move(y,x);
break;

case KEY_F(3):
getyx(window,y,x);
printw("x: %d, y: %d",x,y);
break;

.

Third Example — Moving the Cursor

case KEY_F(2):
y=x=0;
erase();
break;

}
refresh();

} while(key!='q');
}

.

Third Example — Moving the Cursor

int main(void)
{

if(initscr()==NULL)
return -1;

if(keypad(stdscr,TRUE)==ERR)
return -1;

move_cursor(stdscr);
if(endwin()==ERR)

return -1;
return 0;

}

.

Third Example — a Comment

The program allows the user to move the cursor around the whole screen
with the use of the arrow keys. The curses library is initialized and finalized
in the main() function. Also the keypad() function is invoked there.
It initializes the handling of special keys by appropriate functions. The
movement of the cursor is programmed in the move_cursor() function
which takes as an argument the pointer to the structure associated with the
main window. Inside the function, the getyx macro is used for getting the
coordinates of the cursor current position. Those coordinates are stored
in the x and y variables. Then the key variable is declared and initialized.
The variable is used for storing a code of a pressed key returned by the
getch() function. The latter function is invoked in the do…while loop.
That code is recognized inside the switch statement. If its value is equal
to the value of one of the key_right, key_left, key_up or key_down
constants then the cursor is moved accordingly by one place.

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Third Example — a Comment

The movement consists in calculating coordinates of a new position of
the cursor and invoking the move() function with those coordinates as its
arguments. The modular arithmetics is used for calculating the coordinates
of the next position of the cursor, so if the cursor “passes” one of the edges
of the screen, it will appear on the other side of it. If the user presses the
f2 key, then the program will display coordinates of the previous position of
the cursor. The coordinates are obtained with the use of the getyx macro
and displayed with the use of the printw() function. Pressing the f3 key
causes the program to clear the main window by invoking the erase()
function and to zero out the variables that store the coordinates of the
cursor. Outside the switch statement but inside the do…while loop the
refresh() function is called for updating the content of the main window.
The loop terminates after the user presses the q key.

.

Forth Example — Windows

#include<curses.h>
#include<locale.h>

void move_window(WINDOW *window, int x, int y)
{

int key=0;
do {

key = getch();
if(key==' ') {

x=(x+1)%10;
y=(y+1)%10;
erase();
refresh();
if(mvwin(window,y,x)==ERR)

printw("Window out of the allowed area!\n");
if(wrefresh(window)==ERR)

printw("Window update failure!\n");
}

} while(key!='q');
}

.

Forth Example — Windows

int main(void)
{

if(setlocale(LC_ALL,"")==NULL)
return -1;

if(initscr()==NULL)
return -1;

if(curs_set(0)==ERR)
return -1;

WINDOW *window = newwin(5,10,0,0);
if(window==NULL)

return -1;
if(box(window,0,0)==ERR)

return -1;
if(refresh()==ERR)

return -1;
if(wrefresh(window)==ERR)

return -1;
move_window(window,0,0);
if(delwin(window)==ERR)

return -1;
if(endwin()==ERR)

return -1;
return 0;

}

.

Forth Example — a Comment

The program localization and initialization of the curses library is performed
in the main() function. Then the cursor is made invisible with the use of
the curs_set() function. Next, a window of the size 5× 10 is created in
the top left corner of the screen with the use of the newwin() function.
Its edges are drawn with the use of the box() function. Then the program
updates the content of the main window and the newly created window.
Next, the move_window() function is invoked. The pointer to the struc-
ture associated with the newly created window is passed to the function,
together with the coordinates of the left top corner of the window. Inside
the function, in the do…while loop the ascii code of a character associ-
ated with the pressed key is read with the use of the getch() function.
If it is a space then coordinates of the new position of the top left corner
of the window are calculated. Next the main window is cleared and the
mvwin() function is invoked, that moves the newly created window.

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Forth Example — a Comment

The program checks if the function completed its task correctly, although
the terminal would have to have a very small resolution for making the
window impossible to move. The window is visible in the new position
after refreshing its content with the wrefresh() function. The result of
invoking the function is also checked. The loop terminates after the user
presses the q key. Before finalizing the curses library the program invokes
the delwin() function to delete the window created by the newwin()
function.

.

Fifth Example — Colours

#include<curses.h>
#include<locale.h>

void init_color_pairs(void)
{

short int i,j, pair_counter=1;
for(i=COLOR_BLACK;i<COLOR_WHITE;i++)

for(j=COLOR_BLACK;j<COLOR_WHITE;j++) {
if(init_pair(pair_counter,i,j)==ERR) {

printw("Failed to initialize the %d pair of colours!\n",
pair_counter);
refresh();

}
pair_counter++;

}
}

.

Fifth Example — Colours

void test_colors(void)
{

short int i;
for(i=1; i<COLOR_PAIRS; i++) {

attron(COLOR_PAIR(i));
printw("Test of the %d pair of colours.\n",i);
refresh();
attroff(COLOR_PAIR(i));
if(i%24==0) {

getch();
erase();

}
}

}

.

Fifth Example — Colours

int main(void)
{

if(setlocale(LC_ALL,"")==NULL)
return -1;

if(initscr()==NULL)
return -1;

if(curs_set(0)==ERR)
return -1;

if(!has_colors())
return -1;

if(start_color()==ERR)
return -1;

init_color_pairs();
printw("There are %d colours and %d colours pairs.\n",COLORS,COLOR_PAIRS);
refresh();
getch();
erase();
test_colors();
getch();
if(endwin()==ERR)

return -1;
return 0;

}

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Fifth Example — a Comment

The program localization and initialization of the curses library is performed
in the main() function. Also the cursor is made invisible. Next, the
program checks if colours are available in the terminal with the use of
the has_colors() function. If so, then the colour handling is initialized
with the use of the start_color() function and then pairs of colours are
configured by the init_color_pairs() function which is defined in the
program. It configures all possible colour pairs with the use of nested for
loops. After the function completes its task the program informs the user
about the number of available colours and pairs of colors and then waits
until the user presses any key. The waiting is performed with the use of
the getch() function. If the user presses a key then the main window is
cleared and the test_colors() function is called.

.

Fifth Example — a Comment

Inside the for loop the test_colors() function switches on a pair of
colours for a displayed text, with the use of attron() function and next
print the text with the use of printw() and updates the contents of the
main window by invoking the refresh() function. Next, it switches off the
pair of colours with the use of the attroff() function. The if statement
inside the loop causes the program to stop and wait for the user to press
any key after each 24 printed lines. If the user presses the key, the program
clears the main window. After the test_colors() function finishes the
program finalizes the curses library and also exits.

.

Sixth Example — the Game of Life

The next example is a modified version of the game of life program that
has been presented in the lecture on the multidimensional arrays. In this
slides only the modified parts of the program source code are presented.
The full version of this program is available on the course website. The
only part of code that is changed and not presented here is the beginning,
where the stdio.h header file is replaced by the curses.h header file.

.

Sixth Example — the Game of Life

char *error_msg[] = {
"OK",
"initscr() error",
"noecho() error",
"halfdealy() error",
"start_color() error",
"init_pair() error",
"curs_set() error",
"endwin() error"

};

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Sixth Example — a Comment

The error_msg array contains messages that describe exceptions caused
by curses library functions.

.

Sixth Example — the Game of Life
int initiate(void)
{

if(!initscr())
return -1;

if(noecho()==ERR)
return -2;

if(halfdelay(2)==ERR)
return -3;

if(has_colors()!=FALSE) {
if(start_color()==ERR)

return -4;
if(init_pair(1,COLOR_GREEN,COLOR_BLACK)==ERR ||

init_pair(2,COLOR_BLACK,COLOR_BLACK)==ERR)
return -5;

}
if(curs_set(0)==ERR)

return -6;
return 0;

}

.

Sixth Example — a Comment

The initiate() function is responsible for initializing the curses library.
The function also switches off the echo and check colours availability. If
there are available, then the color handling is enabled and two pairs of
colours are initialized (green characters on a black background and black
characters on a black background). The visibility of the cursor is turned
off and the terminal is switched to a mode where the keyboard reading
functions wait 0.2 seconds for the user to press any key. This mode is
enabled with the use of the halfdelay() function.

.

Sixth Example — the Game of Life

WINDOW *create_board_window(void)
{

int middle_y = LINES/2;
int middle_x = COLS/2;
int half_board = SIZE/2;
int start_x = middle_x - SIZE;
int start_y = middle_y - half_board;
return newwin(SIZE,2*SIZE,start_y,start_x);

}

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Sixth Example — a Comment

The create_board_window() function crates a window in the main win-
dow where the state of the game is displayed. First the coordinates of the
middle point of the main window are calculated and stored in the middle_x
and middle_y variables. Next, the half of the length of the board edge is
calculated and stored in the half_board variable. Then, the coordinates
of the top left corner of the board window are calculated and stored in
the start_x and start_y variables. The width of the window is twice as
big as the height, to make the board look on the screen as a square. It is
necessary because the width of the columns is twice as small as the height
of the rows. The create_board_window() function returns the address
of a structure associated with the board window.

.

Sixth Example — the Game of Life

void print_board(unsigned char board[SIZE][SIZE], WINDOW *board_window)
{

unsigned int i,j;

for(i=0; i<SIZE; i++)
for(j=0; j<SIZE; j++)

if(board[i][j]) {
(void)wattron(board_window,COLOR_PAIR(1));
(void)mvwaddch(board_window,i,2*j,ACS_BULLET);
(void)wattroff(board_window,COLOR_PAIR(1));

} else {
(void)wattron(board_window,COLOR_PAIR(2));
(void)mvwaddch(board_window,i,2*j,' ');
(void)wattroff(board_window,COLOR_PAIR(2));

}
}

.

Sixth Example — a Comment

The print_board() function is responsible for displaying the state of the
game which is stored in the matrix passed to the function by the board
parameter. The pointer to a structure associated with the board window is
passed to the function by its second parameter. Inside the nested for loops
the value of every element of matrix is verified. If its value is not equal
zero then it is displayed on the screen as a green dot (the acs_bullet
constant) on a black background. Otherwise it is displayed as a black space
on a black background. It won’t be visible, but displaying it is necessary
because in the previous iteration of the game the cell represented by the
element could be alive and in the current iteration it should be dead, so
its previous state should be overwritten by the current one. Please notice,
that the horizontal coordinates of the places in the window are multiplied
by two to compensate the ratio of the width to the hight of the window.
The void keyword in parentheses before function calls means that the
value returned by those functions is ignored.

.

Sixth Example — the Game of Life

int main(int argc, char **argv)
{

int error = initiate();
if(error!=0) {

if(error<-1)
(void)endwin();

fprintf(stderr,"%s\n",error_msg[-error]);
return -1;

}
WINDOW *board_window = create_board_window();
if(!board_window) {

printw("board_window() error\n");
return -2;

}
if(argc==2) {

if(!strcmp(argv[1],"blinker"))
create_blinker(board);

else if(!strcmp(argv[1],"ten_in_row"))
create_ten_in_row(board);

else
seed_board(board);

} else
seed_board(board);

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Sixth Example — the Game of Life

while(getch()==ERR) {
print_board(board,board_window);
get_next_step(board);
wrefresh(board_window);

}

if(delwin(board_window)==ERR) {
printw("delwin() error\n");
return -3;

}

if(endwin()==ERR) {
fprintf(stderr,"%s\n",error_msg[7]);
return -4;

}

return 0;
}

.

Sixth Example — a Comment

The main() function in this version of the program has been also mod-
ified. The initiate() function is called inside the main() function. If
the former returns a value different than zero then a message about an
exception associated with the initialization of curses library is displayed. If
the returned value is less than −1 then the endwin() function is called
and the program aborts. If the initialization is successful then a board
window is created with the use of the create_board_window() function.
If the function fails the program aborts. The while loop is also modified.
In the body of the loop a modified version of the print_board() function
and the wrefresh() function are called. In the header of the loop the
condition is changed. The loop is performed until the user presses a key.

.

Sixth Example — a Comment

The state of the keys on the keyboard is inspected in the condition of
the while loop with the use of the getch() function, which returns err
until the user presses a key. The halfdelay() function called inside the
initiate() function causes the getch() to wait 0.2 seconds for the user
to press a key in each iteration of the while loop. Hence, the program
displays subsequent states of the game with such a frequency. The user
sees an animation of the state. Its speed can be changed by modifying the
value of the halfdelay() function argument. After the loop finishes the
board window is deleted with the use of delwin() function, the curses
library is finalized and the program exits. The program runs only if the
terminal it uses has at least 32 lines (the number of elements in a single
dimension of the board). If the condition is not met, then it displays only
a message about an exception.

.

Thanks

Many thanks to Grzegorz Łukawski, PhD, Leszek Ciopiński, MSc and Ma-
ciej Lasota, MSc for helping me to complete the Polish version of this
slides.

.

Notes

.

Notes

.

Notes

.

Notes

.

.

Questions

?

.

The End

Thank You for Your attention!

.

.

.

Notes

.

Notes

.

Notes

.

Notes

	Introduction
	Initialization and Finalization
	Windows Handling
	Displaying Text
	Keyboard Handling
	Colours
	Examples

