
.

.

Fundamentals of Programming 1
Files

Arkadiusz Chrobot

Department of Computer Science

January 13, 2020

1 / 69

.

Outline

Introduction

File Handling in the C Language

Examples

2 / 69

.

Introduction

Complex computer programs tend to generate and store huge amounts
of data. The size of the data often exceeds the capacity of the ram.
Moreover, after the power supply is switched off all the information stored
in the ram vanishes. To store the valuable data of significant size efficiently
and durably a mass storage devices have to be used. The problem with
such a solution is that every type of a mass storage device has a different
method for accessing the data that it stores. To unify the access to the
information stored in different types of mass storages and in the ram, a
special data structure called a file was created.

3 / 69

.

Using a File
Using a file can be described by a following flowchart:

..

start

.

file opening

.

read/write

.

file closing

. stop.

exceptions handling

An exception is any situation that requires a special handling by the pro-
gram because it may lead to errors in data processing. As an example
please consider a situation in which program tries to read a file that does
not exist.

4 / 69

.

Notes

.

Notes

.

Notes

.

Notes



.

.

File Handling in the C Language

The C language offers two ways of file handling: a low-level one with the
use of so-called file descriptors and a high-level one that involves using so-
called streams. In this lecture only the second way is discussed, because it
offers many facilities, like automatic buffering of data that are read from or
written to the file. A stream is a variable of the file * type1. All functions
necessary for using the streams are declared in the stdio.h header file,
that has to be included in the program.

1To be more specific, the variable is a pointer to the structure of the file type.
5 / 69

.

Standard Streams

Variables of the file * type are used in the C language not only for file
handling. They have a few other applications. If the stdio.h header file
is included in the program, then three variables of such a type become
instantly available. Names of those variables are: stdin, stdout and
stderr. The first one is also called the standard input stream and it is
by default associated with the keyboard. The second one is referred to as
standard output stream and by default is associated with the screen. The
third one is also associated by default with the screen and it is described as
the standard error stream. It is used for displaying all diagnostics messages,
i.e. those which are generated as a result of exceptions handling.

6 / 69

.

File Opening
The file opening is an activity that starts file handling in a program. In
the C languages it associates a stream variable with the file. The opening
is performed by the fopen() function which takes two arguments. The
first one is a path to the file, and the second one consists of the following
characters:

Mode Description
r Read only opening. The file pointer points to the be-

ginning of the file.
r+ Read and write opening. The file pointer points to the

beginning of the file.
w Creating and opening the file for writing only. If the file

exists then its content will be erased. The file pointer
points to the beginning of the file.

w+ As above, but it is possible to read the file.
a Opening for appending. The file pointer points to the

end of the file. If the file doesn’t exist, it will be created.

7 / 69

.

File Opening
Continuation

Mode Description
a+ As previously, but reading the file is possible.
b The opened file is interpreted as a binary file. Most

modern operating systems ignores this mode.

The mode characters from the table may be combined, provided they are
not mutually exclusive (for example writing and appending mode cannot
be used together). The b mode informs the function that it opens a
binary, not a text file. Contemporary operating systems rarely need such
information. The value returned by the fopen() function has to be stored
in the variable of the file * type. If the variable has a null value after
the function returns then it means that some exception has occurred and
opening of the file failed.

8 / 69

.

Notes

.

Notes

.

Notes

.

Notes



.

.

Exceptions Handling

If the fopen() function signals an exception occurrence, then the code of
the exception can be recognized with the use of the ferror() function.
The function takes a variable of file * type as an argument and returns
zero if no exception has occurred or a nonzero value, otherwise. The
exception code can be zeroed out with the use of the clearerr() function
which also takes the stream as an argument. However, this function should
be used with caution because it also clears the end-of-file flag. Both
function are used for handling exceptions raised not only by fopen() but
also other functions that operate on streams. The textual description of
an exception can be displayed on the screen with the use of the perror()
function. The function takes as an argument a string which is the name of
the function that caused the exception and prints a message that explains
what happened. Both the functions (ferror() and perror()) should
be called right after the invocation of a function that is likely to rise an
exception.

9 / 69

.

Writing Files
Writing to a Text File

Writing to a text file2 can be accomplished with the use of the fputc()
function which takes two arguments — the character or its ascii code (as
a value of int type) and the stream associated with the file. The function
returns the saved character or the eof (End-Of-File) constant in case
of a failure. A string of characters (except the '\0' character) may be
written to the file with the use of the fputs() function, which takes two
arguments — the array of characters containing the string and the stream.
The function returns the number of characters saved to the file or the eof
in case of a failure.

2A text file is a file that contains characters coded in the ascii or similar code and
can be edited with any text editor.

10 / 69

.

Writing Files
Writing to a Text Files — Continued

The data of different types can be converted to a string and saved to a
file with the use of the fprintf() function, which is invoked similarly to
the printf(), but as a first argument it takes a stream associated with
file. The function returns the number of characters written to the file3.
It is also applied when a message should be written to the standard error
stream.

3The printf() returns the number of displayed characters, but usually this informa-
tion is ignored in a program.

11 / 69

.

Writing Files
Writing to a Binary File

The fwrite() function is used for saving data to a binary file4. The
function takes four arguments – pointer to the variable that contains the
data to be written5, the size of a single data item in the buffer, the number
of data items to be written and the stream. It returns the number of saved
data items. If it is smaller than the value of the third argument then a
writing exception has occurred.

4The binary file contains data written in the same form as they are stored in the
ram, in other words as bit patterns, which usually are not ascii characters.

5Such a variable is usually called a buffer.
12 / 69

.

Notes

.

Notes

.

Notes

.

Notes



.

.

Reading Files

The basic issue that has to be solved when reading a file is when to finish
this activity. The C language standard defines the feof() function for
streams, which signals reaching the end of file. It takes a stream as an
argument and returns an int number. If the number is not a zero then
it means that there is no more data in the file and the reading should be
ended. The feof() function is usually invoked in condition expressions
of the condition controlled loops, which is demonstrated in the example
programs.

13 / 69

.

Reading Files
Reading a Text File

The fgetc() function reads a single character from a text file. It takes a
stream as an argument and returns an int value which is an ascii value of
the character or the eof constant if the end of file has been reached. The
fgets() function reads a string from the text file. It takes three arguments
— an array of characters in which the string should be stored, the number
of elements of the array (it is equal to the size of the array) and a stream
associated with the file. The function reads at least one character less
than the array size. If the data were saved in the file with the use of the
fprintf() function then they could be read with the use of the fscanf()
function and an appropriate formatting string as its argument. Aside from
the formatting string the function has to take as many arguments as the
formatting string indicates. Those additional arguments are addresses of
variables in which the read data should be stored. The function returns the
number of items from the file that it successfully matched to the formatting
string and assigned to the buffers (aforementioned variables). In case of
failure it returns the eof constant.

14 / 69

.

Reading Files
Reading a Binary File

If the data were written to the file with the use of the fwrite() function
then they can be read by the fread() function. The function takes the
same arguments as the fwrite(), but they have a different meaning. The
data from file are placed in the variable which address is passed as a first
argument of the function. The fread() function returns the number of
actually read data items from the file. If the number is smaller than the
value of the third argument of the function then there are no more data
to read in the file or an exception has occurred.

15 / 69

.

File Closing

The fclose() function closes an opened file. It takes a stream associated
with the file and returns a nonzero value in case of a failure.

16 / 69

.

Notes

.

Notes

.

Notes

.

Notes



.

.

Other File Handling Functions

A file pointer is associated with every opened file that is handled with the
use of streams. It serves a similar role as an index in an array. The file
pointer has been already mentioned in the fopen() modes table. Func-
tions that read and write files increase the value of file pointer indirectly
and automatically. If the value of the file pointer always grows then the
file content is accessed sequentially. The random access allows the pro-
gram to increase or decrease the value of the file pointer, which means
that the file may be used in similar fashion as an array. The value of the
file pointer can be modified with the use of the fseek() function. It takes
three arguments — a stream associated with the file, the offset (a long
int number), and one of the following constants: seek_set — the offset
will be stored in the file pointer, seek_cur — the offset will be added to
the current value of the file pointer and seek_end — the offset will be
added to the currently last position in the file. The function returns -1 in
case of a failure.

17 / 69

.

Other File Handling Functions

The rewind() function changes the value of the file pointer so it points
at the beginning of the file. It takes a stream as an argument and does
not return any value. The ftell() function returns the current value of
the file pointer (a long int value). The value of the pointer may also be
modified with the use of fgetpos() and fsetpos() functions, but they
are not discussed any further in this lecture.

18 / 69

.

Other File Handling Functions

While being written the data do not go directly to the file, but may be
stored in a special buffers created automatically in the ram. The reason
for that is that the access time to a mass storage device is usually very
long, so the program postpones the write operations as long as it can. For
emptying the buffers the fflush() function is used. The function takes
a stream as an argument and returns zero in case of a success or the eof
constant in case of a failure. Clearing the buffers does not mean that the
data are immediately saved to the mass storage device, because also the
operating system may buffer them. The fclose() function empties the
same buffers as the fflush() function, so there is no need for calling the
latter before the former. There are other functions in the standard C library
that make it possible to manage the buffers but they are not discussed in
this lecture.

19 / 69

.

File Management Functions

In the standard C library are also defined functions for the file management.
A few of them is described here, in this slide. The remove() function
deletes files and directories. As an argument it takes a string which is a
name (path) of the file or directory to be removed. In case of failure it
returns -1. The rename() function changes the name of the file or its
localization in the mass storage device. It takes two arguments, both are
strings. The first one is the old name or localization of the file, the second
one is the new name or localization of the file. The function returns 0 in
case of a success or -1 in case of failure.

20 / 69

.

Notes

.

Notes

.

Notes

.

Notes



.

.

First Example
Writing a Single Characters to a Text File

The first example is a program that saves 100 pseudorandom lowercase
letters to a text file and then it reads them from the file and displays on
the screen. The program also demonstrates how the exceptions can be
detected and reported. However, the exception handling in this program
is not perfect. For example an opened file is not closed when a writing
exception occurs.

21 / 69

.

First Example

#include<stdio.h>
#include<stdlib.h>
#include<time.h>

#define LENGTH 100

22 / 69

.

First Example
Comment

The code presented in the previous slide contains the preprocessor direc-
tives that include header files to the program. Aside from the stdio.h
file also the stdlib.h and time.h files are included, because the program
uses the prng. The LENGTH constant defines the number of elements in
arrays of characters that store diagnostics messages about exceptions.

23 / 69

.

First Example

void display_exception_message(int code)
{

char exception_description [][LENGTH] = {
"A file opening for writing exception.",
"A file writing exception.",
"A file closing exception.",
"A file opening for reading exception."

};
fprintf(stderr,"%s\n",exception_description[-code-1]);

}

24 / 69

.

Notes

.

Notes

.

Notes

.

Notes



.

.

First Example
Comment

The function in the previous slide displays messages that describe excep-
tions that may occur in other functions performed by the program. The
messages are stored in the exception_description array. They are dis-
played by the fprintf() function, which takes as its first argument the
standard error stream. To calculate the index of the exception message the
display_exception_message() function uses an exception code passed
by its parameter. If another function returns 0 then it means that its task
has been successfully completed. The values of the exception code that
signal a failure start with the -1. To get a correct array index from an ex-
ception code the function has to change the sign of the code and subtract
one. The -1 exception code means that opening of file for writing was
unsuccessful, -2 means that there was a problem with writing the file etc.

25 / 69

.

First Example

int fill_file(char *file_name)
{

FILE *file = NULL;
srand(time(0));
file = fopen(file_name,"w");
if(file==NULL)

return -1;
int i;
for(i=0; i<100; i++)

if(fputc('a'+rand()%('z'-'a'+1),file)==EOF)
return -2;

if(fclose(file)!=0)
return -3;

return 0;
}

26 / 69

.

First Example
Comment

The fill_file() function writes 100 lowercase letters to a text file. The
name of the file is passed to the function by the parameter. The function
returns an exception code. If the code is zero, then it means that the
function completed successfully its task. Any nonzero value of the code
means that some exception has occurred. First, the function initializes the
stream variable and the prng. Next, it opens the file. The operation
creates the file if it doesn’t exist or erases its content, if it does. Should
the operation fail the function returns -1 and terminates. Otherwise it
chooses randomly 100 lower-cases and writes them one by one to the file.
Each time it checks if the writing exception has occurred. If that happened
the function would return -2 and quit. After the function finishes the loop
in which the letters are saved to the file, it closes the file. If the operation
fails the function returns -3, otherwise it returns 0.

27 / 69

.

First Example

int read_file(char *file_name)
{

FILE *file = fopen(file_name,"r");
if(file==NULL)

return -4;
while(!feof(file)) {

char data_from_file = fgetc(file);
if(data_from_file!=EOF)

printf("%c ",data_from_file);
}
if(fclose(file)!=0)

return -3;
return 0;

}

28 / 69

.

Notes

.

Notes

.

Notes

.

Notes



.

.

First Example
Comment

The read_file() function reads characters from the file and displays
them on the screen. The name of the file is passed to the function by
the parameter. First, the function opens the file for reading. In case of
failure, it returns -4 and terminates. Otherwise, the function performs the
while loop inside which it reads the file, character by character, with the
use of the fgetc() function and displays the letters on the screen. The
!feof(file) condition in the loop is equivalent to the feof(file)==0
expression. If inside the loop the fgetc() function returns the eof value,
then the character will not be displayed on the screen, because it is not
a letter, but a character that signals the end of the file. After the loop
ends the read_file() function closes the file, checking if the operation is
successful. If it isn’t the function returns a corresponding exception code.
Otherwise it returns zero.

29 / 69

.

First Example

int main(void)
{

int result = fill_file("test.txt");
if(result<0)

display_exception_message(result);
result = read_file("test.txt");
if(result<0)

display_exception_message(result);
return 0;

}

30 / 69

.

First Example
Comment

In the main() function, first the fill_file() function is invoked and
then the read_file() function is called. The number returned by each
of the functions is stored in the result variable. If it is negative the
display_exception_message() function is invoked with the number as
its argument.

31 / 69

.

Second Example

The second program allows the user to save strings with spaces and other
characters to the text file. The writing ends after the user enters the
“stop” word. Similarly to the previous example, the exception handling is
not perfect.

32 / 69

.

Notes

.

Notes

.

Notes

.

Notes



.

.

Second Example

#include<stdio.h>
#include<string.h>

#define LENGTH 100
#define SENTENCE_LENGTH 81

33 / 69

.

Second Example
Comment

Aside from the stdio.h, also the string.h header file is included because
functions that perform operations on strings are used in the program. The
length constant has the same meaning as in the previous program. The
sentence_length constants defines the number of elements in the char-
acter array that is used for storing strings that are saved to the file. Eighty
is usually the maximal number of characters that can be displayed in one
row on the screen.

34 / 69

.

Second Example

void display_exception_message(int code)
{

char exception_description [][LENGTH] = {
"A file opening for writing exception.",
"A file writing exception.",
"A file closing exception.",
"A file opening for reading exception."

};
fprintf(stderr,"%s\n",exception_description[-code-1]);

}

35 / 69

.

Second Example
Comment

The display_exception_message() function is defined in exactly the
same way as in the previous example.

36 / 69

.

Notes

.

Notes

.

Notes

.

Notes



.

.

Second Example

int write_sentences_to_file(char *file_name)
{

char sentence[SENTENCE_LENGTH] = "\0";
FILE *file=fopen(file_name,"w");
if(file==NULL)

return -1;
while(strncmp(sentence,"stop",SENTENCE_LENGTH-1)!=0)
{

scanf("%80[^\n]s",sentence);
while(getchar()!='\n');
if(fprintf(file,"%s\n",sentence)!=strlen(sentence)+1)

return -2;
}
if(fclose(file)!=0)

return -3;
return 0;

}

37 / 69

.

Second Example
Comment

The write_sentences_to_file() functions saves strings entered by user
to a text file. The name of the file is passed by the parameter. The
sentence variable, which is declared at the beginning of the function, is a
local variable for storing a single string entered by user. It is initialized with
an empty string. The write_sentences_to_file() function opens the
file for writing. If the operation if successful then in the loop the functions
reads the strings entered by user and writes them to the file with the use
of the fprintf() function. The function checks if the writing operation is
successful by comparing the number of characters returned by fprintf()
with the length of the entered string plus one. The internal while loop
removes the new line character (associated with the Enter key) from the
standard input stream, so the scanf() function can correctly read the
next string. After the user enters the “stop” word, the external loop is
terminated and the file is closed. If any of the file operations fails the
function returns a negative number. Otherwise it returns zero.

38 / 69

.

Second Example

int read_sentences_from_file(char *file_name)
{

char sentence[SENTENCE_LENGTH] = "\0";
FILE *file = fopen(file_name,"r");
if(file==NULL)

return -4;
while(feof(file)==0) {

fscanf(file,"%[^\n]s",sentence);
if(feof(file)==0) {

puts(sentence);
while(fgetc(file)!='\n');

}
}
if(fclose(file)!=0)

return -3;
return 0;

}

39 / 69

.

Second Example
Comment

The read_sentence_from_file() function reads from the file strings
saved by the previously presented function and displays them on the screen.
The name of the text file is passed to the function by the parameter. In
the function there is also declared a local character array which is initial-
ized with an empty string. The function opens the file and then, in a
loop, reads its content line by line and displays on the screen. After each
call of the scanf() function, the fgetc() function is called inside the
internal loop, provided that the end of the file has not been yet reached.
Its job is to read the new line characters from the file and move the file
pointer to the beginning of the next string, so the subsequent scanf()
call may read it. As in previously described functions, any exception causes
the read_sentence_from_file() to return a negative number and ter-
minate. If all operations are completed successfully the function returns
zero.

40 / 69

.

Notes

.

Notes

.

Notes

.

Notes



.

.

Second Example

int main(void)
{

int result = write_sentences_to_file("test.txt");
if(result!=0)

display_exception_message(result);
result = read_sentences_from_file("test.txt");
if(result!=0)

display_exception_message(result);
return 0;

}

41 / 69

.

Second Example
Comment

The main() function is implemented in a similar fashion as in the previous
example.

42 / 69

.

Third Example

The third example saves structures containing pseudorandom coordinates
of points in the three dimensional space to a binary file. The program also
demonstrates the operation of appending data to an existing file. As in
the previous examples the exception handling in the program is simplified.

43 / 69

.

Third Example

#include<stdio.h>
#include<stdlib.h>
#include<time.h>

#define LENGTH 100

44 / 69

.

Notes

.

Notes

.

Notes

.

Notes



.

.

Third Example
Comment

The beginning of the program is the same as in the case of the first pro-
gram.

45 / 69

.

Third Example

void display_exception_message(int code)
{

char exception_description[][LENGTH] = {
"A file opening for writing exception.",
"A file writing exception.",
"A file closing exception.",
"A file opening for appending exception.",
"A file appending exception."
"A file opening for reading exception."

};
fprintf(stderr,"%s\n",exception_description[-code-1]);

}

46 / 69

.

Third Example
Comment

In the display_exception_message() function two additional messages
have been added to the exception_description array, which inform
about exceptions associated with the operation of appending data to the
existing binary file.

47 / 69

.

Third Example

struct coordinates {
double x,y,z;

};

48 / 69

.

Notes

.

Notes

.

Notes

.

Notes



.

.

Third Example
Comment

The previous slide presents the definition of the type of structures that are
written to the binary file.

49 / 69

.

Third Example
int write_to_file(char *file_name)
{

FILE *file = fopen(file_name,"w");
if(file==NULL)

return -1;
int i;
for(i=0; i<10; i++) {

const int RANGE = 20;
struct coordinates point;
point.x = rand()%RANGE;
point.y = rand()%RANGE;
point.z = rand()%RANGE;
if(fwrite(&point,sizeof(point),1,file)!=1)

return -2;
}
if(fclose(file)!=0)

return -3;
return 0;

}

50 / 69

.

Third Example
Comment

The write_to_file() function fills the fields of a structure, declared as
a local variable, with the numbers ranging from 0 to 19 (chosen randomly)
and it writes the structure to the file with the use of the fwrite() function.
This activity is repeated 10 times. After each call of the fwrite() function
the write_to_file() function checks what value has returned the former
one. It should be equal to the value of the third argument of the fwrite(),
which defines the number of data items that ought to be written to the
file. In this program it is equal one, since only one data item is written to
the file by each fwrite() call. The file is opened before writing happens
and closed after it is finished. The write_to_file() function returns
a negative number if any exception occurs or zero if all file operations
complete successfully.

51 / 69

.

Third Example

int add_to_file(char *file_name)
{

FILE *file = fopen(file_name,"a");
if(file==NULL)

return -4;
struct coordinates point;
const int RANGE = 40;
point.x = rand()%RANGE;
point.y = rand()%RANGE;
point.z = rand()%RANGE;
if(fwrite(&point,sizeof(point),1,file)!=1)

return -5;
if(fclose(file)!=0)

return -3;
return 0;

}

52 / 69

.

Notes

.

Notes

.

Notes

.

Notes



.

.

Third Example
Comment

The add_to_file() function has a similar task to the write_to_file()
function, but this time the file is opened for appending. It means that
if it exists then its content it not removed and the file pointer is set to
its end. The values for the fields of the structure are chosen randomly,
ranging from 0 to 39. The structure is appended to the existing data in
the file. Those operations are performed only once.

53 / 69

.

Third Example

int read_from_file(char *file_name)
{

FILE *file = fopen(file_name,"r");
if(file==NULL)

return -6;
int i=0;
struct coordinates point;
while(fread(&point,sizeof(point),1,file)==1)

printf("Point %d -- x: %f, y: %f z: %f\n",
++i,point.x, point.y, point.z);

if(fclose(file)!=0)
return -3;

return 0;
}

54 / 69

.

Third Example
Comment

The read_from_file() function opens the binary file for reading, reads
all structures from the file and displays their content on the screen. The
name of the file is passed to the function with the use of the parameter.
Values of fields of a single structure are displayed in one row. After the
function finishes reading it closes the file. Reaching the end of the file
is tested by comparing the value returned by the fread() function with
the value of its third argument. If they differ then it means that there are
no more data in the file to read. The exception handling is implemented
similarly to previously presented functions.

55 / 69

.

Third Example

int main(void)
{

srand(time(0));
int result = write_to_file("data.bin");
if(result!=0)

display_exception_message(result);
result = add_to_file("data.bin");
if(result!=0)

display_exception_message(result);
result = read_from_file("data.bin");
if(result!=0)

display_exception_message(result);
return 0;

}

56 / 69

.

Notes

.

Notes

.

Notes

.

Notes



.

.

Third Example
Comment

The main() function is defined in a similar way as in the previously de-
scribed examples, but there are also new elements. There are: the invo-
cation of the function that appends a new structure to the end of the file
and initialization of the prng.

57 / 69

.

Forth Example

The forth and last example program writes lowercase letters and pseudo-
random natural numbers to a text file. Those values are divided into lines
that contain one letter and three numbers. The values in a line are sep-
arated by commas. Also, a slightly different approach to the exception
handling is used in the program. It is more strict than in the previously de-
scribed programs, but also has drawbacks. For example the function that
reads the file is not informed if the function that writes the file successfully
finished its job.

58 / 69

.

Forth Example

#include<stdio.h>
#include<stdlib.h>
#include<time.h>

#define LENGTH 50

59 / 69

.

Forth Example
Comment

The same header files are included to the program as in the previous ex-
ample. The length constant defines the number of elements of character
arrays that are used as parameters of most of the program’s functions. By
those parameters is passed the name of the file.

60 / 69

.

Notes

.

Notes

.

Notes

.

Notes



.

.

Forth Function
void write_to_file(char file_name[LENGTH])
{

srand(time(0));
FILE *file = fopen(file_name,"w");
if(file!=NULL) {

int i;
for(i=0; i<5; i++) {

fprintf(file,"%c %d %d %d\n",
(char)('a'+rand()%('z'-'a'+1)),

rand()%5, rand()%7, rand()%3);
if(ferror(file)) {

perror("fprintf()");
break;

}
}
if(fclose(file))

perror("fclose()");
}

}

61 / 69

.

Forth Function
Comment

The write_to_file() function initializes the prng, opens a text file
(which name is passed by the parameter) for writing and writes five lines
to the file. Each line contains a pseudorandom lowercase letter and three
natural number chosen randomly from different ranges. Please notice, that
no writing operation is performed if the file is not opened correctly. The re-
sult of a writing operation is tested with the use of the ferror() function
after each call to the fprintf() function. The file is being closed regard-
less if the writing operations finished successfully, or not. However, the
closing operation is not performed if the file was not opened successfully.
The messages about exceptions are displayed by the perror() function.

62 / 69

.

Forth Example

void read_from_file(char file_name[LENGTH])
{

char letter;
int first_number, second_number, third_number;
FILE *file = fopen(file_name,"r");
if(file!=NULL) {

while(!feof(file)) {
fscanf(file,"%c %d %d %d\n",&letter,&first_number,

&second_number,&third_number);
if(ferror(file)) {

perror("fscanf()");
break;

}
printf("%c %d %d %d\n",letter,first_number,

second_number,third_number);
}
if(fclose(file))

perror("fclose()");
}

}

63 / 69

.

Forth Example
Comment

The read_from_file() function reads a text file which name is passed
by the parameter and displays the content of the file on the screen. The
file is first opened by the function for reading and next it is read in a loop,
line by line, with the use of the fscanf() function. Please observe, that
the formatting string used in the fscanf() function call is the same as in
the fprintf() function invocation from the previously described function.
Also, the exception handling is implemented similarly.

64 / 69

.

Notes

.

Notes

.

Notes

.

Notes



.

.

Forth Example

int main(void)
{

write_to_file("numbers.txt");
read_from_file("numbers.txt");
return 0;

}

65 / 69

.

Forth Example
Comment

The main() function in this program is very simple. It contains only the
invocations of the two previously described functions, that don’t return
any values.

66 / 69

.

Thanks

Many thanks to Grzegorz Łukawski, PhD and Leszek Ciopiński, MSc for
helping me to complete the Polish version of this slides.

67 / 69

.

Questions

?

68 / 69

.

Notes

.

Notes

.

Notes

.

Notes



.

.

The End

Thank You for Your attention!

69 / 69

.

.

.

.

Notes

.

Notes

.

Notes

.

Notes


	Introduction
	File Handling in the C Language
	Examples

