POLITECHNIKA SWIETOKRZYSKA

Aplikacje mobilne — wyktad
9

Budowanie i publikacja (EAS) aplikacji React Native
z Expo

Mateusz Pawetkiewicz
1.10.2025

1. Assets: Ikony aplikacji i ekrany powitalne (Splash)

Ikony aplikacji: Kazda aplikacja mobilna potrzebuje ikony, widocznej na ekranie gtéwnym
urzadzenia i w sklepach. W Expo konfigurujemy ikone w pliku konfiguracyjnym (np. app.json).
Najprosciej jest przygotowac obraz PNG 1024x1024 (kwadrat bez zaokraglonych rogéw) i
dodaé go jako wtasciwos$é "icon". Przyktad konfiguracji ikony w app.json:

{
"expo": {

"icon": "./assets/images/icon.png"
}
}

Expo (EAS Build) na podstawie tego jednego pliku generuje wymagane rozmiary ikon dla
platformy iOS (wymagane rézne rozdzielczosci). Dla Androida warto skorzystaé z funkcji
Adaptive Icon — mozna zdefiniowa¢ osobno warstwe pierwszoplanowg (foreground) i tfo
(background), by ikona dobrze wygladata w réznych ksztattach narzucanych przez system. W
pliku app.json stuzy do tego klucz "android":{"adaptivelcon": ...} pozwalajgcy wskazac osobny obraz
pierwszoplanowy (foregroundimage), monochromatyczny (monochromelmage) oraz kolor tta
(backgroundColor lub obraz tta). Dla starszych Androidéw (bez adaptive icons) mozna
opcjonalnie zdefiniowac "android.icon" — pojedynczg ikone, ktdra tgczy warstwe tta i
pierwszoplanowa.

Na iOS od Expo SDK 54 obstugiwany jest format Icon Composer — mozna przygotowac
katalog .icon zawierajgcy zestaw ikon wygenerowany np. narzedziem Apple Icon Composer i
wstawic go do projektu, podajac sciezke w ios.icon. Alternatywnie (i we wczesniejszych SDK)
wystarczy pojedynczy plik PNG 1024x1024 — Expo wygeneruje z niego pozostate rozmiary
podczas budowania aplikacji. Pamietaj, aby ikona wypetniata caty kwadrat i nie zawierata
przezroczystych obszaréw ani wtasnych zaokraglen (system sam doda maske). Mozna
réwniez przewidzie¢ rézne warianty ikony na iOS (ciemny, jasny tryb, tryb tint) za pomoca
obiektu zamiast $ciezki (w kluczu ios.icon), jednak najczesciej wystarcza jedna uniwersalna
ikona.

Ekran powitalny (Splash Screen): Ekran powitalny to pierwsze, co widzi uzytkownik
uruchamiajgc aplikacje — wyswietla sie podczas tadowania aplikacji. W Expo za konfiguracje
splash screenu odpowiada biblioteka expo-splash-screen (automatycznie dotgczana).
Konfiguracje splash screenu definiujemy réwniez w app.json poprzez plugin expo-splash-
screen, wskazujgc m.in. tto i obraz logo. Przyktad konfiguracji w app.json z uzyciem wtyczki
(config plugin) expo-splash-screen:

{
"expo": {
"plugins": [
["expo-splash-screen", {

"backgroundColor": "#232323",

"image": "./assets/images/splash-icon.png",

"dark": {
"image": "./assets/images/splash-icon-dark.png",
"backgroundColor": "#000000"

b

"imageWidth": 200
1
]
}
}

W powyzszym przyktadzie ustawilismy kolor tta (backgroundColor), $ciezke do obrazu
wyswietlanego na splash (image), a takze opcjonalny wariant dark mode z innym obrazem i
ttem (dark.image i dark.backgroundColor). Klucz imageWidth pozwala dostosowac rozmiar
wyswietlanego obrazu (w pikselach). Mozemy réwniez osobno okresli¢ wtasciwosci dla
platform Android i iOS korzystajgc z pdl "android" i "ios" wewnatrz konfiguracji pluginu.
Przyktadowo, mozemy na Androidzie uzy¢ innego obrazu lub innego trybu skalowania
(resizeMode: contain, cover lub native) niz na iOS.

Rozdzielczosci i format splash: Najlepiej przygotowac obraz/logo splash w formacie PNG
(Expo wspiera tylko PNG dla splash), z przezroczystym ttem jesli chcemy by kolor tta byt
oddzielnie definiowany. Zalecana minimalna wielko$¢ grafiki to 1024x1024 dla
uniwersalnosci, jednak czesto wykorzystuje sie tez wieksze grafiki tta. Dzieki config plugin
Expo automatycznie ustawi wymagane zasoby natywne w Android Manifest i iOS
LaunchScreen storyBoard podczas budowy aplikacji (przy uzyciu EAS Build) — w trybie
zarzgdzanym nie musimy recznie tworzy¢ plikéw w Xcode/Android Studio. Uwaga: Podczas
testowania splash screenu nie uzywamy Expo Go ani development build — Expo Go
wyswietla wiasny ekran (ikone Expo) zamiast naszego splash, a dev-client tez ma witasny
splash, co moze zaburzac test. Nalezy testowad splash na buildach typu preview lub
production.

Kontrola czasu wyswietlania splash: Domyslnie splash screen znika automatycznie, gdy
aplikacja jest gotowa, ale Expo pozwala to kontrolowa¢ manualnie poprzez API SplashScreen z
biblioteki expo-splash-screen. Mozemy np. wydtuzy¢ czas trwania splash screenu, aby poczekac
na zatadowanie waznych zasobdw (np. danych z API). Stuzy do tego metoda
SplashScreen.preventAutoHideAsync(), wywotywana zaraz na starcie aplikacji (przed
renderowaniem). Nastepnie, gdy jestesmy gotowi, wywotujemy SplashScreen.hideAsync() aby
ukry¢ ekran powitalny. Wazne, by nie trzymac splash screenu dfuzej niz to konieczne — dobre
praktyki nakazujg jak najszybciej pokazaé uzytkownikowi interfejs wtasciwej aplikacji.
Przyktad (w kontekscie komponentu React):

import * as SplashScreen from 'expo-splash-screen’;
import { useEffect, useState } from 'react’;

// Zapobiegamy automatycznemu schowaniu splash:
SplashScreen.preventAutoHideAsync();

export default function App() {
const [appReady, setAppReady] = useState(false);

useEffect(() => {
async function prepareResources() {
// tutaj np. load fonts, fetch data etc.
await loadlmportantData();
setAppReady(true);
}

prepareResources();

LAY

useEffect(() => {
if (appReady) {
SplashScreen.hideAsync(); // ukryj splash, gdy gotowe

}
1, [appReady]);

if (lappReady) {
return null; // nie renderuj nic (pozostaje splash)

}

return <MainAppContent />;

}

W ten sposéb splash screen pozostanie widoczny dtuzej, dopdki appReady nie zmieni sie na
true i nie ukryjemy go recznie.

Animacja zanikania: Od SDK 52 Expo wspiera opcje animacji przy przejsciu ze splash do
aplikacji — mozna ustawic zanikanie (fade) i czas trwania animacji. Stuzy do tego metoda
SplashScreen.setOptions({ fade: true, duration: 1000 }), ktérg mozemy wywotaé przed
renderowaniem aplikacji. duration to czas animacji w milisekundach (np. 1000ms = 1s). Ta
opcja jest opcjonalna — jesli jej nie ustawimy, splash zniknie natychmiast po zatadowaniu
aplikacji.

Podsumowujac, wiasciwe przygotowanie assets w Expo obejmuje: ikone aplikacji w
wymaganych rozdzielczosciach (najlepiej 1024x1024 PNG jako zrddto, plus konfiguracja w
app.json), ekran powitalny skonfigurowany przez expo-splash-screen (tto i obraz
dostosowane do jasnego/ciemnego motywu), a takze ewentualng kontrole czasu
wyswietlania splash poprzez APl expo-splash-screen (jesli potrzebujemy opdznic start
aplikacji do zatadowania zasobdw).

2. Expo Application Services (EAS): budowanie i aktualizacje
OTA

Expo Application Services (EAS) to zestaw ustug chmurowych Expo usprawniajgcych
budowanie i dystrybucje aplikacji. W sktad EAS wchodzg m.in. EAS Build (ustuga budowania
natywnych plikéw IPA/AAB/APK w chmurze) oraz EAS Submit (automatyczne zgtaszanie
buildéw do sklepdw). EAS zastepuje dotychczasowe klasyczne komendy expo build:ios / expo
build:android, oferujgc bardziej elastyczne i potezne mozliwosci.

EAS Build vs klasyczne expo build

Dawniej Expo oferowato expo build dla aplikacji w managed workflow, co pozwalato
zbudowac apk/ipa bez konfiguracji Xcode/Android Studio. EAS Build jest nastepca i
rozwinieciem tej ustugi — umozliwia budowanie kazdej aplikacji React Native (zaréwno
managed Expo, jak i bare React Native) w chmurze. Dzieki EAS Build mozemy korzystac z
bibliotek natywnych spoza standardowego zestawu Expo — EAS generuje tzw. development

clients lub custom builds, ktére zawierajg te natywne moduty. W praktyce oznacza to, ze jesli
kiedys musielismy "ejectowac" z Expo by uzy¢ jakiejs biblioteki (np. Bluetooth, WebRTC, In-
App Payments), to teraz mozemy pozosta¢ w Expo i dotgczy¢ natywne moduty poprzez
config plugins oraz zbudowacd apk/ipa przez EAS. EAS Build generuje mniejsze binaria
zawierajgce tylko potrzebne natywne moduty (co zmniejsza rozmiar aplikacji).

Kluczowe réznice miedzy starym expo build a eas build:

e Obstuga typu projektu: expo build dziatat tylko dla projektéw Expo zarzadzanych. EAS
Build dziata dla wszystkich projektow RN, takze tych z wtasnym kodem natywnym
czy config pluginami.

o Profile budowania: expo build miat domysine ustawienia; EAS Build pozwala na
definicje réznych profiléw budowania (development, preview, production) w pliku
eas.json — o tym wiecej za chwile.

o Dystrybucja wewnetrzna: EAS natywnie wspiera internal distribution — fatwe
udostepnianie buildow testowych poza sklepem. Na iOS jest to rozwigzane przez
automatyczne tworzenie provisioning profile typu Ad Hoc (nie trzeba recznie
dodawaé UDID urzadzen, EAS moze wygenerowac profil ad-hoc). Na Androidzie EAS
umozliwia wygodne generowanie plikow .apk do testow (zamiast tylko .aab).

e Integracja z CI/CD: EAS CLI jest przystosowane do uzytku w pipeline (polecenia JSON,
webhooki, etc.), co utatwia automatyzacje. expo build byto raczej narzedziem
interaktywnym.

e Zarzadzanie credenciales: EAS przechowuje i automatycznie zarzadza kluczami i
certyfikatami. Jesli wczesniej robiliSmy expo build, mozemy uzy¢ tych samych
certyfikatow/keystore w EAS — narzedzie samo wykryje istniejgce dane na serwerach
Expo. EAS potrafi tez samo wygenerowacd keystore Android czy certyfikaty i
provisioning profile iOS przy pierwszym buildzie, prowadzgc dewelopera przez
interaktywny setup.

¢ Budowanie na najnowszych SDK: Expo przestato rozwija¢ expo build i zapowiedziato
jego wygaszenie w 2023, wiec nowe wymagania (np. architektury, nowe Xcode/SDK)
sg wspierane w EAS. Przyktadowo EAS zapewnia aktualne obrazy build z nowymi
Xcode zgodnie z wymaganiami Apple (cos, czego stary expo build by nie dostat, gdyby
nie byt aktualizowany).

Podsumowujac: EAS Build to nowoczesna ustuga Cl/CD od Expo, ktdra upraszcza proces
kompilacji aplikacji mobilnej — od momentu surowego kodu JavaScript az do gotowego
artefaktu (.apk, .aab, .ipa) w sklepie czy do testow. Pozwala to deweloperom skupic sie na
pisaniu kodu, a ciezar kompilacji przenosi na chmure Expo.

Wymagania i konfiguracja EAS Build (eas.json, profile)

Aby skorzystac z EAS Build, potrzebujemy zatozy¢ konto Expo (darmowe) i zainstalowac EAS
CLI (co najmniej v3+). Logujemy sie w CLI komendg eas login, a nastepnie przeprowadzamy
jednorazowg konfiguracje projektu komendg eas build:configure. Ta komenda wygeneruje plik
eas.json W gtownym folderze projektu z przyktadowg konfiguracjg profili budowania.

Domyslnie Expo tworzy trzy profile builddw w eas.json: development, preview i production.
Kazdy profil to zbidr ustawien okreslajacych jak ma zostaé zbudowana aplikacja. Przyktad
domyslnego eas.json utworzonego przez Expo:

{
"build": {
"development": {
"developmentClient": true,
"distribution": "internal"

b
"preview": {
"distribution": "internal"

b

"production": {}
}
}

Profil "development": przeznaczony do buildéw deweloperskich. Ma ustawienie
"developmentClient": true CO 0znacza, ze do aplikacji zostanie dotgczony expo-dev-client — czyli
nasz build bedzie dziatat podobnie do Expo Go, umozliwiajagc wczytywanie projektu w trakcie
developmentu. Taki build development zawiera narzedzia developerskie (debug menu itp.) i
nigdy nie jest wysytany do sklepéw. Dodatkowo "distribution": "internal" 0znacza, ze build
bedzie przygotowany do dystrybucji wewnetrznej (testy) — np. na iOS wygeneruje sie plik .ipa
typu Ad Hoc (mozliwy do wgrania na urzadzenia testowe, ale nie do App Store). Na
Androidzie distribution: internal spowoduje zbudowanie APK (zamiast AAB) dla tatwej instalacji
bezposrednio.

Uwaga: Dla i0OS mozna w ramach dev-buildéw robié tez buildy na Simulator (Mac).
Ustawienie ios.simulator: true w profilu spowoduje, ze EAS wygeneruje aplikacje w formacie
.app do uruchomienia w iOS Simulator zamiast .ipa. Czesto tworzy sie osobny profil np.
"development-simulator" jesli potrzebujemy obu wariantéw (urzadzenie fizyczne vs symulator).

Profil "preview": profil posredni — build testowy przypominajgcy produkcyjny, ale nie
przeznaczony do sklepu. Nie zawiera juz expo-dev-client (brak developmentClient w
konfiguracji), wiec jest to normalna aplikacja bez menu debug etc., ale nadal z distribution:
"internal" czyli do dystrybucji testowej (APK lub iOS Ad Hoc/TestFlight). Uzywamy go do
udostepniania wersji testerom, zespotowi czy klientowi — aby mogli sprawdzi¢ aplikacje w
warunkach zblizonych do produkcji (np. z realnym wydajnosciowo kodem, realnymi
uprawnieniami, ale jeszcze nie opublikowang publicznie). Czesto na iOS profil preview
korzysta z dystrybucji TestFlight (co tez jest wewnetrzng dystrybucjg Apple, cho¢ formalnie
odbywa sie przez App Store Connect). Na Androidzie profil preview zwykle daje APK, bo na
Google Play wewnetrzne testy mozna tez robic¢ inaczej.

Profil "production": to profil do budowania wersji sklepowej. Domysinie w eas.json moze by¢
pusty, bo jesli nie zdefiniujemy opcji, EAS i tak zbuduje wariant Release dla sklepu. Build
produkcyjny nie zawiera narzedzi deweloperskich i jest gotowy do publikacji (na iOS
podpisany certyfikatem dystrybucyjnym + profilem App Store, na Androidzie generujemy
zwykle plik .aab do Google Play). Production buildy sg jedynymi, ktdre trafiajg do
publicznych sklepéw. Mogg tez stuzy¢ do TestFlight (beta testow w App Store) lub
wewnetrznych testéw Google Play, ale zazwyczaj do testéw wystarczy profil preview.

Warto zauwazy¢, ze profile w eas.json to tylko umowne nazwy — mozna je nazwac dowolnie i
miec wiecej niz trzy. W dokumentacji Expo sugeruje ten podziat na trzy typy, bo jest on
powszechnie uzyteczny, ale jesli potrzebujemy np. osobnego profilu dla testéw end-to-end,
mozemy go dodac. Profile mogg korzysta¢ z mechanizmu dziedziczenia (extends), np.
"preview": { "extends": "production", ... } zeby unikng¢ duplikacji konfiguracji.

Przy konfiguracji profili warto tez pamietaé o ustawieniach specyficznych dla platform: w
eas.json mozna pod kluczem "android" lub "ios" w obrebie profilu ustawic¢ np. "buildType": "apk"
(Android — wymuszenie APK zamiast AAB) czy "simulator": true (iOS — build na symulator) itp..
Opcje wspdlne dla obu platform (np. distribution, developmentClient) mozna daé na poziomie
gtéwnym profilu.

Uruchamianie buildéw: Majac skonfigurowane profile, wywotujemy budowanie poleceniem
eas build --profile <nazwa> --platform <android|ios> (lub --platform all dla obu jednoczesnie). Jesli
pominiemy --profile, domyslnie uzyty zostanie profil production. EAS CLI wyswietli logi na
biezaco i link do strony expo.dev z podglagdem naszego builda. Mozna réwnoczesnie sledzié
postep na stronie Build Dashboard expo
(https://expo.dev/accounts/ {user} /projects/ {project} /builds). Po zakoriczeniu, otrzymamy
informacje gdzie pobrac artefakt (plik .apk/.aab lub .ipa). EAS CLI potrafi tez automatycznie
poczekaé na zakonczenie builda (domysinie) lub mozemy przerwad i sprawdzic status pdzniej
komendg eas build:list.

Podpisywanie i credenciales: Przy pierwszym buildzie EAS poprosi nas o dostarczenie lub
wygenerowanie kluczy:

e Android: Keystore (plik .jks z kluczem prywatnym do podpisywania APK/AAB). EAS
moze wygenerowac nowy lub uzyé istniejgcego (jesli wczesniej korzystaliSmy z expo
build:android, Expo ma go w chmurze).

e i0S: Certyfikat dystrybucyjny (.p12) + Provisioning Profile. EAS moze zalogowac sie do
naszego Apple Developer i automatycznie wygenerowaé wymagane certyfikaty i
profile (wymagane podanie Apple ID, hasta lub klucza API). Jesli wczesniej uzywalismy
expo build:ios, EAS moze pobraé te same profile/certyfikaty.

Wszystkie te wrazliwe dane EAS przechowuje zaszyfrowane na swoich serwerach, wiec przy
kolejnych buildach nie musimy juz ich podawac recznie.

EAS Submit — wysytanie aplikacji do sklepow

Po zbudowaniu aplikacji (zwtaszcza produkcyjnej) nastepnym krokiem jest publikacja w
sklepie. EAS Submit to ustuga/komenda ktdra automatyzuje ten proces z linii polecen.
Pozwala wysta¢ gotowy plik .apk/.aab na Google Play lub .ipa na App Store Connect jednym
poleceniem: eas submit --platform ios|android —profile <nazwa> (profil submit, inny niz build).
Mozna skonfigurowacé w eas.json sekcje "submit" analogicznie do buildéw, np. poda¢ wrazliwe
dane jak Apple ID, team ID, itp., aby nie wpisywac ich za kazdym razem. EAS Submit wysle
binaria na serwery Expo, a stamtgd bezposrednio do odpowiedniego sklepu, dzieki czemu
mozemy dokonac¢ submitu nawet z systemu nie-macOS (np. z Windows czy Linux wystac
aplikacje na App Store). To zmniejsza liczbe narzedzi do instalacji lokalnie i pozwala

integracje z Cl (mozna np. z GH Actions zainicjowac¢ submit). W praktyce EAS Submit na
Androidzie korzysta z Google Play APl (wymaga wczesniej wygenerowania tokenu
serwisowego w Google Play Console), a na iOS uzywa Transporter API Apple.

Warto zaznaczyé, ze EAS Submit zaktada, iz wczesniej zbudowalismy aplikacje odpowiednio:
np. do eas submit --platform ios uzywamy paczki .ipa zbudowanej profilem produkcyjnym
(podpisanej certyfikatem produkcyjnym), a do Google Play .aab. EAS CLI potrafi tez
automatycznie wzigc¢ ostatni build produkcyjny i go wystaé, upraszczajgc kroki (flagg --latest).

Over-The-Air updates (OTA) z expo-updates i EAS Update

OTA (Over-The-Air) updates pozwalajg dostarcza¢ uzytkownikom aktualizacje aplikacji bez
koniecznosci pobierania nowej wersji ze sklepu. W przypadku Expo méwimy o aktualizacji
kodu JavaScript i assetéw przez internet, wykorzystujgc biblioteke expo-updates. Dzieki temu
mozemy np. szybko rozpropagowac poprawki krytycznych bugéw lub drobne zmiany Ul bez
przechodzenia przez proces review w App Store/Google Play.

W Managed Workflow Expo tradycyjnie OTA odbywaty sie poprzez komende expo publish i
tzw. release channels. Obecnie, w ekosystemie EAS, mechanizm ten nazywa sie EAS Update i
opiera sie o kanaty (channels) oraz wersje sSrodowiska (runtime versions).

Konfiguracja OTA w projekcie: Gdy uzywamy EAS Build, biblioteka expo-updates jest
automatycznie uwzgledniona, ale musimy jg skonfigurowaé. Najprostszym sposobem jest
uruchomienie eas update:configure. Ta komenda dodaje do naszego app.json (lub app.config.js)
odpowiednie wpisy konfiguracyjne:

e updates.url — URL do serwera z aktualizacjami (domysinie serwery Expo).
¢ runtimeVersion — wersja srodowiska aplikacji, okreslajgca kompatybilno$é natywna.

Ponadto eas update:configure zmodyfikuje plik eas.json, przypisujgc profile preview i production
do domysinych kanatéw OTA (zwykle o tej samej nazwie co profile). W efekcie, kazdy build
wykonany z danym profilem bedzie "nastuchiwat" na konkretnym kanale aktualizacji. Np.
profil production moze miec "channel": "production", a profil preview "channel": "staging" (lub
"preview") — oznacza to, ze aplikacje zbudowane tym profilem bedg otrzymywa¢ aktualizacje
publikowane na odpowiednich kanatach. Przykfad fragmentu eas.json z ustawieniem kanatéw
dla profili:

{
"build": {
"production": {
"channel": "production”

b
"preview": {
"channel": "staging",
"distribution": "internal"
}
}

}

Powyzej aplikacje produkcyjne odbiorg update’y z kanatu "production”, a testowe z kanatu
"staging" (co umozliwia odseparowanie testowych aktualizacji od tych dla uzytkownikéw
produkcyjnych).

Publikacja OTA update: Aby wysta¢ aktualizacje OTA, uzywamy komendy eas update --channel
<nazwa> (dawniej expo publish, ale w nowym ekosystemie to jest alias do EAS Update).
Przyktadowo: eas update --channel production spakuje nasz aktualny kod JS i assety, wysle je na
serwer Expo i oznaczy jako najnowszg aktualizacje dla kanatu "production". Kazda aplikacja,
ktéra zostata zbudowana z profilem przypisanym do "production”, po uruchomieniu wykryje
(o ile expo-updates jest wtgczone) nowaq paczke i jg pobierze. Uzytkownik dostanie jg przy
nastepnym uruchomieniu (domyslnie expo-updates sprawdza na starcie i stosuje update
przy kolejnym restarcie apki). Mozna to wymusic¢ recznie w kodzie poprzez API (metody
Updates.checkForUpdateAsync(), Updates.fetchUpdateAsync() i Updates.reloadAsync()), ale zazwyczaj nie
jest to konieczne — ustawienie updates.checkAutomatically: "ON_LOAD" i
updates.fallbackToCacheTimeout: 0 0znacza tryb natychmiastowego sprawdzania.

Kanaty i branch’e: Kanat OTA to po prostu etykieta (string) identyfikujgca strumien
aktualizacji. Mozemy dowolnie je nazywac (np. "production”, "staging", "beta"). EAS Update
wprowadza tez pojecie branchy, ale upros¢émy — branch to bardziej dla integracji z
repozytorium kodu (mozna powigzac kanat z gatezig git). Dla naszych potrzeb wystarczy
wiedzie¢, ze kazdy build ma wpisany na sztywno kanat aktualizacji (z eas.json), i mozemy w
razie potrzeby przetqczyc¢ kanat dla danego builda robigc nowy build z innym kanatem.

Wersja srodowiska (runtimeVersion): Ten parametr jest kluczowy dla bezpieczenstwa
aktualizacji OTA. Okresla on "wersje natywnego srodowiska" naszej aplikacji. Jesli zrobimy
update OTA, ktdry nie pasuje do wersji natywnej aplikacji, to aplikacja moze sie zepsu¢ lub
crashowac (np. update odwotuje sie do natywnego modutu, ktérego nie ma w starej
binarce). Dlatego zaleca sie przy kazdej zmianie natywnej (np. dotozeniu nowego modutu,
zmianie SDK Expo) zmieni¢ runtimeVersion na nowy (moze to by¢ np. numer wers;ji aplikacji
lub jakis hash). Expo sugeruje, by kazdy nowy release w sklepie miat unikalny
runtimeVersion, co gwarantuje, ze OTA trafi tylko do kompatybilnych instancji aplikacji.
Technicznie, runtimeVersion mozna ustawi¢ jako string (np. "1.0.0") albo jako tozsamg z
wersjg aplikacji (co$ jak "42" jesli versionCode android i buildNumber iOS to 42). Jesli nie
ustawimy runtimeVersion, expo-updates moze uzy¢ fallbacku w postaci expo SDK version,
ale przy EAS Update wymaga sie definicji runtimeVersion.

Jak aplikacja odbiera OTA: Gdy uzytkownik zainstaluje aplikacje ze sklepu (czyli build
zrobiony przez EAS), wbudowana biblioteka expo-updates bedzie sprawdzac nasz serwer
Expo. W konfiguracji updates mamy url oraz parametry check. DomysInie expo-updates
pobiera update w tle przy starcie aplikacji i zastosuje go przy kolejnym uruchomieniu.
Mozna zmienié¢ zachowanie — np. updates.fallbackToCacheTimeout ustawione na >0 spowoduje
czekanie X ms na update przy pierwszym uruchomieniu zanim pokaze starg wersje (co
wydtuza splash). Wiekszo$¢ zostawia fallbackTimeout=0 co oznacza "pokaz od razu
zcache'owang wersje, a update dojdzie nastepnym razem". Expo OTA jest bezpieczne — jesli
urzadzenie jest offline lub update nie pojawit sie, aplikacja uzyje wbudowanej wersji
(zawartej w binarce).

Dev vs OTA: W trybie deweloperskim (Expo Go lub development build) mechanizm expo-
updates jest wytgczony (app dziata w trybie "dev server"). Dlatego warto testowaé OTA na
buildach preview/production. Warto tez pamietac, ze expo-updates nie dziata w Expo Go,
bo Expo Go moze uruchomié¢ dowolny projekt (nie przypisany do jednego kanatu/runtime).
Do testow OTA stuzg albo fizyczne buildy, albo narzedzie Expo Orbit (pozwala otworzy¢ link
do update w dev-client, co symuluje OTA).

Podsumowujac: OTA updates w Expo pozwalajg nam szybko reagowac na btedy i poprawki,
szczegOlnie w warstwie JavaScript/zasobow. Dzieki kanatom mozemy oddzieli¢ aktualizacje
dla testerskiej wersji od produkcyjnej. Nalezy jednak uwazaé na kompatybilnos¢ natywng —
przy kazdej zmianie wymagajacej nowej binarki (np. dodanie modutu, zwiekszenie
minimalnej wersji OS, zmiana uprawnien) musimy wydac¢ nowg wersje w sklepie i zwykle
takze zmienic runtimeVersion, by stare instalacje nie pobraty niezgodnego kodu.

3. Wymogi publikacji w sklepach (Google Play i Apple App
Store)

Publikacja aplikacji w oficjalnych sklepach wigze sie nie tylko z dostarczeniem pliku
binarnego, ale tez spetnieniem szeregu wymagan formalnych i technicznych. Ponizej
omawiam kluczowe aspekty, na ktdre trzeba zwrdci¢ uwage przygotowujac aplikacje Expo do
wydania.

Uprawnienia i opisy w AndroidManifest oraz Info.plist

Android (AndroidManifest.xml i uprawnienia): W systemie Android wszystkie
"niebezpieczne" uprawnienia (kamera, lokalizacja, mikrofon, itd.) muszg by¢ zadeklarowane
w manifescie aplikacji. W Expo jest to uproszczone — wiekszo$¢ potrzebnych wpiséw jest
dodawana automatycznie przez odpowiednie biblioteki Expo podczas prebuilda. Np. jesli
uzywamy expo-camera, to config plugin tej biblioteki doda <uses-permission
android:name="android.permission.CAMERA"/> do AndroidManifest. Zasadniczo nie musimy
recznie dodawac standardowych uprawnien, chyba ze potrzebujemy czegos
niestandardowego. Mozna wymusi¢ dodatkowe uprawnienia przez wpis w app.json pod
kluczem android.permissions (lista stringdw nazw uprawnien). Tego uzywamy np. gdy jakas
biblioteka wymaga uprawnienia, ktdre nie jest automatycznie dodawane — np.
SCHEDULE_EXACT_ALARM W Androidzie 13+ dla doktadnych alarméw.

Jesli chcemy usung¢ niepotrzebne uprawnienia (bo np. jakas lib dodata, a my nie chcemy by
aplikacja prosita o zgode na cos, czego nie uzywamy), Expo pozwala w configu zablokowac je
poprzez android.blockedPermissions. To odpowiednik uzycia w AndroidManifest atrybutu
tools:node="remove" — Expo pod spodem to zastosuje. Przyktad: blockedPermissions:
["android.permission.RECORD_AUDIO"] by usung¢ dostep do mikrofonu, jesli np. expo-camera
domyslnie go dodato, a my nie nagrywamy audio.

Nalezy pamietaé, ze Google Play weryfikuje zasadnos¢ uprawnien. Jesli aplikacja prosi o
"niebezpieczne" permission (np. lokalizacja w tle, nagrywanie ekranu, SMSy itp.), moze by¢
wymagana dodatkowa deklaracja przy publikacji, a w skrajnych przypadkach (bez wyraznego

uzasadnienia w opisie aplikacji) moze zosta¢ odrzucona. Dlatego upewnijmy sie, ze w sklepie
w opisie lub sekcji Privacy wyjasniamy dlaczego potrzebujemy okreslonych uprawnien i ze
faktycznie funkcjonalnos¢ aplikacji tego wymaga.

iOS (Info.plist i klucze uzycia): Na platformie Apple, kazda prosba o dostep do wrazliwych
zasobdéw (kamera, mikrofon, lokalizacja, kontakty, itp.) wymaga podania w pliku Info.plist
tzw. NS*UsageDescription — czyli tekstowego uzasadnienia dla uzytkownika. Przyktadowo,
by mdéc w ogdle wywotac requestCameraPermissionsAsync(), W Info.plist musi istnieé klucz
NSCameraUsageDescription z wartoscig ttumaczacg po polsku/angielsku po co aplikacja
chce uzy¢ kamery. W przeciwnym razie Apple odrzuci aplikacje podczas weryfikacji (lub
aplikacja moze sie crashowac przy odpaleniu uprawnienia). Expo automatycznie dodaje
domysine komunikaty dla wielu popularnych uprawnien poprzez config plugins danej
biblioteki. Jednak te domysine teksty sg bardzo ogdlne (po angielsku) i Apple zaleca
spersonalizowa¢ komunikaty — inaczej reviewer moze uznac je za niewystarczajace. W Expo
mozemy z tatwoscig ustawic¢ wtasne opisy dodajgc do app.json sekcje ios.infoPlist i tam klucze
jak NSCameraUsageDescription z wtasnym stringiem. Np.:

{
"expo": {
"ios": {
"infoPlist": {
"NSCameraUsageDescription": "Aplikacja potrzebuje dostepu do aparatu, aby umozliwi¢ skanowanie
kodéw QR."
}
}
}
}

Analogicznie dodajemy np. NSLocationWhenInUseUsageDescription,
NSPhotoLibraryAddUsageDescription itd., zaleznie od potrzeb. Dla wielu modutéw expo
istniejg tez parametry pluginu config — np. expo-media-library pozwala wprost ustawic teksty
dla dostepu do zdje¢ poprzez photosPermission, savePhotosPermission zamiast recznie pisac
klucze.

Wazne: Zmiany w Info.plist i AndroidManifest nie moga by¢ dostarczane OTA —to elementy
natywne, muszg byé zawarte w binarce przy wysytce do sklepu. Dlatego planujgc nowa
wersje, sprawdzmy czy nie dodalismy biblioteki wymagajacej nowego klucza w Info.plist —
jesli tak, to musimy zrobié nowy build i proces publikacji (OTA tu nie pomoze).

Podsumowujac, przed wydaniem upewnijmy sie, ze:

¢ Android: manifest zawiera tylko niezbedne uses-permissions, nic nadmiarowego.
Usunmy ewentualne zbedne uprawnienia. Przy wypetnianiu formularza Google Play
Data Safety wskazmy zgodnie z prawda jakie dane/uprawnienia sg wykorzystywane.

e iOS: w Info.plist sg wszystkie wymagane klucze NS...UsageDescription dla funkcji, z
ktérych korzystamy. Teksty sg konkretne i jasno ttumacza uzytkownikowi cel (Apple
odrzuca np. "This app needs camera." jako zbyt lakoniczne — trzeba np. "Uzywamy
kamery do skanowania kodow QR aby szybciej wprowadzi¢ dane biletu").

Polityka prywatnosci, zgody uzytkownika i zgodnos¢ z regulacjami (GDPR, ATT)

Polityka prywatnosci: Zaréwno Apple, jak i Google wymagaja, aby aplikacje, ktére gromadza
dane uzytkownikéw (nawet anonimowo), posiadaty polityke prywatnosci. W praktyce
oznacza to:

e Musimy przygotowaé dokument Privacy Policy (np. hostowany na wiasnej stronie lub
generowany przez generator, dostosowany do naszej apki).

o W Google Play Console w sekcji "App Content" trzeba podaé URL do polityki
prywatnosci. Dla aplikacji wymagajacych uprawnien wrazliwych (kamera, lokalizacja
itp.) jest to obowigzkowe.

e W App Store Connect réwniez mozemy (a w niektérych przypadkach musimy) podaé
link do Privacy Policy. Dla aplikacji z kont deweloperskich indywidualnych nie zawsze
jest wymagany link, ale Apple coraz bardziej to egzekwuje, zwtaszcza jesli apka ma
jakgkolwiek integracje z kontami, logowaniem, zbiera dane itp.

GDPR (RODO): Jesli aplikacja operuje na rynku UE i przetwarza dane osobowe, powinnismy
by¢ zgodni z RODO. W kontekscie aplikacji mobilnej oznacza to np. uzyskanie zgody
uzytkownika na $ledzenie/analize (jesli np. uzywamy Google Analytics, Amplitude itp.),
udostepnienie opcji usuniecia konta/danych, poinformowanie jakie dane zbieramy. Google
Play ma sekcje Data Safety form, gdzie deklarujemy kategorie danych i cel ich uzycia —to jest
pokazywane uzytkownikom na stronie aplikacji. Trzeba to rzetelnie wypetni¢ przed
publikacja.

App Tracking Transparency (ATT) na iOS: Jezeli nasza aplikacja $ledzi uzytkownika w
rozumieniu Apple (np. uzywa identyfikatora IDFA do celéw reklamowych lub udostepnia
dane osobowe firmom trzecim w celach reklamowych), to musimy implementowaé ramy
ATT. Oznacza to:

e Dodanie do Info.plist klucza NSUserTrackingUsageDescription z uzasadnieniem (np.
"Pozwdl na uzycie identyfikatora urzadzenia aby otrzymywac spersonalizowane
reklamy.").

e Wywotanie API ATT (AppTrackingTransparency) by poprosi¢ uzytkownika o zgode
requestTrackingPermissionsAsync() (dostepne w expo przez bibliotke expo-tracking-
transparency). Apple wymaga tego promptu, jesli wykorzystujemy np. AdMob,
Facebook SDK lub inne trackery. Bez tego zgoda jest domysInie odmdwiona.

e Jedli uzytkownik odméwi, musimy ograniczyc¢ sledzenie (np. nie pobierac IDFA).

Expo udostepnia wspomniany modut expo-tracking-transparency dla wygody. Wymaga on, jak
wczesniej wspomniano, dodania NSUserTrackingUsageDescription. Mozna to zrobié recznie
w ios.infoPlist, albo uzy¢ config plugin tej biblioteki, ktory dokona wpisu za nas. Np. w app.json:

{
"expo": {
"plugins": [
["expo-tracking-transparency"”, {
"userTrackingPermission": "Umozliwienie $ledzenia aktywnosci pozwoli na wyswietlanie Ci
spersonalizowanych tresci reklamowych."

1l

]
}
}

Powyzsze spowoduje automatyczne dodanie klucza do Info.plist z podanym tekstem. Apple
bardzo skrupulatnie sprawdza ATT — jezeli korzystamy z jakiejkolwiek biblioteki reklam lub
analiz, ktére mogq uzywac IDFA, a nie zaimplementujemy ATT, aplikacja zostanie odrzucona.

Zgody uzytkownika w aplikacji: Poza systemowymi uprawnieniami i ATT, warto rozwazy¢ czy
nasza aplikacja nie potrzebuje wtasnych ekranéw zgdd. Np. jesli zbieramy dane do celéw
analitycznych, dobrym zwyczajem (i w niektérych jurysdykcjach wymogiem) jest zapytaé
uzytkownika przy pierwszym uruchomieniu czy wyraza na to zgode (tzw. cookie consent
analogicznie do web). Dotyczy to gtéwnie UE. Nie jest to wymog sklepu, ale element
zgodnosci z prawem.

Przygotowanie zasobow graficznych i opisow aplikacji do publikacji
Oprécz samej paczki aplikacji, na stronie sklepu musimy dostarczy¢ zestaw materiatow:

¢ Nazwa aplikacji: Ustalona unikalna nazwa (do 50 znakéw na Google Play, 30 znakéw
na ios).

o Opis aplikacji: Krotki opis (tagline) i petny opis (na Google Play do 4000 znakdéw).
Wazne by jasno opisac funkcje appki i ewentualnie zawrze¢ stowa kluczowe. Na iOS
zamiast stow kluczowych jawnie w opisie, jest osobne pole "Keywords". Pamietajmy
o lokalizacjach jezykowych jesli kierujemy do réznych rynkéw.

¢ lkona sklepu: Dla Google Play potrzebny jest icon 512x512 px (PNG). Dla iOS —
wykorzystywana jest ta sama ikona aplikacji 1024x1024, ktérg wgrywamy podczas
przygotowania builda w Xcode (EAS robi to za nas).

e Zrzuty ekranu (screenshots): To czesto najwiecej pracy. Google Play wymaga co
najmniej 2 screenshoty dla kazdej obstugiwanej rozdzielczosci (telefon, tablet 7",
tablet 10", Android TV, Wear OS — zaleznie od naszej aplikacji). iOS wymaga screenéw
dla kazdej obstugiwanej wielkosci ekranu: typowo 5.5" (iPhone 8), 6.5" (iPhone
duzych rozmiaréw), 12.9" iPad, itd., po minimum 3 sztuki na kazdy rozmiar. W
praktyce dla iPhone’dw najczesciej przygotowuje sie zrzuty w rozdzielczosci
1242x2688 (proporcje 6.5") — Apple zaakceptuje je tez jako media dla innych
rozmiardw jesli sie oznaczy, ale najlepiej mie¢ dla kazdego. Zrzuty powinny
atrakcyjnie prezentowac aplikacje (warto dodac opisy, ramki urzgdzen — cho¢ Apple
odradza uzywanie urzgdzen w obrazkach).

o Feature graphic / promo graphic: Google Play ma opcjonalng grafike promocyjng
(1024x500 px) oraz ewentualnie video (YouTube link). Apple nie ma takiej grafiki, ale
ma opcje dotgczenia traileru w App Store (tzw. App Preview Video).

o Kategoria, tagi: Wybieramy kategorie (np. Lifestyle, Education itp.) — obydwa sklepy
to maja.

¢ Rating wiekowy: W Google Play wypetniamy formularz do przyznania kategorie
wiekowej (PEGI itp.), Apple ma standardowe pytania (jak np. czy jest przemoc,
hazard, itp.).

¢ Formularz bezpieczenstwa danych: Na Google Play Data Safety Section — tu
deklarujemy jakie typy danych zbieramy (lokalizacja, kontakty, finansowe itd.) i czy sg

one udostepniane. Trzeba to zrobi¢ zgodnie ze stanem faktycznym i polityka
prywatnosci.

¢ In-App Purchases info: Jedli aplikacja ma pfatnosci wewnatrz, trzeba je
skonfigurowaé w sklepie (Apple i Google) i doda¢ informacje cenowe, SKU itd., oraz
dostarczy¢ na Apple zrzuty ekranu ekrandw zakupdw do review. Jesli appka jest
pfatna w catosci, ustalamy cene, waluty.

o Kontakt dewelopera: Oba sklepy wymagajg podania kontaktu (email, strona
wsparcia). Apple dodatkowo weryfikuje czy konto deweloperskie firmy jest
powigzane z tozsamoscig firmy (dla kont osobistych nie dotyczy).

o Testy: Apple umozliwia TestFlight — do ktérego tez warto przygotowac opis co
testowac (tzw. TestFlight beta description) i zaprosi¢ testerow. Google ma
wewnetrzne, zamkniete i otwarte testy — tam tez piszemy release notes.

Warto przygotowac sobie wczesniej pakiet assetéw graficznych (ikony, screenshoty) i opisy
w wymaganych jezykach. Dzieki temu proces publikacji bedzie ptynny. Expo EAS nie
automatyzuje tworzenia listingdw w sklepie (poza samym wrzuceniem binares przez eas
submit), wiec te czes¢ robimy recznie w konsolach deweloperskich sklepéw.

Na koniec dodajmy, ze dobre praktyki to:

e Upewnic sie, ze w aplikacji sg gdzies dostepne informacje o prywatnosci (np. link do
polityki w ustawieniach).

o Jedli aplikacja wymaga logowania, zadbac by proces rejestracji spetniat np. wytyczne
Apple (logowanie poprzez Apple ID jest wymagane opcjonalnie, jesli oferujemy
logowanie np. Google/Facebook — tzw. Sign in with Apple requirement).

e Jezeli korzystamy z kontentu generowanego przez uzytkownikéw, musi by¢
mechanizm moderacji/zgtaszania (Apple to czesto sprawdza).

o Jedli aplikacja jest skierowana do dzieci, obowigzujg specjalne restrykcje (COPPA etc.,
np. nie mozna mie¢ nieograniczonego trackingu, reklam targetowanych).

4. Monitorowanie i analityka w aplikacji

Po wypuszczeniu aplikacji wazne jest utrzymanie jej jakosci i zrozumienie jak jest uzywana.
Stuzg do tego narzedzia monitorujace btedy (crash reporting) oraz analityka uzytkowania.
W srodowisku Expo mamy kilka opcji integracji takich narzedzi.

Raportowanie btedow: integracja z Sentry lub Firebase Crashlytics

Sentry: Sentry to popularna platforma do $ledzenia bteddw aplikacji produkcyjnych. Expo
udostepnia oficjalny SDK sentry-expo, ktory utatwia konfiguracje Sentry w projektach Expo.
Sentry pozwala rejestrowac wszelkie nieobstuzone wyjatki JavaScript (i natywne crash’e
réwniez, przy odpowiedniej konfiguracji) wraz ze stacktrace, informacjami o urzadzeniu,
wersji appki itp.. Dzieki temu, gdy uzytkownik napotka crash lub btgd, my otrzymamy
powiadomienie i szczegoty, co utatwia szybkie zidentyfikowanie i naprawe problemu.

Aby zintegrowac Sentry:

1. Zatozy¢ konto i projekt w Sentry (free tier obstuguje ~5k zdarzen miesiecznie).

2. Wygenerowac DSN (adres projektu) i token uwierzytelniajgcy dla uploadu
sourcemapow.

3. W projekcie Expo zainstalowad sentry-expo oraz uruchomié Sentry Wizard: npx
@sentry/wizard -i reactNative -p expo (to polecenie automatycznie doda potrzebne
zaleznosci i dokona konfiguracji).

4. Potym, wewnatrz kodu aplikacji importujemy i inicjalizujemy Sentry. Z sentry-expo
zazwyczaj robi sie to w pliku gtéwnym App.js/tsx:

import * as Sentry from 'sentry-expo’;

Sentry.init({
dsn: 'https://<key>@o<org>.ingest.sentry.io/<project>',
enablelnExpoDevelopment: false,
debug: false // mozna da¢ true podczas debugowania integracji

N;

sentry-expo automatycznie integruje sie z btedami JS, a takze natywnymi btedami w
srodowisku EAS (poprzez config plugin dodaje odpowiednie natywne ustawienia).

5. Kluczowe jest zapewnienie, by mapy Zzrédtowe (source maps) byty wysytane do
Sentry. Przy EAS Build jest to utatwione — wystarczy ustawi¢ w zmiennych
Srodowiskowych builda SENTRY_AUTH_TOKEN oraz projekt/org slug, a EAS Build
automatycznie uploaduje sourcemapy po kompilacji. (Sentry Wizard czesto robi to za
nas, dodajgc np. w eas.json odniesienie do pluginu Sentry).

Po takim setupie, kazde console.error i wyjatek w produkcji pojawi sie w panelu Sentry jako
issue. Mozemy tam zobaczyc¢ ile uzytkownikéw doswiadczyto btedu, na jakich urzadzeniach,
przesledzi¢ stacktrace (zdekodowany dzieki sourcemap), a nawet zobaczyc¢ tzw.
breadcrumbs ($lad zdarzen prowadzgcych do btedu). Sentry pozwala réwniez logowac
recznie pewne rzeczy (np. catch error -> Sentry.Native.captureException(e)) i dodawa¢é
kontekst (np. identyfikator uzytkownika, ostatnia wykonana akcja), by tatwiej debugowac.

Nowoscig w ekosystemie Expo jest integracja Sentry z EAS Insights — mozna tak
skonfigurowaé, aby crash reporty i nawet nagrania ekranu (session replay) z Sentry byty
widoczne w panelu Expo, co centralizuje monitorowanie. To wymaga jednak dodatkowe;j
konfiguracji i znajduje sie w nowszych wersjach expo SDK/EAS.

Firebase Crashlytics: Alternatywa do Sentry jest Crashlytics wchodzgce w sktad Firebase.
Crashlytics jest bardzo popularne w swiecie natywnym Android/iOS i oferuje podobne
funkcjonalnosci (raporty crashy, ich agregacja, informacje o urzgdzeniach, breadcrumbs,
kluczowe logi). Integracja Crashlytics w Expo wymaga uzycia biblioteki React Native Firebase
— konkretnie pakietu @react-native-firebase/crashlytics. W Expo (managed) mozemy skorzystac z
config plugin dostarczanego przez RNFirebase, aby dotgczy¢ Crashlytics do aplikacji.

Kroki integracji Crashlytics:

o Dodac do projektu paczki @react-native-firebase/app Oraz @react-native-firebase/crashlytics
(zgodne z wersjg RN naszego Expo SDK).

e W app.json dopisac plugin: "plugins": ["@react-native-firebase/crashlytics"] (oraz ewentualnie
konfiguracje dodatkowe, np. ustawienie crashlytics_debug_enabled jesli chcemy
debugowad w dev).

e Dodac google-services.json (Android) i GoogleService-Info.plist (iOS) pliki
konfiguracyjne Firebase do projektu i uwzgledni¢ je przez odpowiednie pola w app.json
(Expo ma pluginy do automatycznego wtaczenia tych plikéw).

o Przebudowa¢ aplikacje przez EAS, aby uwzgledni¢ natywne SDK Crashlytics.

Po tym Crashlytics bedzie automatycznie rejestrowat natywne i JS crashy. W kodzie JS mozna
wywoftac crashlytics().log("...") lub wymusi¢ testowy crash crashlytics().crash() by sprawdzié
dziatanie. Wazne: Crashlytics zadziata dopiero na release buildzie odpalonym poza Expo Go
(Expo Go nie ma tych natywnych modutéw). W dev-buildach Crashlytics moze dziata¢, ale
zwykle w trybie debug nie raportuje.

Zaréwno Sentry jak i Crashlytics moga dziata¢ rownolegle, ale zazwyczaj wybieramy jedno.
Sentry ma przewage w integracji z JS (lepsze stacktrace'y z sourcemap, mozliwos¢
trackowania nie-crashowych btedéw), natomiast Crashlytics jest czesto preferowany w
firmach juz uzywajgcych Firebase (tatwa konsolidacja z Analytics, Perf Monitoring itp. w
Firebase).

Zbieranie btedow i ich kontekstu

Niewazne jakie narzedzie wybierzemy, kluczowe jest, aby monitorowac btedy produkcyjne
na biezgco. Warto skonfigurowac alerty (np. Sentry moze wysyta¢ maila/slacka gdy pojawi
sie nowy rodzaj crasha). Trzeba tez pamietaé o opisywaniu wersji aplikacji — Sentry i
Crashlytics grupujg btedy per wersja, wiec warto wysytajac build ustawi¢ odpowiednio
numer wersji (Sentry-expo robi to automatycznie, Crashlytics bazuje na
versionCode/CFBundleVersion).

Dobrym zwyczajem jest réwniez logowanie waznych zdarzen jako breadcrumbs. W Sentry
breadcrumbs automatycznie obejmujg np. zmiany ekranéw (jesli integrujemy z np. React
Navigation), http requesty itp., ale mozemy tez manualnie dodac np. Sentry.Breadcrumb gdy
uzytkownik kliknie wazny przycisk. Crashlytics ma z kolei crashlytics().log(). To sprawia, ze jak
dostaniemy crash, to mamy pewien "kontekst akcji uzytkownika" tuz przed.

Expo jako takie nie ma wbudowanego systemu logowania btedéw do wtasnego serwisu (poza
Metro bundler podczas dev). Dlatego integracja z zewnetrznym serwisem jest wskazana w
aplikacjach produkcyjnych.

Analityka zdarzen uzytkownika (Expo Analytics, Amplitude, Firebase Analytics)

Dlaczego analityka? Chcemy wiedzie¢ jak uzytkownicy korzystajg z naszej aplikacji: ktére
ekrany odwiedzajg najczesciej, gdzie porzucajg proces, ile czasu spedzajg itp. To pozwala
ulepsza¢ UX i weryfikowac hipotezy biznesowe.

Expo nie oferuje juz wtasnego modutu analityki (dawniej byt modut expo-analytics-segment,
teraz zalecane jest uzycie rozwigzan firm trzecich). Do wyboru mamy m.in.:

o Firebase Analytics: jesli i tak korzystamy z Firebase (np. Crashlytics), mozemy dotozy¢
réwniez Analytics. Integracja podobna — za pomocg @react-native-firebase/analytics i
config pluginéw. Firebase Analytics zbiera automatycznie sporo zdarzen (otwarcie
app, update, wtgcz/wytacz, liczba uzytkownikéw dziennych itp.), a wtasne zdarzenia
wysytamy przez analytics().logEvent("event_name", {param: value}). Plusem jest tatwa
integracja z Crashlytics (dashboard wspélny).

¢ Segment: Segment to platforma agregujgca analityke — ma SDK (React Native
Segment) ktore pozwala wysyta¢ zdarzenia, a dalej Segment przekazuje je do réznych
ustug (Amplitude, Mixpanel, Google Analytics etc.). Expo kiedys miato wbudowany
Segment, obecnie aby go uzy¢, mozna zainstalowac paczke @segment/analytics-react-
native i uzy¢ odpowiedniego pluginu. Segment sam w sobie nie daje Ul do analityki
(jest posrednikiem).

¢ Amplitude: popularna analityka produktowa, z bogatym interfejsem do analizy
lejkdw, retencji itp. Amplitude udostepnia SDK RN (ktore dziata w Expo dev-build).
Mozna tez wysytaé eventy do Amplitude za posrednictwem Segment (Segment
miewa gotowg integracje z Amplitude).

o Expo kompatybilne lekkie SDK: istniejg tez nowsze, lekkie ustugi analityczne ktére
dziatajg czysto po stronie JS i sg przyjazne Expo. Np. Aptabase, Astrolytics, PostHog —
wedtug dokumentacji Expo dziatajg nawet w Expo Go (bo uzywaijg tylko fetch, bez
natywnego kodu). Ich zaletg jest brak koniecznosci konfigurowania natywnego
modutu, wadg — czasem mniejsza moc analityczna niz giganty jak Firebase czy
Amplitude.

Integracja analityki — przyktadowy scenariusz: Zatézmy, ze wybieramy Firebase Analytics. Co
robimy?

¢ Dodajemy w app.json plugin @react-native-firebase/analytics.
¢ Dodajemy pliki google-services (jak przy Crashlytics).
e Po zbudowaniu, w kodzie mozemy uzyc:

import analytics from '@react-native-firebase/analytics';
analytics().logEvent('OpenedProductPage’, { productld: '123'});

¢ Nastepnie w konsoli Firebase bedziemy widzie¢ zdarzenia niestandardowe, mozemy
tworzy¢ raporty.

Jesli wybierzemy Amplitude:

e Mozemy uzy¢ paczki expo-analytics-amplitude (jesli istnieje dla nowego SDK — Expo
kiedys udostepniato, teraz mozna uzy¢ oficjalnego @amplitude/analytics-react-native).

e Inicjalizujemy np. w App.js: Amplitude.init(API_KEY).

o Wysytamy event: Amplitude.logEventAsync('event_name').

Expo Router a analityka: W aplikacjach Expo z Expo Router mozna zintegrowa¢ nawigacje z
analityka, np. logowaé event przy wczytaniu nowego ekranu.

Uwaga dot. Expo Go: Wiekszo$¢ zaawansowanych SDK analitycznych wymaga natywnych
modutdw (Firebase, Segment, Amplitude RN). To oznacza, ze dziatajg one dopiero w
development build albo produkcyjnej aplikacji — w Expo Go nie (Expo Go nie ma tych
natywnych zaleznosci). Wyjatkiem sg ustugi czysto JS (jak wspomniane Aptabase/PostHog) —
te mozna nawet testowaé w Expo Go.

Prosty system analityki Expo: Jesli nie chcemy integrowac zewnetrznej platformy, mozemy
na wtasne potrzeby wysytac zdarzenia do np. Google Analytics poprzez proste zapytania
HTTP (GA4 ma Measurement Protocol). Jednak to wymaga troche pracy i znajomosci API.

Podsumowujgc, monitorowanie i analityka to drugi etap po wydaniu appki:

e Crash reporting: upewniamy sie, ze wiemy kiedy aplikacja sie wysypuje na
urzadzeniach uzytkownikéw (Sentry, Crashlytics).

e Error tracking: wytapujemy takze btedy nie korczace aplikacji ale istotne (np.
nieudane wywotania APl — mozna je tez raportowac do Sentry jako handled
exceptions).

e Analytics: zbieramy zdarzenia (eventy) kluczowe dla naszego produktu, by méc
analizowac np. sciezki uzytkownika, popularnosé¢ funkcji, skutecznos¢ onboarding itp.

5. Wymagania techniczne sklepow (Android i iOS)

Sklepy mobilne narzucajg rdwniez pewne wymogi techniczne dotyczace samych aplikacji —
gtéwnie minimalnych i docelowych wersji SDK oraz kompatybilnosci z nowymi platformami.
W 2025 roku zwracamy uwage na nastepujgce kwestie:

Android

e Wsparcie dla 16 KB page size (Android 15): Google ogtosito, ze od 1 listopada 2025
wszystkie nowe aplikacje i aktualizacje muszg by¢ skompilowane z obstugg stron
pamieci 16 KB. Android 15 wprowadza urzgdzenia z wiekszym rozmiarem strony
pamieci (16kB zamiast tradycyjnych 4kB) w celu poprawy wydajnosci na urzadzeniach
z wiekszg iloscig RAM. Praktycznie, dla dewelopera oznacza to koniecznos¢ uzycia
odpowiednio nowej wersji NDK/kompilatora do budowy natywnych bibliotek. W
kontekscie Expo — nalezy zaktualizowa¢ Expo SDK i wszystkie biblioteki natywne do
wersji wspierajacych 16KB. Wielu dostawcdw juz to zrobito: React Native od wers;ji
0.72+ ma wsparcie, popularne SDK (Unity, Flutter) rowniez. Jesli tego nie

i0S

dopilnujemy, Google Play odrzuci publikacje z komunikatem o braku wsparcia 16k
(moze to wykry¢ w skanie pakietu). Na szczescie Expo SDK 50+ bazuje na RN
obstugujgcym 16k, ale trzeba uwazac np. na uzycie starszych bibliotek czy starszych
wersji Expo. W razie problemu rozwigzaniem jest upgrade expo / bibliotek
natywnych do wersji wydanych po wprowadzeniu tej zmiany (tj. potowa 2024 i
pdzniej) lub ponowna kompilacja wtasnych modutéw natywnych nowym NDK.
Benefit jest taki, ze kompatybilno$¢ 16k daje nam automatycznie pewien wzrost
wydajnosci (szybsze uruchamianie, lepsza bateria na nowych urzadzeniach)
targetSdkVersion: Google Play co roku podnosi wymagany docelowy poziom API
(target API level). W 2025 minimalny target dla nowych aplikacji to zapewne API 34
(Android 14) lub wyzej, a dla aktualizacji by¢ moze API 33 (Android 13) — konkrety
zalezg od komunikatow Google, ale z reguty: od sierpnia 2023 wymagany target 33
dla nowych, od 2024 target 34, itd. Expo SDK 52 domyslinie ustawia targetSdkVersion
34, co spetnia wymagania. W Expo mozna nadpisac targetSdk w app.json (plugin expo-
build-properties), ale lepiej trzymac sie defaultu Expo, bo starajg sie go aktualizowac
pod wymagania Play Store. Brak spetnienia — Google Play odrzuci upload z
komunikatem "Your targetSdkVersion is X, which is lower than required Y".
minSdkVersion: Google Play nie narzuca bardzo restrykcyjnie minimalnej wersji
(minSdk), ale aplikacje z minSdk zbyt niskim mogg nie by¢ dostepne dla nowszych
urzadzen lub w ogdle nie mozna wystac gdy jest dramatycznie niski. Expo obecnie
wymaga min. Android 7.0 (SDK 24) dla SDK 50+, a tak naprawde expo SDK 54
podnidst compileSdk do 36 (Android 14) i prawdopodobnie minSdk trzyma ~21 lub
24. Z tabelki expo wynika, ze min Android to 7+ (czyli SDK 24) dla expo 52/53/54. To
spetnia praktycznie wszystkie realia (obecnie <1% useréw ma Android <7). Jesli
bysmy potrzebowali nizej, trzeba by modyfikowac i budowa¢ samemu — raczej bez
sensu. Wazniejsze jest compileSdkVersion — expo ustawia compileSdk rowny
targetSdk (np. 34), co jest ok.

Rozmiar aplikacji: W kontekscie sklepu moze nas ograniczaé rozmiar paczki — Google
Play ma limit 150MB na APK/AAB. AAB majg mechanizm dynamiczny, wiec rzadko to
przekroczymy (chyba ze gra z wieloma assetami). W razie czego, musielibysmy
uzywac Expansion Files, ale to raczej nie dotyczy typowej appki Expo.

Architektury 64-bit: Od 2019 wymég aby apki zawieraty natywne biblioteki 64-bit
(arm64-v8a). Expo od dawna generuje 64-bit, wiec to spetniamy.

Google Play App Bundle: Od 2021 nowe aplikacje muszg by¢ publikowane jako .aab
(Android App Bundle), nie .apk. EAS domyslnie dla production Android robi .aab, wiec
tu jestesmy zgodni. Wersje testowe (profil preview) mogg by¢ .apk, bo te nie trafiajg
do sklepow.

Inne: Jesli budujemy aplikacje na Android 13/14, warto obstuzy¢ nowe uprawnienia
jak POST _NOTIFICATIONS (dla powiadomien — inaczej app nie moze wysytaé
powiadomien bez zgody) i Bluetooth (teraz jest uprawnienie BLUETOOTH_CONNECT).
Jesli nas to dotyczy, trzeba doda¢ do manifestu i ogarng¢ prosbe o uprawnienie w
kodzie.

Wymog najnowszego SDK Apple: Apple wprowadza co roku wymag, by od pewnej
daty wszystkie appki byty zbudowane przy uzyciu minimum okres$lonej wersji

Xcode/iOS SDK. W 2025 ogtosili, ze od kwietnia 2025 wszystkie aktualizacje muszg
by¢ skompilowane z iOS 18 SDK (Xcode 16). W praktyce jesli uzywamy EAS Build,
Expo zadbato o aktualizacje obrazéw buildowych z Xcode 16.1+ zeby spetnic¢ ten
wymog. Dla nas to znaczy: upewnij sie, ze uzywasz Expo SDK kompatybilnego z
Xcode 16 (co najmniej Expo SDK 51 lub 52). W przypadku starszej wersji, EAS Build i
tak skompiluje pewnie w najnowszym Xcode, ale mogg by¢ np. ostrzezenia lub
potrzeba zmiany minimalnego deployment targetu. Reguta Apple dotyczy toolchain,
nie wymusza zmiany min iOS, ale w praktyce nowe Xcode mogg wymuszac pewne
podbicie (np. Xcode 16 wymaga min iOS 12 lub 13).

Minimalna wersja iOS (deployment target): Apple nie ma oficjalnie polityki
minimalnej wspieranej wersji — mozna teoretycznie wspieraé¢ bardzo stare iOS, ale w
praktyce Expo jak wspomniano ustala swoje minima. Expo SDK 50/51 miaty min iOS
~13.0/13.4, natomiast od Expo SDK 52 minimalna wersja iOS to 15.1. Jest to dos$¢
znaczacy skok, podyktowany nowosciami w RN i politykg Apple (coraz mniej urzadzen
na iOS <15, a Apple wymagat od 2023, zeby nowe appki wspieraty minimum iOS 12+,
ale to luzny wymoég). Warto sprawdzi¢ dokumentacje expo dla konkretnej SDK, ale
jesli np. zbudujemy aplikacje w Expo 52, to nie uruchomi sie ona na iOS 14 i starszych.
Dla wiekszosci to nie problem, bo uzytkownicy i tak aktualizujg (iOS 15 i wyzej to juz
>90% rynku). Nie nalezy sztucznie obniza¢ deployment target, bo biblioteki expo
mogaq korzystaé z APl niedostepnych w starszych systemach. Ogélnie, trzymamy sie
minimalnej wersji rekomendowanej przez Expo dla danej SDK.

App Store assets: Po stronie technicznej iOS wymaga dostarczenia pewnych rzeczy:

o lkony w Asset Catalogu: Expo generuje z naszego 1024x1024 wszystkie
potrzebne rozmiary ikon i pakuje w .ipa.

o Launch Storyboard (Splash): od iOS 13 wymagany jest storyboard jako
LaunchScreen (zamiast statycznego .png). Expo-splash-screen generuje taki
storyboard z naszym logo i kolorem tta, wiec spetniamy wymag (inaczej Apple
by odrzucito za brak adaptacyjnego launch screen).

o Bitcode: Apple zniosto wymaég bitcode w 2022, wiec nie musimy nic robi¢
(Expo i tak buduje bez bitcode).

o IPv6 networking: Apple sprawdza, czy aplikacja dziata w sieci IPv6 only. Warto
upewnic sie, ze np. uzywane URL-e to domeny z AAAA rekordami lub obstuzyé
to. (To bardziej dot. backendu).

o App Thinning: .ipa zawiera Asset Catalogi, Expo to wspiera - obrazy sg
generowane w 3x/2x etc. Tutaj raczej ok.

TestFlight: Przed publicznym release czesto wysytamy appke na TestFlight.
Pamietajmy, ze od strony technicznej build na TestFlight musi by¢ jakosci
produkcyjnej (ten sam build co potem do App Store). Apple recenzuje réwniez buildy
testowe (choc troche szybciej i mniej rygorystycznie, ale np. kwestie uprawnien,
crashy mogg spowodowac odrzucenie nawet na etapie TestFlight Beta Review).
Rozmiar aplikacji i limity: Apple ma limit rozmiaru appki pobieranej przez sie¢
komérkowg (150MB, dawniej 200MB — ale to akurat mniej istotne bo user moze na
WiFi pobrad). Starajmy sie by .ipa nie byta ogromna — EAS Build i tak stara sie wycinac
nieuzywany kod (tree shaking expo-modutéw). Dla VR/AR aplikacji jeszcze dochodzg
wymagania ARKit (w Info.plist usageDescription musiat byé ARKit wpis jesli ARKit jest
uzywany). Dla appek korzystajacych z HealthKit czy innych specyficznych — tez
wymagane dodatkowe atrybuty i czesto testy.

o Sdk Capabilities: Jezeli uzywamy pewnych ustug Apple (np. Sign in with Apple, Apple
Pay, Push Notifications, Background Modes) — musimy wtgczy¢ je w Capabilities
aplikacji (Expo zazwyczaj ma pluginy do tego, np. expo-notifications dodaje
automatycznie push entitlement). Przed submission sprawdzmy, czy np. nie
wysytamy pushy bez posiadania Push Notification entitlement —bo Apple by
odrzucito (Expo gdy wykryje expo-notifications, to doda go). Podobnie, jesli nasza
apka odtwarza audio w tle — musimy miec¢ background audio wiaczone w
uprawnieniach.

Podsumowujgc sekcje wymogdw technicznych:

e Android: target SDK zgodny z wymogiem (najlepiej najnowszy), obstuga 16k page —
czyli uzywanie aktualnego toolchain (Expo 50+ to zapewnia), arch. 64-bit,
odpowiednie minSdk (Expo default). To zwykle ogarnia EAS w tle.

¢ i0S: zbudowana najnowszym Xcode (EAS dba o to), min iOS na poziomie
akceptowalnym (Expo 50+ aktualnie iOS 13/15, co jest ok), plus spetnienie wszystkich
wymogow typu ATT, usage descriptions, itd., co oméwiliSmy wczesniej.

6. Demo: od konfiguracji do publikacji — przyktadowy proces

W tej czesci potgczymy omowiong teorie w praktyczny przyktad. Zatézmy, ze mamy aplikacje
Expo, ktdrg chcemy przygotowac do wydania wersji 1.0. Pokazemy fragmenty konfiguracji i
kroki wypuszczenia:

Konfiguracja pliku eas.json z profilami

Na potrzeby przyktadu, skonfigurujmy eas.json nastepujgco:

{
"build": {

"development": {
"developmentClient": true,
"distribution": "internal",
"ios": {

"simulator": true
}
b
"preview": {
"distribution": "internal",
"channel": "staging"
b
"production": {
"channel": "production”
}
b
"submit": {
"production": {
"ios": {
"appleld": "<nasz.apple@id.com>",
"ascAppld": "<App Store Connect App ID>"

12

"android": {
"serviceAccountKeyPath": "./google-play-credentials.json"
}
}
}
}

Co tu zrobilismy:

e Mamy profil development: do szybkiego iterowania. Dodaliémy ios.simulator: true aby
wygenerowac build dziatajgcy w Simulatorze i developmentClient: true by méc w
nim wczytywac projekty jak w Expo Go. Distribution "internal" — czyli nie do sklepu.

e Profil preview: build testowy dla naszego zespotu/klienta. Distribution "internal"
(bedziemy dystrybuowac przez link/plik lub TestFlight recznie), bez dev-client (czyli
peten release build). Dodali$my "channel": "staging" — czyli wszystkie buildy preview
beda odbiera¢ ewentualne OTA z kanatu "staging" (np. do testowania).

o Profil production: build na sklep. Channel "production" — production appki beda
nastuchiwac oficjalnych OTA. Tu distribution domysinie jest "store" (bo nie podalismy
internal).

¢ Sekcja submit.production: konfiguracja EAS Submit dla produkcji. Podalismy dane
potrzebne do automatycznego submitu:

o i0S: appleld (nasz Apple login) i ascAppld (App Store Connect app identifier —
taki cigg cyfr przypisany aplikacji, mozna znalez¢ w App Store Connect;
alternatywnie mozna podaé appName i bundleldentifier a EAS sam sprébuje
wyszukaé). Dodaliby$Smy tez appleTeamid jesli to konto firmowe.

o Android: sciezka do pliku JSON z kluczem serwisowym do Google Play (ten plik
trzeba pobrac z Play Console — zawiera email klienta, private key itd.). Zamiast
path mozna daé zawartos¢ w env.

Z takim plikiem mozemy budowac¢ i od razu submitowac.
Symulacja procesu build & release

1. Przygotowanie projektu przed build: Upewniamy sie, ze w app.json mamy poprawnie
ustawione:
o "version" (wersja aplikacji dla ludzi, np. "1.0.0") i odpowiednio "ios.buildNumber"
oraz "android.versionCode" (te zwiekszamy przy kazdej publikowanej wersji).
Ikona (icon) i splash (jak w punkcie 1).
o Uprawnienia Info.plist (np. NSCameraUsageDescription jesli kamera) i Android
permissions (jesli co$ custom).
o runtimeVersion W sekcji updates (jesli chcemy recznie nim zarzgdzac; jak nie,
expo wygeneruje ze stringa w eas.json).
o Jesli korzystamy z config plugins (np. Sentry, Firebase), upewnié sie ze sq w
plugins i skonfigurowane.
2. Build wersji testowej: W trakcie developmentu budujemy czesto wersje dev:

eas build --profile development --platform ios

To wygeneruje nam build na iOS Simulator (bo tak ustawiliSmy) z expo-dev-client.
Otwieramy go, testujemy. Potem:

eas build --profile preview --platform android

to da nam plik app.apk. Mozemy go wystac testerom lub zainstalowaé na urzadzeniu
lokalnie, albo uzy¢ EAS CLI do udostepnienia (np. eas build:list daje link do pliku, ktéry
mozna przekazac). Na iOS, profil preview:

eas build --profile preview --platform ios

otrzymamy .ipa (Ad Hoc). Te .ipa mozemy wrzucié na TestFlight:

o Recznie: pobieramy .ipa, w Xcode -> Organizer -> Distribute App -> upload.
o Lub skorzystad z eas submit --profile production --platform ios --latest aby wystac
najswiezszy build

Ewentualnie lepsze podejscie: budujemy production iOS (co zrobi ipa dla App Store):
eas build --profile production --platform ios

a potem

eas submit --profile production --platform ios --latest

to wysle do TestFlight (bo ascAppld podany, Apple automatycznie wrzuci to do
TestFlight). W App Store Connect oznaczamy ten build jako dostepny w TestFlight dla
testerow.

3. Testy wewnetrzne: Testerzy uzywajg aplikacji. Dzieki temu mozemy:
o Zbierac¢ feedback, crash logi (jesli zintegrowali$my Sentry/Crashlytics, juz
zobaczymy ewentualne btedy pojawiajace sie u nich).
o Wprowadzac¢ poprawki. Poprawki krytyczne w JS mozemy nawet deployowac
OTA na kanat "staging" (nasz preview channel) bez potrzeby nowego builda:
eas update --channel staging. Tester po dwukrotnym uruchomieniu aplikacji
dostanie update.
o Gdy wszystko gra, przygotowujemy finalny release.
4. Build produkcyjny: Zaktadamy, ze po testach zwiekszyliSmy numer wersji (np. z
1.0.0(1) na 1.0.0(2) albo 1.0.1). Teraz wykonujemy:

eas build --profile production --platform all --auto

(tu --auto powoduje automatyczne potwierdzanie krokow, np. wyboru certyfikatéw).
Po pewnym czasie mamy dwie paczki: .aab dla Androida i .ipa dla iOS (w chmurze
expo).

EAS CLI wyswietli nam linki do plikéw oraz tzw. build details page. Na stronie
expo.dev dla kazdego builda mozemy zobaczy¢ szczegdty: logi, rozmiary, uzyte wersje
SDK, jak réwniez czas kompilacji i ewentualne warningi.

Jesli chodzi o podpisywanie:

o Android: EAS wygenerowat keystore lub uzyt naszego. Po buildzie warto zrobi¢
eas credentials i pobraé kopie keystore (trzymac w bezpiecznym miejscu).
o i0S: EAS utworzyt (lub uzyt) certyfikat i profil. Te profile majg waznos¢ 1 rok
(dla dystrybucji). EAS je odnowi jak bedzie potrzeba przy kolejnym buildzie.
5. Publikacja do sklepow:
o Android (Google Play): Mozemy teraz wykonac:

eas submit --profile production --platform android --latest

EAS uzyje konfiguracji z eas.json (wezmie nasz plik google-play-credentials.json) i
wrzuci AAB na nasz Google Play Console. Jesli aplikacja jest nowa, trafi jako
wersja robocza. Musimy tam zalogowac sie, uzupetni¢ App Content (privacy,
rating etc.), i wystawi¢ do review (np. na track "Production" od razu lub
najpierw "Closed testing"). Czesto pierwszy release robi sie w trybie
stopniowym (staged rollout, np. 10% uzytkownikéw).

o i0S (App Store): Podobnie:
eas submit --profile production --platform ios --latest

spowoduje upload .ipa do App Store Connect (ASC). Poniewaz podalismy
ascAppld, EAS powigze to z wtasciwg aplikacjg. Build pojawi sie w TestFlight (od
razu lub w ciggu kilkunastu minut). Tutaj uwaga: Apple zawsze przeprowadza
Beta App Review dla pierwszej wersji aplikacji zanim udostepni jg w TestFlight
testerom zewnetrznym — moze to potrwac dzien lub dwa. Gdy jestesmy
gotowi do publikacji, w App Store Connect tworzymy New App Version (np.
1.0.1), wybieramy nasz uploadniety build, dodajemy opis co nowego,
screenshoty, odpowiadamy na pytania (czy uzywa kryptografii, itd.) i
wysytamy do App Review.

6. Zatwierdzenie i release: Google Play automatycznie skanuje aplikacje (moze kilka
godzin trwad) i zwykle aplikacja bedzie dostepna w ciggu dnia (chyba ze trafi do
recznej weryfikacji, wtedy dtuzej). Apple App Review trwa od kilku godzin do kilku
dni. Po zatwierdzeniu, aplikacja pojawia sie w App Store.

7. Obstuga po publikacji (OTA i btedy): Jesli znajdziemy drobny btad juz po publikacji, i
jest to btgd w kodzie JavaScript, mozemy rozwazy¢ wypuszczenie OTA update na
kanat produkcyjny, zamiast robi¢ od razu nowy build w sklepie. Przyktad: odkrylismy
literowke w tekscie lub chcemy zmienié kolor przycisku — to idealne zadanie dla OTA.
Wykonujemy:

eas update --channel production --message "Hotfix kolor przycisku"

(opis to tylko meta dla nas). Uzytkownicy dostang te poprawke przy nastepnym
uruchomieniu aplikacji (pamietajmy jednak o runtimeVersion — OTA trafi tylko do
tych instalacji, ktérych runtimeVersion zgadza sie z buildem na ktérym testowalismy).

Dla pewnosci mozna zrobi¢ najpierw eas update --channel staging i przetestowac na
naszej wersji staging, a potem wypchnga¢ to samo na production.

Jesli btad jest powazny lub dotyczy warstwy natywnej (np. crashuje natywny modut) —
nie unikniemy wypuszczenia nowej wersji w sklepach. Wtedy robimy np. wersje
1.0.1, poprawiamy kod, zwiekszamy numerki, budujemy przez EAS, i publikujemy tak
jak wyzej.

8. Monitorowanie: Po wydaniu, obserwujemy w Sentry czy pojawiajg sie nowe btedy.
Mozemy skonfigurowad Slack integration z Sentry, by dostawa¢ powiadomienia o
crashach. Réwniez patrzymy na feedback uzytkownikéw w sklepie —to czesto zrédto
informacji o problemach, ktérych nie wykrylismy (np. "apka nie dziata na tabletach z
Android 13" — co moze wskazywa¢ na specyficzny bug).

9. Analityka: Zbieramy dane analityczne — np. patrzymy w Firebase Analytics aktywnych
uzytkownikdw, czy uzywajg nowej funkcji, jaki % konczy rejestracje. Na podstawie
tego planujemy kolejne iteracje.

Struktura buildéw, kanaty OTA — co trafia do sklepu vs co aktualizujemy zdalnie
Na koniec wyjasnijmy jeszcze, co zawiera build sklepowy, a co mozemy zmienia¢ OTA:

e Zawartos¢ paczki binarnej (IPA/AAB): zawiera wszystkie natywne kody (w tym
wbudowane moduty expo), bundel JavaScript (skompilowany kod JS naszej aplikacji)
oraz assety (obrazy, czcionki) potrzebne do dziatania. Ten bundle jest traktowany jako
wersja bazowa aplikacji.

e OTA update: to nowy bundle JS + ewentualnie nowe assety (np. dodalismy obrazek —
w update tez sie wysle). OTA nie moze dodawaé/zmieniaé¢ natywnego kodu. Dlatego
nie mozemy OTA dodac np. obstugi nowego sensora urzgdzenia — to wymaga
natywnej biblioteki i nowego builda. Mozemy natomiast OTA zmienia¢ logike, wyglad,
teksty, itp., dopdki korzystamy z istniejgcych natywnych mozliwosci. Jesli sprébujemy
np. wywotaé¢ metode natywnego modutu, ktdry doszedt dopiero w kolejnej wers;ji
aplikacji (i starg go nie ma), to nic sie nie stanie albo dostaniemy btgd — stad ten
wymag runtimeVersion, by odseparowac takie przypadki.

o Kanaty OTA: jak opisano, pozwalajg mieé np. oddzielny strumien aktualizacji dla
development (ew. nazywany "development", choé Expo Go i dev build i tak OTA nie
uzywajg), dla preview/staging do testéw (zeby testerom mdc wypuszczac
eksperymentalne zmiany szybko), i production dla uzytkownikéw.

o Jak to sie wigze z profilami: W naszym eas.json demo powyzej, profile production i
preview byty przypiete do konkretnych kanatéw. Dzieki temu mozemy wypuscic¢ np.
nowa funkcje najpierw na staging channel — testerzy (majacy build preview) dostang
j3 OTA — a uzytkownicy produkcyjni nie (bo inny kanat).

e Struktura projektu OTA na serwerze Expo: (opcjonalnie, by zrozumieé) — EAS Update
organizuje publikacje w branchach, kazda publikacja ma numerki (revisionID) i jest
przypieta do jakiegos channel i runtimeVersion. W aplikacji expo-updates natywnie
zapisuje manifest OTA i pliki w pamieci urzadzenia i decyduje czy je zatadowad.

e Co trafia do sklepu: do Google Play wysytamy plik .aab — on zawiera naszg binarke i
poszczegdblne zestawy zasobdw (Google Play sam wygeneruje z niego APK dla réznych

urzadzen). Do App Store wysytamy .ipa — on jest podpisany i zawiera juz wszystko
(Apple zrobi z niego plik .app w swojej infrastrukturze).

e Aktualizacje w sklepie: Gdy robimy wiekszg aktualizacje (np. wersja 2.0 z nowymi
natywnymi funkcjami), wypuszczamy nowy build przez sklepy. Uzytkownik musi
zaktualizowa¢ aplikacje (recznie lub automatycznie jesli ma wtgczone). Po
zaktualizowaniu, aplikacja moze tez od razu pobra¢ nowszy OTA jesli taki jest, ale
zwykle po swiezej instalacji nie ma potrzeby — bo embedowany bundle pewnie jest
najnowszy.

Testy end-to-end / automatyzacja: Jako ciekawostka, EAS umozliwia rdwniez uruchamianie
testéw end-to-end w chmurze po zbudowaniu (np. integracja z Maestro lub Detox), a takze
inne workflow (jak automatyczne wysytanie OTA na kazdy push do main, itp.). To jednak
wykracza poza nasz zakres wyktadu.

Literatura:

1. https://docs.expo.dev/develop/user-interface/splash-screen-and-app-icon/ (Data
dostepu: 1.10.2025) — Oficjalny przewodnik Expo dotyczacy konfiguracji ikon aplikacji,
wyjasniajacy zasady tworzenia ikon adaptacyjnych (Adaptive Icons) dla systemu
Android oraz wymagan dla iOS.

2. https://docs.expo.dev/build/introduction/ (Data dostepu: 1.10.2025) — Kompletny
przewodnik po ustudze EAS Build, omawiajgcy proces tworzenia binarek
produkcyjnych (.ipa, .aab) w chmurze oraz konfiguracje pliku eas.json.

3. https://docs.expo.dev/eas-update/introduction/ (Data dostepu: 1.10.2025) —
Dokumentacja ustugi EAS Update, wyjasniajgca mechanizm aktualizacji Over-The-Air
(OTA), zarzadzanie kanatami (channels) oraz wersjonowanie runtime.

4. https://docs.expo.dev/build/setup/ (Data dostepu: 1.10.2025) — Instrukcja
konfiguracji Srodowiska EAS CLI, niezbedna do autoryzacji projektéw, zarzgdzania
certyfikatami Apple/Google oraz automatyzacji procesu publikacji.

https://docs.expo.dev/develop/user-interface/splash-screen-and-app-icon/
https://docs.expo.dev/build/introduction/
https://docs.expo.dev/eas-update/introduction/
https://docs.expo.dev/build/setup/

