POLITECHNIKA SWIETOKRZYSKA

Aplikacje mobilne — wyktad
8

Architektura, testy i wydajnos¢

Mateusz Pawetkiewicz
1.10.2025

Wprowadzenie: W tym wyktadzie omowimy nowoczesne podejscie do architektury aplikacji
mobilnych React Native, strategie testowania (od testéw jednostkowych po end-to-end) oraz
techniki debugowania i optymalizacji wydajnosci. Wszystkie porady odpowiadajg aktualnym
dobrym praktykom — bedziemy korzystaé z najnowszych bibliotek i wzorcdow.

W szczegdlnosci skupimy sie na organizacji projektu w stylu feature-first, podziale na
warstwy logiczne, odseparowaniu warstwy domenowej od danych z APl (DTO vs. modele
domenowe), pisaniu testéw jednostkowych, komponentéw, hookdw i E2E (Detox), uzyciu
narzedzi debugowania (Flipper, React DevTools) oraz na optymalizacji list i animacji (FlatList
tuning, unikanie zbednych renderéw, wprowadzenie do Reanimated). Catos¢ zilustrujemy
przyktadami kodu z komentarzami, aby utatwic zrozumienie i praktyczne zastosowanie
omawianych koncepcji.

1. Architektura aplikacji React Native

W dobrze zaprojektowanej aplikacji React Native kluczowa jest odpowiednia architektura
projektu — czyli organizacja plikdéw, modutéw i warstw w kodzie. Dobra architektura utatwia
skalowanie aplikacji, prace zespotowa, testowanie oraz utrzymanie kodu. Omoéwimy
podejscie feature-first do organizacji kodu, wyjasnimy podziat na warstwy logiczne (ui, hooks,
services, api, types, utils), a takze koncepcje DTO vs. model domenowy oraz mapowanie danych
i obstuge btedéw z backendu.

1.1 Podejscie feature-first vs. tradycyjna architektura warstwowa

Tradycyjnie wiele projektéw React Native (a takze React) organizowano warstwowo — pliki
byty grupowane wedtug typu, np. katalogi globalne components/, screens/, utils/, services/, types/
itp. Taka struktura jest poczatkowo intuicyjna, ale wraz z rozrostem projektu moze sprawiac
problemy. Gdy aplikacja rosnie do kilkunastu czy kilkudziesieciu ekrandw, podejscie
warstwowe czesto prowadzi do:

o Stabej skalowalnosci — funkcje powigzane z jednym featurem sg porozrzucane po
wielu folderach, przez co fatwiej o niechciane zaleznosci miedzy modutami. Zmiana w
jednym miejscu moze niechcacy wptynaé na inny obszar aplikacji.

« Scistego sprzezenia (tight coupling) — brak jasnych granic miedzy domenami
biznesowymi. Kod réznych funkcjonalnosci miesza sie, co utrudnia izolowanie i
modyfikacje pojedynczych elementow.

e Konfliktéw w zespole — wielu deweloperéw moze pracowaé na tych samych
»globalnych” plikach (np. dodajac rzeczy do jednego utils.js czy modyfikujgc wspdlny
store), co zwieksza ryzyko konfliktéw i btedéw integracji.

e Trudnosci w testowaniu — ciezko jest przetestowaé¢ modut w izolacji, skoro logika
jednego feature’u rozsiana jest po réznych warstwach. Mockowanie zaleznosci bywa
skomplikowane, bo brak wyraznych granic miedzy komponentami a logika.

¢ Problemdéw z utrzymaniem — dodanie nowej funkcji poteguje ,,chaos”, bo czesto
wymaga edycji wielu rozproszonych plikdw. Kod z czasem staje sie mniej czytelny, a
refaktoryzacja — ryzykowna.

Rozwigzaniem tych problemodw jest podejscie feature-first, ktére odwraca tradycyjny
schemat. Zamiast grupowaé pliki wedtug typu, grupujemy je wedtug funkcjonalnosci

(feature). Kazdy gtowny modut funkcjonalny aplikacji ma swoj wtasny podkatalog zawierajgcy
wszystko, co z nim zwigzane: komponenty Ul, ekrany, logike (hooks, serwisy), definicje
typow, a nawet pod-modut do komunikacji z API. Taki feature folder jest jakby mini-aplikacja
wewnatrz projektu — ma wiekszosc¢ rzeczy potrzebnych do dziatania danej funkcji, co
przypomina podejscie mikroserwiséw w backendzie, ale zastosowane lokalnie w kodzie
front-end.

Przyktadowa struktura feature-first: wyobrazmy sobie aplikacje z modutami:
uwierzytelnianie, ekran gtdwny, onboarding, ustawienia, lista zadan (todos). Struktura
projektu moze wygladac nastepujgco:

src/

|— features/

| F—auth/

| | |—api/ # kod do komunikacji z APl dla modutu auth (np. login, logout)

| | | components/# komponenty Ul specyficzne dla auth (np. formularz logowania)
| | F—hooks/ #hookizwigzane z auth (np. useAuth)

| | |—— screens/ # ekrany (React components) modutu auth (np. LoginScreen)

| | |—— services/ # logika biznesowa auth (np. obstuga tokendw, walidacja)

| | |— store/ # (opcjonalnie) stan globalny specyficzny dla auth (np. Redux slice)

| | L—types/ # definicje typdw (TypeScript) zwigzane z auth (np. UserCredentials)
| —home/

| | — # analogiczna struktura dla modutu ekranu gtéwnego

| |—onboarding/

| |—settings/

| L—todos/ # modut listy zadan

|— navigation/ # nawigacja aplikacji (np. stacki, tab navigator — czesto globalne)
|—— services/ # ustugi wspotdzielone (np. wspdlny klient API, konfiguracja)

|—— store/ # globalny store (np. konfiguracja Redux, persystencja)

|—— ui/ # wspolne komponenty Ul (np. przycisk uzywany w wielu miejscach)
L— utils/ # funkcje pomocnicze wspdlne (np. formatowanie dat, logowanie)

W powyiszej strukturze kazdy folder w features/ reprezentuje wzglednie samodzielny modut
biznesowy, ktéry moze byc¢ rozwijany, testowany, a nawet usuniety niezaleznie od reszty
aplikacji. Taki podziat wymusza luzne powigzania miedzy moduftami — komunikacja odbywa
sie poprzez zdefiniowane interfejsy (np. wywotania w services/api) zamiast poprzez dzielenie
globalnych zmiennych. Dzieki temu:

o Aplikacja lepiej sie skaluje — dodajgc nowy feature, dodajemy nowy folder,
minimalizujgc wptyw na istniejgcy kod.

o Deweloperzy mogg pracowad réwnolegle nad réznych funkcjonalnosciach bez
wchodzenia sobie w droge (mniej konfliktow).

¢ Testowanie staje sie prostsze — mozemy tatwiej odpali¢ testy dla catego modutu
feature (lub zamockowac¢ jeden modut podczas testowania innego). Poszczegdlne
funkcjonalnosci sg z definicji izolowane, co sprzyja tworzeniu testow jednostkowych i
integracyjnych.

e Czytelnosc i utrzymanie — kod zwigzany z danym zagadaniem jest zgrupowany, co
utatwia nowym osobom zrozumienie, gdzie szuka¢ odpowiedniej logiki. Gdy cos nie
dziata np. w logowaniu, to wiadomo, ze wiekszos$¢ istotnego kodu bedzie w
features/auth/*.

Warto zaznaczy¢, ze podejscie feature-first nie wyklucza posiadania pewnych
wspotdzielonych czesci aplikacji — np. komponentéw Ul ogdlnego uzytku (src/ui), globalnej
konfiguracji klienta HTTP (src/services/api), czy wspdlnego stanu aplikacji (src/store). Jednak
nawet te elementy mozna projektowac tak, aby byty wykorzystywane przez poszczegdlne
feature’y w sposéb kompozycyjny, a nie zeby zastepowaty logike feature. Np. mozemy miec
globalny klient API, ale poszczegdlne moduty feature tworzg wtasne funkcje APl (w swoim
folderze api/), uzywajac tego klienta do wywotan sieciowych.

Podsumowujac: Architektura feature-first poprawia modularnos¢ i skalowalnos¢ projektu
React Native.

1.2 Warstwy logiczne: ui, hooks, services, api, types, utils

W strukturze feature-first wyrézniamy warstwy logiczne wewnatrz kazdego modutu.
Wymienione katalogi (ui, hooks, services, api, types, utils) petnig nastepujace role:

e ui (interfejs uzytkownika) — komponenty prezentacyjne zwigzane z danym featurem.
Moga to byc¢ np. specyficzne kontrolki, przyciski, karty, formularze uzywane tylko w
ramach tego modutu. Czesto sg to proste, Swiadome tylko wtasnych propséw
komponenty (tzw. dumb components), ktére mozna reuzyc. Jesli jakis komponent
staje sie potrzebny w wielu feature’ach, mozna go przenies¢ do wspdlnego katalogu
src/ui. Przyktad: w module todos mozemy mie¢ komponent Todoltem renderujgcy
pojedyncze zadanie.

e hooks — custom hooki z logikg biznesowg lub obstugujgce stan lokalny feature’u. Hooki
moga ukrywac wewnetrzne szczegoéty implementacji (np. sposdb pobierania danych
czy reagowania na zmiany) i mie¢ wygodny interfejs do komponentéw. Przyktad:
useTodos() w module todos pobierajacy liste zadan z API, obstugujgcy stan fadowania,
btad itp. Hooki umozliwiajg tez fatwe ponowne wykorzystanie kodu w réznych
komponentach (np. ten sam hook uzyty na réznych ekranach).

e services — warstwa logiki biznesowej / domenowej. Tutaj umieszczamy kod realizujgcy
konkretne przypadki uzycia (use-cases) niezwigzany bezposrednio z Ul. Services mogg
wywotywac funkcje z warstwy api, mogg tez zawiera¢ np. zarzadzanie stanem
specyficznym dla feature (np. prosty store oparty o Context lub operacje na
globalnym store). W niektérych projektach ta warstwa bywa nazwana use-cases, logic
lub controllers. Przyktad: todos/services/todoService.ts moze miec¢ funkcje takie jak
addTodo, toggleTodoCompleted — operujgce na danych zadan poprzez wywotanie API i
aktualizacje stanu lokalnego.

e api— warstwa dostepu do danych zewnetrznych. Zawiera funkcje/fetchery do
komunikacji z zewnetrznym API (backendem) lub bazg danych lokalng. W wielu
nowoczesnych aplikacjach stosuje sie tu np. React Query lub RTK Query do efektywnego
pobierania i cache’owania danych, albo klasyczne wywotania fetch/axios. Warstwa api
powinna by¢ odseparowana od reszty — tak, by zmiana szczegétdow APl (endpoints,
formaty danych) nie wptywata na kod Ul. Przyktad: auth/api/authApi.ts moze
eksportowac funkcje login(credentials) ktdra wykonuje POST /login i zwraca obiekt np.
AuthToken. W praktyce moze to by¢ zaimplementowane np. przy pomocy biblioteki
RTK Query, ktdora pozwala definiowac endpointy dla mutacji i zapytan.

o types — definicje typow i interfejsow (jesli korzystamy z TypeScript, co jest obecnie
standardem w RN). Oddzielenie typdéw utatwia ich reuzycie miedzy warstwami (np.
interfejs Todo uzywany w api i w ui). Czesto dzieli sie typy na DTO (typ odpowiedzi z
API) i modele domenowe — o czym wiecej za chwile. W folderze types mozemy tez
umiesci¢ np. typy dla propséw komponentdéw, aby nie batagani¢ gtéwnego kodu
komponentu.

e utils — pomocnicze funkcje specyficzne dla danego modutu. Moga to by¢ np.
formatowanie danych, funkcje do walidacji, parsery itp. Jesli jakas funkcja utils
okazuje sie globalnie przydatna, moze trafi¢ do src/utils. Na poziomie feature
trzymamy tylko to, co unikalne dla danego obszaru. Przyktad: utils/formatTodoTitle.ts —
prosta funkcja formatujgca tytut zadania (np. przycinajgca zbyt dtugie nazwy).

Zalety podziatu na warstwy: Porzgdek ten wymusza czysty podziat odpowiedzialnosci
(Separation of Concerns). Ul zajmuje sie wyfacznie prezentacjg, nie musi wiedzie¢ skad
pochodza dane — dostaje je od hooka/serwisu. Serwis zna logike biznesowg, ale nie zajmuje
sie renderowaniem — wywotuje APl i np. zarzadza stanem. Warstwa API izoluje szczegoty
komunikacji z serwerem (adresy URL, struktura JSON-6w) od reszty aplikacji. Dzieki temu
zmiany w jednej warstwie minimalnie wptywajg na inne. Taka organizacja sprzyja
testowalnosci — mozemy np. testowac logike serwisu niezaleznie, podajgc mu zamockowang
warstwe API (albo uzywajgc tzw. dummy data zamiast realnych wywotan). Podobnie,
komponenty Ul mozemy testowa¢, podajgc im fikcyjne dane i custom hooki, bez faktycznego
kontaktu z backendem.

1.3 DTO vs. modele domenowe (Domain Models)

Przy pracy z warstwg danych warto rozrézni¢ dwa pojecia: DTO (Data Transfer Object) i
model domenowy. W kontekscie aplikacji klienckiej (RN) DTO to zazwyczaj struktura danych
doktadnie taka, jak przychodzi z APIl, natomiast model domenowy to reprezentacja danych,
ktorej uzywamy wewnatrz naszej aplikacji (dopasowana do potrzeb interfejsu i logiki
biznesowej).

e DTO - to obiekt przenoszacy dane pomiedzy systemami (np. miedzy serwerem a
naszg aplikacjg). Ma takg strukture, jak zdefiniowat backend, czesto zagniezdzonag,
zawierajgcg pola potrzebne gtdwnie z perspektywy serwera. DTO moze zawieraé np.
pola techniczne, identyfikatory, relacje, ktére nie zawsze sg bezposrednio potrzebne
w Ul. Czesto API stosujg standardy (np. JSON:API), ktére narzucajg pewien ksztatt
odpowiedzi (np. obiekt attributes, relationships itp.).

¢ Model domenowy (czasem zwany tez model biznesowy lub encja domenowa) — to
nasza wtasna, wewnetrzna reprezentacja danych, dopasowana do potrzeb aplikacji.
Model domenowy powinien by¢ prostszy, zawierac tylko to, co naprawde potrzebne
aplikacji i w formie wygodnej do uzycia w kodzie. Moze rowniez zawieraé¢ metody czy
logike operujaca na danych (choé w JavaScript/TypeScript czesciej modele to po
prostu interfejsy/typy, a logika jest w funkcjach osobno). Model domenowy jest
niezalezny od tego, jak dane sg przechowywane czy przesytane — opisuje koncepty
biznesowe w sposdéb zrozumiaty dla dewelopera i (teoretycznie) dla analityka
biznesowego.

Kluczowa réznica: DTO istnieje z powoddw technicznych, aby przenies¢ dane przez sie¢ lub
miedzy warstwami, natomiast model domenowy istnieje z powodéw biznesowych —
odwzorowuje pojecia, ktérymi postuguje sie domena/problem, ktdry rozwigzujemy. Czesto
model domenowy ma bogatsze zachowania (metody biznesowe, walidacje) lub przynajmnie;j
jasno odzwierciedla jezyk dziedziny (np. klasa/typ Order z metod3 calculateTotal() w
przeciwienstwie do DTO OrderDTO bedgcego tylko “gtupim” zbiorem pdél).

W praktyce w aplikacjach React/React Native modele domenowe bywajg sptaszczone i
uproszczone w porownaniu do DTO. Przyjrzyjmy sie przyktadowi, aby to zilustrowac:

Przyktad: Zatézmy, ze backend zwraca nam uzytkownika w formacie zgodnym z JSON:API,
np.:

// Przyktadowy DTO uzytkownika z API

{
"id": "123",
"type": "user",
"attributes": {
"handle": "jan_kowalski",
"avatar": "https://example.com/avatar.jpg",
"info": "Bio uzytkownika..."
b
"relationships": {
"followerlds": ["ul", "u2", "u3"]
}
}

To jest DTO — struktura doktadnie taka, jak w odpowiedzi serwera. W naszym kodzie jednak
korzystanie z tak zagniezdzonego obiektu bytoby ucigzliwe (ciggte odwotania
user.attributes.handle itd.), a co gorsza — uzaleznia nas to mocno od formatu serwera. Gdyby
backend zmienit strukture (np. zrezygnowat z pola attributes), nasz kod Ul by sie posypat, bo
wszedzie odwotujemy sie do user.attributes.handle.

Dlatego w warstwie mapowania danych przeksztatcamy DTO na model domenowy, np. taki:

// Model domenowy User w aplikacji (TypeScript interface)
interface User {

id: string;

handle: string;

avatar: string;

info?: string;

followerlds: string[];

Tutaj mamy wszystkie potrzebne pola, spfaszczone i nazwane zgodnie z intuicjg. Takim
modelem postuguje sie reszta aplikacji (Ul, logika) — jest prosty i nie zawiera zbednych
zagniezdzen. Jak go uzyska¢? Poprzez mapowanie DTO -> model w warstwie api lub services.

Mozemy napisac funkcje mappera, np.:

// src/features/user/api/userMapper.ts
import { UserDTO } from '../types'; // zaktadamy, ze UserDTO to typ odpowiadajgcy strukturze z API

import { User } from '../types'; // nasz model domenowy

export function mapUserDtoToModel(dto: UserDTO): User {
return {
id: dto.id,
handle: dto.attributes.handle,
avatar: dto.attributes.avatar,
info: dto.attributes.info,
followerlds: dto.relationships.followerlds,
|3
}

Taka funkcje wywotujemy zaraz po otrzymaniu danych z API, zanim przekazemy je dale;j.
Przyktadowy fragment serwisu:

// src/features/user/services/userService.ts
import { apiClient } from '../../../services/apiClient'; // globalny klient HTTP (np. axios)
import { mapUserDtoToModel } from '../api/userMapper';

export async function fetchUser(handle: string): Promise<User> {
const response = await apiClient.get<{ data: UserDTO }>('/user/S{handle}’);
const userDto = response.data.data;
const user = mapUserDtoToModel(userDto);
return user;

}

Dzieki temu komponenty Ul i logika biznesowa operujg na wygodnym modelu User, np.
mogq bezposrednio pisac user.handle zamiast user.attributes.handle. Zmniejsza to ztozonos$¢ kodu
frontendu i uniezaleznia nas od ewentualnych zmian w API. Gdy backend zmieni format,
wystarczy zmodyfikowaé funkcje mapujacg, zamiast przeszukiwaé i poprawiaé uzycia w
dziesigtkach komponentow.

Ponadto, odseparowanie modeli od DTO pomaga w obstudze btedow i walidacji. Np. jesli
serwer zwraca btad walidacji z informacjami w specyficznym formacie (np. pola errors
zawierajace liste komunikatéw), to warstwa api/service moze taki btad przechwycic i
przeksztatcié na przyjazny dla aplikacji obiekt btedu lub wyjatek. Mozna zdefiniowa¢ wtasny
typ btedu domenowego, np. VvalidationError z polami field i message, i mapowac odpowiedz
serwera na taki btad. Dzieki temu komponenty lub hooki dostajg juz gotowy, zrozumiaty
obiekt btedu (np. do wyswietlenia komunikatu), zamiast surowej odpowiedzi serwera.
Przyktad obstugi btedu:

try {
const user = await fetchUser('jan_kowalski');
setUser(user);
} catch (e: any) {
if (isvalidationError(e)) {
showToast(e.message); // nasz wtasny komunikat z wyjgtku domenowego
}else {
console.error('Unknown error fetching user', e);
}
}

Funkcja fetchUser wewnatrz moze zrobic co$ takiego:

const response = await apiClient.get(...);
if (response.status === 400 && response.data.errors) {
throw new ValidationError(mapError(response.data.errors));

}

Gdzie mapError przeksztatca strukture btedu z API na naszg klase/obiekt btedu. Oczywiscie
implementacja zalezy od API — chodzi o zasade, by logike btedéw trzymaé w warstwie
komunikacji/serwisu, a nie rozrzuca¢ ja po komponentach. Komponent powinien dostac juz
przeprocesowang informacje (np. ze logowanie nie powiodto sie bo zte hasto), zamiast
surowego HTTP 401 z ciatem JSON.

Podsumowanie: Oddzielenie DTO od modeli domenowych czyni nasz kod czytelniejszym i
odporniejszym na zmiany. Ul nie jest scisle sprzezone z formatem danych serwera, co
zmniejsza ztozonosc¢ i poprawia odpornosé na zmiany backendu. Wprowadzenie warstwy
mapowania to krok w kierunku czystszej architektury — , czystego” frontendu, gdzie dane z
API sg izolowane w swojej warstwie (nierzadko okreslanej jako Domain Layer w literaturze).
Ten koncept jest inspirowany zasadami DDD (Domain-Driven Design), cho¢ stosujemy go w
Izejszy sposdb, dopasowany do realidw aplikacji mobilne;j.

2. Testy w React Native — od jednostkowych do E2E

Testowanie aplikacji React Native przebiega na kilku poziomach. W nowoczesnym podejsciu
ktadziemy nacisk zaréwno na testy jednostkowe (pojedyncze funkcje, logika), testy
komponentow i hookoéw (czyli testy integracyjne Ul w kontrolowanym srodowisku) oraz na
testy end-to-end (E2E) symulujace prawdziwe uzycie aplikacji. Omoéwimy po kolei te rodzaje
testéw, narzedzia takie jak Jest, React Native Testing Library i Detox, a takze sposob
konfiguracji sSrodowiska testowego. Pokazemy tez przyktady kodu testow komponentu i
hooka, aby zademonstrowaé praktyczne podejscie.

2.1 Testy jednostkowe (Jest)

Testy jednostkowe sprawdzajg najmniejsze jednostki kodu — zwykle pojedyncze funkcje lub
moduty — w izolacji od reszty. W ekosystemie React Native standardem do testéw
jednostkowych (jak i wiekszosci testow frontendowych) jest Jest — framework testowy
dostarczany od razu przy tworzeniu projektu React Native (np. przez npx react-native init). Jest
oferuje srodowisko uruchomieniowe dla testéw JavaScript z wbudowanym domys$inym
wsparciem dla React Native (preset react-native w konfiguracji).

Test jednostkowy w Jest ma postac funkg;ji test(...) lub aliasu it(...), w ktérej opisujemy
oczekiwane zachowanie kodu. Mozemy uzywac asercji (matcherdw) takich jak expect(x).toBe(y)
albo expect(obj).toHaveBeenCalled() (dla mockow). Przyktadowo, majgc funkcje w utils liczagca
sume, test jednostkowy wygladatby:

import { suma } from '../utils/calc’;
test('poprawnie sumuje dwie liczby', () => {

expect(suma(2, 3)).toBe(5);
N

Oczywiscie prawdziwa sita testow jednostkowych ujawnia sie przy bardziej ztozonej logice. W
projekcie RN bedziemy pisac takie testy gtéwnie dla logiki biznesowej (np. funkcje w
services/utils) oraz dla custom hookdw (o ile testujemy je bezposrednio) czy reduktoréw stanu.
Testy jednostkowe sg szybkie i izolowane — nie dotykajg Ul ani sieci, dzieki czemu
uruchamiajg sie w milisekundach i dajg nam informacje zwrotng przy kazdym
buildu/commitcie.

Mockowanie zaleznosci: Podczas testéw jednostkowych czesto korzystamy z mechanizmu
mockow w Jest. Pozwala on zastgpic¢ faktyczne moduty lub funkcje ,udawanymi”
implementacjami, by testowac¢ dany kawatek kodu w oderwaniu od reszty. Przyktad: testujgc
funkcje fetchUser z poprzedniej sekcji, nie chcemy w tescie robi¢ prawdziwego requestu HTTP.
Mozemy wiec zamockowa¢ modut apiClient UzZywajac jest.mock('nazwaModutu') i definiujac, ze
apiClient.get zwraca obiekt z przyktadowymi danymi (symulacja odpowiedzi serwera). Dzieki
temu test jest deterministyczny i szybki.

Konfiguracja Jest: W projektach RN minimalna konfiguracja to zainstalowanie zaleznosci i
ewentualnie pliku konfiguracyjnego jest.config.js. Typowa konfiguracja (jesli korzystamy z
React Native Testing Library, o czym za chwile) moze wymagac¢ dodania do setupFiles
rozszerzen matcheréw. Przyktadowo, aby korzystaé z dodatkowych asercji @testing-library/jest-
native (Np. toBeVisible(), toHaveTextContent()), do pliku konfiguracyjnego dodaje sie:

module.exports = {

preset: 'react-native’,

setupFilesAfterEnv: ['@testing-library/jest-native/extend-expect']
b

Tyle wystarczy, by zaczac pisac testy. Uruchomienie testéw odbywa sie poleceniem npm test
(lub yarn test), ktére odpala wszystkie pliki o nazwach zakonczonych na .test.js lub .spec.js
(domyslnie w konfiguracji).

2.2 Testowanie komponentow i hookéw (React Native Testing Library)

Testy jednostkowe pokrywajg logike, ale w aplikacjach Ul wazne jest tez przetestowanie
komponentow — czyli czy interfejs renderuje sie zgodnie z zatozeniami i reaguje na interakcje
uzytkownika. Do tego celu uzywamy React Native Testing Library (RNTL), ktéra dostarcza
narzedzia do renderowania komponentdw w srodowisku testowym i sprawdzania ich
zawartosci oraz zachowania. RNTL jest adaptacjg popularnej biblioteki Testing Library znanej
z React web, dostosowang do specyfiki React Native (np. obstuguje widoki, Text, itp.).

Instalacja: Zaktadamy, ze mamy juz Jest. Instalujemy paczki: @testing-library/react-native oraz
opcjonalnie @testing-library/jest-native (jak wyzej, dla dodatkowych matcheréow). Te biblioteki
pozwalajg w testach uzywac funkcji takich jak render, fireEvent oraz asercji typu
toHaveTextContent. Po instalacji i konfiguracji (jak wspomniano w 2.1), mozemy pisac testy
komponentéw.

Renderowanie komponentu w tescie: RNTL dostarcza funkcje render() do wyrenderowania
komponentu w kontekscie testowym (nie w prawdziwym emulatorze, tylko w wirtualnym
srodowisku przypominajgcym drzewo komponentéw). render zwraca obiekt zawierajgcy m.in.

metody do wyszukiwania elementdw: getByText, getByTestld, getByRole itp. Dzieki temu mozemy
znalez¢ wirtualnie wyrenderowany element i sprawdzi¢, czy istnieje, ma odpowiednie
propsy, style, tekst, itp.

Przyktad — przetestujmy prosty komponent Sociallinks, ktéry wyswietla link do profilu
uzytkownika (np. Twitter):

// Komponent SocialLinks (props: label, link, type), np. pokazuje ikonke i tekst
import React from 'react’;
import { Text, TouchableOpacity, Image, Linking } from 'react-native';

const icons = {
twitter: require('../assets/twitter.png'),
instagram: require('../assets/instagram.png')

5

export const Sociallinks = ({ type, label, link }) => (
<TouchableOpacity onPress={() => Linking.openURL(link)}>
<Image source={icons[type]} accessibilityRole="image" />
<Text>{label}</Text>

</TouchableOpacity>

);

Chcemy przetestowad, czy: (a) odpowiedni tekst label jest renderowany, (b) ikona (Image)
jest obecna, (c) klikniecie wywotuje otwarcie linku. W tym celu piszemy testy z uzyciem
RNTL:

import React from 'react’;

import { Linking } from 'react-native';

import { render, fireEvent } from '@testing-library/react-native';
import { SocialLinks } from '../SocialLinks';

// Przygotowanie: zamockujemy Linking.openURL, by nie otwierat prawdziwej przegladarki:
jest.spyOn(Linking, 'openURL').mockimplementation(() => Promise.resolve());

test('renderuje etykiete linku spotecznosciowego’, () => {
const { getByText } = render(
<Sociallinks type="twitter" label="John Doe's Twitter" link="https://twitter.com/johndoe" />
);
const labelElement = getByText("John Doe's Twitter");
expect(labelElement).toBeTruthy(); // sprawdzamy czy tekst sie pojawit

N;

W powyzszym tescie uzywamy render do wyrenderowania komponentu z przyktadowymi
propsami. Nastepnie getByText wyszukuje element <Text> po zawartosci. Oczekujemy, ze taki
element istnieje (matcher toBeTruthy() sprawdza, czy znaleziony element nie jest null). Ten
test upewnia nas, ze komponent faktycznie wyswietla przekazany label. Gdyby ktos przez
pomytke zmienit komponent tak, ze ignoruje prop label (np. wstawit na sztywno tekst), test
by sie nie powiddt, co wychwyci regresje.

Drugi test — czy ikona jest renderowana:

test('renderuje ikone typu social (np. Twitter)', () => {

const { getByRole } = render(
<SocialLinks type="twitter" label="John Doe's Twitter" link="https://twitter.com/johndoe" />
);
const icon = getByRole('image');
expect(icon).toBeTruthy(); // obecnosé obrazka (Image)

N;

Tutaj uzyliSmy getByRole('image'). W RNTL role odpowiadajg atrybutom dostepnosci
(accessibilityRole). Poniewaz w komponencie <Image> domyslnie ma
accessibilityRole="image" (co jest mapowane na role), mozemy w tescie w ten sposdb
znalez¢ obrazek. Test sprawdza tylko czy jest jakikolwiek obrazek — mozna by doprecyzowaé,
np. sprawdzic czy zrédto obrazu jest wtasciwe, ale czesto wystarczy sprawdzi¢ obecnos¢
elementu (testy nie muszg wnika¢ we wszystkie detale Ul, raczej w kluczowe aspekty).

Trzeci test — reakcja na interakcje (klikniecie):

test('otwiera link po nacisnieciu komponentu’, () => {
const { getByText } = render(
<Sociallinks type="twitter" label="John Doe's Twitter" link="https://twitter.com/johndoe" />
);
const labelElement = getByText("John Doe's Twitter");
fireEvent.press(labelElement); // symulujemy tap na caty TouchableOpacity (tu na jego tekst)
expect(Linking.openURL).toHaveBeenCalledWith('https://twitter.com/johndoe');
N

W tym tescie kluczowe jest przygotowanie: wczesniej uzyliSmy jest.spyOn aby uczynié
Linking.openURL funkcjg mockowang. Dzieki temu mozemy sprawdzi¢ wywotania tej funkcji.
Uzywamy fireEvent.press(...) aby zasymulowac nacisniecie elementu dotykowego (nasz
komponent opakowuje <Text> i <Image> w <TouchableOpacity>, wiec klikniecie tekstu tez
zadziata). Oczekujemy, ze Linking.openURL zostata wywotana z konkretnym URL. Jesli np.
pomylimy i w komponencie wywotamy cos innego, test to wykryje.

Tak przetestowalismy kluczowa funkcjonalnos¢ komponentu: renderowanie poprawnych
danych i reagowanie na interakcje. Testy komponentdéw pozwalajg wychwyci¢ wiele btedéw
zanim uruchomimy aplikacje na urzadzeniu, np. brak wyswietlania waznego elementu, ztg
nazwe pola, brak reakcji na klikniecie itp. Co wazne, testy te sg deterministyczne i dosc¢
szybkie (choé wolniejsze od czysto jednostkowych, bo muszg wyrenderowac komponenty).
Nie wymagajg emulatora — dziatajg w Node z symulowanym srodowiskiem RN.

Testowanie custom hookow: Hooki réwniez mozna testowac, choé¢ wymaga to albo
utworzenia komponentu testowego, ktdry wykorzysta hook, albo uzycia dedykowanej
biblioteki. Istnieje @testing-library/react-hooks (React Hooks Testing Library), ktéra utatwia
testowanie logiki hookéw bez komponowania ich w prawdziwy komponent. W przysztosci
moze zostaé zintegrowana, ale na 2025 nadal mozna z niej korzystaé. Przyktad — zatézmy
prosty hook useCounter(initialValue) zwracajgcy aktualny licznik i funkcje increment:

// hooks/useCounter.ts

import { useState } from 'react’;

export function useCounter(initialValue: number = 0) {
const [count, setCount] = useState(initialValue);
const increment = () => setCount(c =>c + 1);

return { count, increment };

}
Test przy uzyciu React Hooks Testing Library:

import { renderHook, act } from '@testing-library/react-hooks';
import { useCounter } from '../hooks/useCounter’;

test('inicjalizuje licznik i inkrementuje’, () => {
const { result } = renderHook(() => useCounter(5));
// result.current to { count, increment }
expect(result.current.count).toBe(5);
act(() =>{
result.current.increment();

N;

expect(result.current.count).toBe(6);

N;

Funkcja renderHook wywotuje nasz hook i zwraca obiekt z polem result zawierajgcym aktualny
wynik hooka (pod result.current). Mozemy sprawdzié¢ poczatkowga wartos¢, nastepnie uzyé act()
by wykona¢ akcje zmieniajgca stan (wywotanie increment) i potem asercje, ze stan sie zmienit
zgodnie z oczekiwaniem. Uzycie act jest wymagane, aby symulowac poprawnie cykl renderéw
(to taki mechanizm Testing Library mowigcy ,,to jest zmiana stanu, ogarnij prze-render”). Ten
test upewnia nas, ze nasz hook dziata poprawnie izolujac logike od komponentu.

Oczywiscie hooki, ktére korzystajg z kontekstu lub innych hookéw RN mogg wymagac
owiniecia w odpowiedni provider podczas testu (RNTL render ma opcje wrappera). Ale w
prostych przypadkach takie podejscie jest wystarczajgce.

2.3 Testy E2E — narzedzie Detox

Testy jednostkowe i komponentow pokrywajg nasz kod ,wewnatrz” aplikacji, ale nie daja
100% pewnosci, ze aplikacja jako catos¢ dziata poprawnie na urzadzeniu. Tutaj do gry
wchodzg testy end-to-end (E2E), ktore symulujg prawdziwe scenariusze uzycia aplikacji na
fizycznym urzadzeniu lub emulatorze. W ekosystemie React Native de facto standardem do
E2E jest biblioteka Detox (rozwijana przez Wix).

Czym jest Detox? Detox to framework do automatyzacji testéw E2E zaprojektowany
specjalnie z myslg o aplikacjach mobilnych (szczegdlnie React Native). W przeciwieristwie do
podejs¢ czysto czarnej skrzynki (np. Appium), Detox jest narzedziem gray-box — oznacza to,
ze testy uruchamiane sg na prawdziwej aplikacji (tak jak uzytkownik by jg uzywat), ale Detox
ma wglad w wewnetrzny stan aplikacji, co pozwala mu lepiej synchronizowaé akcje z tym, co
sie dzieje wewnatrz. Dzieki temu testy sg bardziej stabilne: framework czeka na bezczynnos¢
aplikaciji (idle) zanim wykona kolejne kroki — np. poczeka az zakoriczg sie animacje, requesty
sieciowe, render komponentéw itp., zanim np. sprébuje klikng¢ przycisk.

Jak to dziata od strony technicznej? Detox integruje sie z natywnymi frameworkami testéw
Ul — na iOS uzywa XCUITest, na Androidzie Espresso. Réznica jest taka, ze normalnie te
frameworki sg czarng skrzynka (tylko klikajg i patrzg na Ul), a Detox dodaje warstwe
komunikacji z wnetrzem RN. Dziata to tak, ze nasza aplikacja RN jest uruchamiana ze

specjalng bibliotekg Detox, ktéra raportuje do testera stan (np. ,jeszcze cos sie renderuje,
jeszcze dziata petla animac;ji”). Testy piszemy w JavaScript (uruchamiane przez Jest lub
Mocha), one komunikuja sie z aplikacja przez most Detox. Schemat wyglada mniej wiecej
tak:

e Uruchamiamy detox test — buduje sie aplikacja (wersja testowa) i odpalany jest runner
testow.

e Detox odpala aplikacje na emulatorze/symulatorze. Testy czekajg, az aplikacja bedzie
gotowa.

e Nastepnie kazda testowa akcja (tap, wpisanie tekstu, scroll) jest wysytana do
natywnej strony (Espresso/XCUITest), ktora wykonuje jg na urzadzeniu.

e Zkolei kazda asercja (sprawdzenie, czy jaki$ element widac) dziata tak, ze Detox
potrafi na podstawie matcherdw (np. tekstu, id) znalez¢ element w hierarchii Ul
aplikacji.

¢ Synchronizacja: Detox automatycznie przed wykonaniem akcji/asercji upewnia sie, ze
aplikacja jest gotowa — np. nie wykonuje tap, dopdki aplikacja nie jest idle (nie
wykonuje animacji, operacji JS). To praktycznie eliminuje koniecznos$¢ stosowania
sleep() czy recznych oczekiwan — cos, co czesto dreczy testy E2E.

e Wyniki (sukces/porazka) przekazywane sg do frameworka testéw i mozemy je
zobaczy¢ w konsoli.

Pisanie testow z Detox: Testy tworzymy podobnie jak zwykte testy, np. e2e/login.spec.js. Detox
udostepnia globalne obiekty do interakcji:

e device — kontrola urzadzenia (np. device.reloadReactNative() aby zresetowac aplikacje
miedzy testami, albo device.rotateScreen()).

e element(by.matcher(...)) — wybor elementu na ekranie za pomocg matchera (np.
by.id('loginButton'), by.text('Hello'), by.label('Password')).

e Akcje na elemencie: po wybraniu elementu mozna chainowaé .tap(), .typeText(),

.clearText(), .scroll() itd.

Asercje: await expect(element(by.id('something'))).toBeVisible() albo .toHaveText('...") itp.

Detox wymaga, by nasze elementy w aplikacji byty dostepne do zidentyfikowania. Najlepiej
nadawacd im atrybut testiD (RN ma taki props dla wszystkich podstawowych komponentdow).
Np. definujgc <Button testlD="loginButton" .../> mozemy w tescie uzy¢ element(by.id('loginButton')) do
znalezienia tego przycisku. To jest kluczowe — bez odpowiednich testID testy musiatyby
polegac na tekscie lub strukturze widoku, co bywa zawodne i podatne na zmiany Ul. Dlatego
dobra praktyka: wszystkie interaktywne elementy (przyciski, pola tekstowe) i kluczowe
wyswietlane informacje wstawiajmy z testlD podczas tworzenia komponentu, by utatwic testy
E2E.

Przyktadowy scenariusz testu E2E: Rozwazmy prosty przeptyw logowania. Mamy ekran
logowania z polami login, hasto i przyciskiem "Log In". Po zalogowaniu przechodzimy do
ekranu "Second Screen". Przyktadowy test w Detox (pseudo-kod zblizony do prawdziwego):

describe('Flow logowania', () => {
beforeAll(async () => {
await device.launchApp(); // uruchomienie aplikacji

N;

beforeEach(async () => {
await device.reloadReactNative(); // reset stanu przed kazdym testem, jesli potrzebne

N;

it('powinien zalogowaé uzytkownika poprawnymi danymi', async () => {
await expect(element(by.text('Log In'))).toBeVisible(); // sprawdz czy jesteSmy na ekranie logowania
await element(by.id('Logininput')).typeText('Admin'); // wpisz login (pole tekstowe ma
testID="LoginInput")
await element(by.id('PasswordInput')).typeText('password'); // wpisz hasto
await element(by.text('Log In")).tap(); // nacisnij przycisk "Log In"
await expect(element(by.text('Second Screen'))).toBeVisible(); // oczekuj przejscia do drugiego ekranu

N;

it('powinien wyswietli¢ btad przy pustych polach', async () => {
await element(by.text('Log In')).tap(); // bez wpisywania niczego, klikamy logowanie
await expect(element(by.id('LogininputError'))).toBeVisible(); // pole login powinno wyswietli¢ btad
(zaktadamy, ze komponent pola ma <Text testID="LoginInputError"> przy btedzie)
await expect(element(by.id('PasswordInputError'))).toBeVisible(); // to samo dla hasta
1
1

Powyzszy kod (w uproszczeniu) pokazuje, jak test E2E loguje sie i sprawdza nawigacje oraz
walidacje. Zwrd¢ uwage na asercje: expect(element(by.text('Log In'))).toBeVisible() — Detox
sprawdza, czy istnieje element z tekstem "Log In" i czy jest widoczny na ekranie (co oznacza,
ze ekran logowania jest aktywny). Wpisywanie tekstu typeText symuluje klawiature na
urzadzeniu — w tle do aplikacji lecg zdarzenia naciskania klawiszy. tap symuluje tapniecie w
ekran w miejscu elementu. Dzieki await i wewnetrznej synchronizacji Detox automatycznie
czeka na zakonczenie kazdej akcji. Np. await element(by.text('Log In')).tap() poczeka, az akcja tap
zostanie wykonana i ewentualna nawigacja zakonczona, zanim przejdzie dale;j.

Detox — konfiguracja i uruchomienie: Aby uzy¢ Detox, musimy doinstalowac paczke detox
oraz dostosowac projekt natywny (zwtaszcza iOS) — np. dodajgc do Podfile biblioteke Detox.
W pliku package.json konfigurujemy rézne konfiguracje Detox, np. dla iOS simulator, dla
Android emulator. Przykfad konfiguracji (fragment):

"detox": {
"testRunner": "jest",
"configurations": {
"ios.sim.debug": {
"binaryPath": "ios/build/Build/Products/Debug-iphonesimulator/MyApp.app",
"build": "xcodebuild -workspace ios/MyApp.xcworkspace -scheme MyApp -configuration Debug -sdk
iphonesimulator -derivedDataPath ios/build",
"type": "ios.simulator",
"device": { "type": "iPhone 14" }
}
}
}

Analogicznie dla Androida (Gradle build i apk path). Nastepnie uruchamiamy: detox build -
ios.sim.debug (buduje aplikacje testowg) i detox test -c ios.sim.debug (uruchamia testy). To dos¢
ztozony temat, ale szczegdty sg w dokumentacji Detox. Warto wspomnie¢, ze mozna

integrowac Detox z Cl (np. popularne jest uzycie go na platformach ciagtej integracji, a
Codemagic ma nawet wsparcie wprost).

Zalety Detox:

e Jest szybki i stabilny w poréwnaniu do np. Appium, bo jest dostosowany do RN i
korzysta z gray-box podejscia.

e Testy odpalaja sie bez koniecznosci recznej instrumentacji (wszystko skryptowo).

e Wspiera zarowno iOS jak i Android w jednym frameworku (piszemy test raz, dziata na
obu).

e Pozwala testowad autentyczne scenariusze: od startu appki, przez przechodzenie
miedzy ekranami, po integracje z native (np. mozna symulowa¢ powiadomienia push,
rézne stany aplikacji).

¢ Integruje sie z Jest — wiec mozna w jednym repo miec i testy jednostkowe, i E2E,
korzystajac ze znajomego runnera.

Wyzwania i dobre praktyki: Testy E2E sg najwolniejsze i najbardziej ztozone w utrzymaniu,
wiec zwykle nie piszemy ich bardzo duzo — pokrywamy kluczowe Sciezki (happy pathy i kilka
edge case’éw). Trzeba dbad o unikanie , flakiness” — czyli sytuacji, gdzie test raz przechodzi,
raz nie. Detox w duzej mierze to rozwigzuje synchronizacjg, ale programista musi pamietac o
testID i unikalnych selektorach, a czasem o czyszczeniu stanu (stgd np. device.reloadReactNative()
aby kazda scena startowata od czystego stanu). Wazne jest tez stubowanie ewentualnych
zewn. zaleznosci — np. jesli aplikacja podczas E2E trafia na niestabilne API, mozna w testach
zastosowac tzw. mock server albo wiaczac specjalny tryb, gdzie aplikacja zamiast
prawdziwych requestéw uzywa lokalnych danych (Detox umozliwia np. nadpisanie fetch, lub
mozna stawiaé serwer stubdw na localhost).

Podsumowujgc, Detox jest poteznym narzedziem, ktére automatyzuje testy z perspektywy
uzytkownika i zapewnia, ze aplikacja faktycznie dziata poprawnie jako catos¢. Uzycie go
znaczgco poprawia pewnosc co do jakosci.

3. Debugowanie React Native — Flipper i React DevTools

Nawet najlepsza architektura i testy nie uchronig nas przed koniecznoscig debugowania
podczas tworzenia aplikacji. Debugowanie w React Native bywa wyzwaniem, poniewaz
mamy do czynienia zaréwno z kodem JavaScript, jak i natywnym oraz ich komunikacja przez
most. Na szczescie istniejg narzedzia, ktére znacznie utatwiajg diagnozowanie probleméw,
podglad stanu aplikacji oraz analize wydajnosci. Skupimy sie na dwdéch kluczowych: Flipper —
rozbudowane, oficjalnie wspierane narzedzie debugowe od Meta, oraz React DevTools —
narzedzie do inspekcji drzewka komponentéw React i profilowania renderowania.

3.1 Flipper — wszechstronne narzedzie debugowania aplikacji mobilnych

Flipper to desktopowa aplikacja stworzona przez Facebook/Meta, ktéra stuzy jako platforma
do debugowania aplikacji mobilnych (Android, iOS) — z naciskiem na React Native, ale
obstuguje tez inne technologie. Od React Native 0.62 Flipper jest domysinie zintegrowany z
RN (w trybie debug). Oznacza to, ze uruchamiajgc naszg aplikacje w trybie deweloperskim,

mozemy podtgczyc¢ sie do niej przez Flipper bez dodatkowe] konfiguracji (czasem wymaga to
tylko zainstalowania paczki react-native-flipper i odpalenia flippera w tle).

Kluczowe mozliwosci Flippera: Flipper ma architekture wtyczek, gdzie kazda wtyczka oferuje
podglad innego aspektu aplikacji. Najwazniejsze w kontekscie debugowania RN to:

e Layout Inspector (Inspektor widoku) — wizualizacja hierarchii widokéw aplikacji i ich
wtasciwosci. Dziata to podobnie do narzedzia "Inspect" w przegladarce czy w Android
Studio: mozemy podejrzed strukture Ul (widoki, komponenty, ich wzajemne
utozenie), zaznaczac elementy na ekranie urzadzenia i przegladac ich style/propsy.
Jest to niezwykle przydatne, gdy np. jaki$ element nie wyswietla sie lub ma zte
wymiary —w Flipperze zobaczymy caty widok i fatwiej zlokalizujemy problem (np.
zero-height view, overlapping element etc.). Flipper umozliwia nawet edycje
niektorych wartosci na zywo, co pomaga eksperymentalnie znalez¢ poprawke.

e Network Inspector (Podglad sieci) — monitorowanie wszystkich zapytan HTTP
wychodzacych z aplikacji. W zaktadce Network Flipper przechwytuje requesty i
responsy (wraz z nagtdwkami, ciatem) wysytane przez aplikacje. Dzieki temu mozemy
sprawdzi¢ np. czy zapytanie do API faktycznie sie wysyta, jaki jest adres, co wraca z
serwera, ile trwato, jaki byt status. To wybawia od koniecznosci dodawania logéw w
kodzie czy uzywania proxy — Flipper dziata jak swoisty sniffer ruchu sieciowego
aplikacji RN. Mozna filtrowac po URLach, metodach, itp. W kontekscie debugowania
probleméw z komunikacjg z backendem, ta wtyczka jest bezcenna.

e Log Viewer (Konsola logéw) — zbiorczy podglad logéw natywnych i JavaScript.
Zamiast patrzec¢ na logcat (Android) czy Xcode console oraz dodatkowo na
console.log z debuggera RN, Flipper pokazuje wszystko w jednym miejscu. Widzimy
logi z urzadzenia (np. btedy natywne, wyjatki w JNI) jak i te wypisane przez console.log
w JavaScripcie. Dziafa to bez dodatkowej konfiguracji. Jesli aplikacja nam sie
wysypuje bez wyraznego komunikatu w RN, warto spojrzeé do Flipper Logs — moze
tam widac stacktrace z native.

e React DevTools — Flipper ma wbudowang integracje z React DevTools (pod spodem
uruchamia najnowszg wersje DevToolsow Reactowych). Dzieki temu w Flipperze
mozemy przetgczyé sie na zaktadke React i tam dostaé widok drzewa komponentéw
React (tych naszych, wysokopoziomowych, a nie niskopoziomowych widokéw native
jak w Layout Inspector). To pozwala debugowac¢ np. stan komponentéw, propsy
przekazywane do nich, hierarchie komponentéw. Mamy tez dostep do React Profiler
— czyli mozliwos¢ nagrania przebiegu renderowania i zobaczenia, ktére komponenty
sie renderujg i ile to trwa. To $wietne narzedzie do optymalizacji — mozna wykry¢
niepotrzebne ponowne rendery, zobaczy¢ gdzie aplikacja spedza czas podczas
renderingu. (React DevTools i profiler sg identyczne jak w aplikacjach webowych
React — po prostu podtgczone do kontekstu RN).

e Crash Reporter — Flipper moze przechwycic¢ raporty crashy aplikacji (zwtaszcza na
Androidzie). Jezeli aplikacja ulegnie nagtemu zamknieciu, Flipper wyswietli stacktrace
i informacje o wyjatku. To pomaga zidentyfikowac np. problem w kodzie natywnym
lub w module RN (np. wotamy co$ co powoduje NullPointerException w Javie —
Flipper pokaze to).

¢ Database & Preferences — Wbudowane wtyczki pozwalajg podejrzec lokalng baze
danych (SQLite) i AsyncStorage w urzadzeniu. W trybie debug mozemy zajrze¢ np. do

bazy SQLite uzywanej przez aplikacje (przegladac tabele, rekordy), a takze do
AsyncStorage (klucze i wartosci). To przyspiesza debugowanie np. probleméw z
zapisem ustawien lub cachowaniem danych lokalnie.

e Performance — Domyslinie Flipper posiada prosty FPS monitor (w prawym gérnym
rogu aplikacji jest przetgcznik perf, ktéry pokazuje aktualne FPS). Jednak petniejsze
dane wydajnosciowe dostarcza wtyczka React Native Performance (znana tez jako
Flashlight). Trzeba jg doinstalowac (z marketplace Flippera). Daje ona wykresy uzycia
CPU (catosciowo i per watek), liczbe klatek na sekunde, zuzycie pamieci itp.. Mozemy
zatem profilowac¢ wydajnos¢ natywna aplikacji w czasie rzeczywistym — np. czy
podczas przewijania listy CPU skacze do 100%, czy spada FPS (co by wskazywato na
lagi). Wtyczka Performance moze poméc w identyfikacji waskich gardet
wydajnosciowych.

Flipper jest stale rozwijany i ma mnéstwo dodatkowych pluginéw tworzonych przez
spotecznosé (dostepnych w marketplace Flippera). Przyktadowo pluginy do debugowania
potaczen WebSocket, do podgladu biezgcego stanu Redux store, czy do symulowania
réznych warunkéw sieciowych.

Jak korzystac z Flippera? W praktyce: instalujemy aplikacje Flipper na komputerze (ze strony
fbflipper.com). Upewniamy sie, ze nasza aplikacja RN ma wigczony Flipper (w RN 0.62+ jest
to domysine w Debug, jesli nie, to npm i react-native-flipper i drobna konfiguracja w native jak w
dokumentacji). Odpalamy aplikacje na emulatorze lub urzadzeniu w trybie debug (Metro).
Flipper automatycznie wykryje aplikacje (o ile jestesmy na tej samej sieci) i pokaze jg na
liscie. Po kliknieciu, uzyskamy dostep do pluginéw (czes¢ moze wymagaé doinstalowania
paczek — Flipper poinformuje). Potem juz normalnie uzywamy: klikamy , Layout”, by zbada¢
Ul, itp.

Flipper w znacznym stopniu zmniejsza potrzebe uzywania np. Xcode Instruments czy Android
Studio profileréow dla wielu typowych zadan, agregujac debugowanie w jednym miejscu. To
oszczedza czas — nie musimy np. w przypadku problemdw sieciowych budowaé wtasnego
logowania, tylko patrzymy do Network plugina. Dodatkowo minimalizuje context switching:
wszystko (U, logi, sieé, stan) jest w jednym oknie.

Przyktad uzycia: Zatézmy, ze przycisk w naszym Ul nie reaguje na tapniecia. Co mozemy
zrobic:

e W Flipper -> Logs sprawdzimy, czy w ogodle event dotart (moze w logach onPress co$
logujemy).

e W Layout Inspector zobaczymy hierarchie — byé moze inny przezroczysty widok
nakrywa przycisk i przechwytuje dotyk (czesty bug z overlayami). Inspektor pokaze,
czy przycisk jest klikalny czy zakryty.

e Mozemy tez w React DevTools sprawdzié, czy props onPress faktycznie zostat
przekazany do komponentu.

o Jesli nic nie pomaga, w Flipper mozna tez wykorzystaé funkcje przechwytywania
logdw dotyku (plugin Touch Events — doinstalowany plugin spotecznosci).

o W efekcie, diagnoza problemu jest duzo szybsza niz metodg alert('x') czy
zgadywaniem.

Podsumowuijgc, Flipper to “szwajcarski scyzoryk” debugowania RN: /ayout, network, logi,
stan, wydajnos¢ — wszystko pod rekq. W 2025 jest to podstawowe narzedzie dla React Native
devow, wspierane oficjalnie. Jak méwi dokumentacja, Flipper umozliwia inspekcje hierarchii
widokéw, monitorowanie zapytan sieciowych, przegladanie logéw z urzadzenia i integracje
z React DevTools w czasie rzeczywistym. Dzieki temu debugowanie staje sie duzo
wygodniejsze i skuteczniejsze.

3.2 React DevTools — inspekcja komponentow i profilowanie

Cho¢ React DevTools jest zintegrowane we Flipperze, warto omowic jego mozliwosci bardziej
szczegbtowo, bo dotyczy stricte warstwy Reactowej aplikaciji.

React DevTools to narzedzie, ktére wielu zna z debugowania aplikacji webowych React (np.
jako rozszerzenie do Chrome). W przypadku RN, od wersji 0.62 wzwyz, mozemy korzystac z
DevTools poprzez Flipper lub poprzez React Native Debugger (osobna aplikacja). DevTools
pozwala:

o Przegladaé drzewo komponentéw React — widzimy jakie komponenty (funkcyjne,
klasowe) sg zamontowane, ich hierarchie (co jest dzieckiem czego). Dla kazdego
wybranego komponentu mozemy podejrze¢ propsy jakie dostat, stan (dla
komponentdéw klasowych lub hook useState), a takze wartosci hookéw (DevTools
pokaze np. ze nasz hook useCounter ma wartos¢ count = 5, it = function etc.). To
bardzo pomaga zrozumiec co sie dzieje: np. czy rodzic przekazat wtasciwg wartosc
prop, czemu dziecko ma stan X, itp. Mozemy dynamicznie edytowac propsy lub stan
w DevTools, co moze pomadc testowac rdézne scenariusze bez przebudowy aplikacji.

¢ Wykonywac¢ funkcje hookéw debugowo — nowa wersja DevTools umozliwia np.
wywotanie manualnie funkcji aktualizujgcej stan (w hooks). Np. jesli mamy useState
counter, mozemy w DevTools klikngé aby zwiekszyé/zmniejszy¢ wartosé. To
drobnostka, ale czasem przydatna.

e Profilowac renderowanie — React DevTools posiada zaktadke Profiler, gdzie mozemy
nagrac przebieg renderéw podczas wykonywania pewnych akcji w aplikacji. Po
zatrzymaniu nagrywania otrzymujemy timeline z zaznaczonymi renderami
komponentéw i informacja, ile milisekund zajeto renderowanie danego poddrzewa.
Komponenty, ktére renderuja sie czesto lub dtugo, bedga zaznaczone (np. ciepte
kolory jesli duzo czasu). W profilowaniu RN jest to cenne do optymalizacji: np.
wykryjemy, ze przy przewijaniu listy, caty ekran sie renderuje 60 razy na sekunde —
moze brakuje React.memo na jakims$ duzym komponencie? Albo ze po zmianie jednego
pola, niepotrzebnie 10 innych niezmienionych komponentdw sie przerysowuje.
Profiler wskaze nam co i jak dfugo. Potem mozna uzy¢ takich informacji, by
zastosowa¢ memoizacje, podziat na mniejsze komponenty lub przesuniecie obliczen
poza render.

¢ Debugging performance w hooks — DevTools jest tez Swiadomy Hookdw, wiec np.
pokaze w jakiej kolejnosci hooki byty wywotywane, co moze pomdc w zrozumieniu
czy np. useEffect nie jest odpalany zbyt czesto.

Warto zaznaczy¢, ze aby React DevTools dziatato, nasza aplikacja musi by¢ w trybie debug
(potaczona z Metro). W trybie release nie mamy tego narzedzia (chyba ze budujemy
specjalnie z DevSettings). Z Flipperem to proste, bo Flipper sam zadba o potgczenie.

Inne narzedzia debugowania: Wspomnijmy krotko, ze istniejg tez alternatywne lub
uzupetniajgce narzedzia:

e React Native Debugger — osobna aplikacja (open-source) integrujgca DevTools,
debugger JS i Redux DevTools. Mozna jej uzywaé zamiast Flippera, zwfaszcza jesli
korzystamy z Redux — bo ma wbudowany podglad stanu Redux z mozliwoscia time-
travel debuggingu. Jednak Flipper ostatnio zyskuje wiekszg popularnosé, bo jest
oficjalny i pluginowy.

e Chrome Debugger (stare podejscie) — RN kiedy$ debugowato JS przez wbudowany
mechanizm z Chrome. Obecnie w dobie Hermes (silnik JS) to sie zmienito —
debugowanie JS odbywa sie inaczej (Remotely w Hermes debugging), ale mozna tez
uzywac Chrome devtools do debuggera kodu (wbijania w breakpointy JS).

¢ LogBox — to nie narzedzie zewnetrzne, ale wbudowany mechanizm RN pokazujacy
elegancko btedy i warningi w Ul aplikacji podczas dev. Wspominam, bo debugowanie
to tez reagowanie na warny/errory — RN LogBox (od RN 0.63) bardzo to utatwia
(konsola w appce z mozliwoscig filtrowania i ignorowania komunikatow).

Konkludujac sekcje debugowania: dobry zestaw narzedzi debugowych to Flipper + React
DevTools, ktére razem pozwalajg zajrze¢ w niemal kazdy aspekt aplikacji:

e od strony natywnej (layout, logi, zasoby, sie¢) — Flipper,
e od strony React (stan komponentéw, cykl renderéw) — DevTools.

Z takim ,,arsenatem” typowe problemy (Ul sie nie uktada, requesty nie dochodzg, cos sie
wiesza) rozwigzemy znacznie szybciej i pewniej niz metodg préb i bteddéw.

4. Wydajnosc aplikacji React Native

Wydajnos¢ to wazny temat — chcemy, aby nasza aplikacja dziatata ptynnie (60 klatek na
sekunde lub wiecej), reagowata natychmiast na interakcje i efektywnie gospodarowata
pamiecig, nawet na stabszych urzadzeniach. Omdéwimy techniki optymalizacji zwigzane
gtéwnie z renderowaniem list (FlatList i jego konfiguracja), unikaniem zbednych
renderéw/layoutdw oraz usprawnianiem animacji (wprowadzenie do biblioteki Reanimated,
animacje natywne vs. ,klatkowe”).

4.1 Optymalizacja list — wykorzystanie FlatList i konfiguracja wydajnosciowa

W aplikacjach mobilnych czestym wyzwaniem sg dtugie listy elementéw (np. feed
aktualnosci, lista kontaktdw, itp.). Nie mozemy pozwoli¢ sobie na renderowanie setek
komponentéw na raz — powodowatoby to ogromne obcigzenie pamieci i spadki ptynnosci.
React Native oferuje komponent FlatList (oraz pokrewny SectionList) jako wydajne
rozwigzanie do wyswietlania list poprzez wirtualizacje (virtualized list). Gtdwna idea: FlatList
renderuje tylko te elementy, ktére mieszczg sie w aktualnym widoku (plus pewien bufor

wokot), a reszte ,usuwa” lub nie tworzy ich wcale, dopdki uzytkownik nie scrolluje w ich
kierunku.

Zasada dziatania FlatList (virtualized list): Pod spodem FlatList korzysta z mechanizmu
VirtualizedList. Dzieli catg liste na tzw. okno (window), ktére przemieszcza sie wraz ze
scrollowaniem. Elementy poza oknem moga by¢ odtgczone (unmount) lub nawet nigdy nie
zrenderowane, dopoéki nie wejdg do okna. To drastycznie zmniejsza liczbe jednoczesnie
aktywnych elementéw. Oczywiscie FlatList wymaga pewnych informacji (np. wysokosci
elementdéw) by sprawnie to robié — stad tez ma wiele opcji konfiguracji.

Kluczowe wtasciwosci FlatList wptywajace na wydajnos¢: (nalezy je dostosowac do
kontekstu uzycia):

e keyExtractor — funkcja generujaca unikalny klucz dla elementu listy, jesli nasze dane nie
majg wtasciwosci key. Dlaczego to wazne? React uzywa kluczy by zoptymalizowaé
elementy — unikalne klucze zapobiegajg niepotrzebnym re-renderom, pozwalajg
$ledzi¢ elementy przy zmianach kolejnosci. Zwré¢my uwage, by klucz byt stabilny (np.
item.id) i unikalny. Jesli nie ustawimy keyExtractor, RN spréobuje uzy¢ domysinie
item.key lub indeksu — uzywanie indeksu jest niewskazane, bo zmiana kolejnosci
elementéw spowoduje, ze React potraktuje je jako inne i przemaluje cafg liste.
Dlatego dobre klucze to podstawa wydajnosci listy.

e initialNumToRender — ile elementéw wyrenderowac na starcie (domysinie 10). Mozemy
to dostosowac tak, by pokry¢ caty ekran na najpopularniejszych urzadzeniach, ale nie
za duzo ponad to. Np. jesli na ekranie miesci sie ~8 elementéw, mozna dac
initiaINumToRender = 8 lub 12 (z zapasem). Zbyt mata wartos$¢ grozi pustym
miejscem (,,white flash”) przy starcie listy, zbyt duza — niepotrzebnie obcigza start
(np. taduje 50 elementow, gdy ekran miesci 8).

e windowsSize — rozmiar okna w jednostkach ekranu (domyslnie 21, co oznacza 10
ekranéw powyzej i 10 ponizej aktualnie widocznego + biezacy). To parametr
okreslajacy, ile elementéw przed i za widocznym obszarem ma by¢ utrzymywanych w
stanie zrenderowanym. Wiekszy windowSize zmniejsza ryzyko pojawienia sie pustego
obszaru przy szybkim scrollu (bo elementy juz czekajg tuz poza ekranem), ale
zwieksza zuzycie pamieci i czas renderowania (bo wiecej elementow istnieje).
Mniejszy windowSize oszczedzi pamie¢, ale np. przy bardzo szybkim scrollowaniu
moze by¢ widaé doczytywanie elementdow (puste przestrzenie). Optymalna wartosc
zalezy od charakteru listy — jezeli liste scrolluje sie powoli, mozna zmniejszy¢
windowSize by zaoszczedzi¢ zasoby; dla list scrollowanych energicznie (np. social
feed) lepiej zostawi¢ wieksze, by zachowadé ptynnosé.

¢ removeClippedSubviews — ustawienie (domyslinie true na Androidzie, false na iOS)
okreslajace, czy usuwac (odtgczacé) widoki, ktdre wyszty poza ekran (tzw. clipped,
zaklippowane). Wtgczenie tej opcji (na iOS manualnie, bo na Android jest on juz true
by default) powoduje, ze elementy ktore wyszty daleko poza widok sg usuwane z
hierarchii natywnej, co redukuje obcigzenie GPU i CPU (nie sg one uwzgledniane w
renderowaniu i dotyku). Zysk to mniejsze zuzycie gtdwnego watku (bo mniej widokéw
do liczenia layoutu i rysowania). Wadg bywa to, ze czasem potrafi powodowac
drobne bugi — np. w przesztosci raportowano, ze na iOS potrafity znikaé niektdre
elementy w niesprzyjajgcych warunkach, jesli byty transformacje lub absolutne

pozycjonowanie. Ogdlnie jednak warto wigczy¢ removeClippedSubviews dla bardzo
dtugich list, zwtaszcza jezeli elementy listy sg ,,ciezkie” w renderowaniu.
maxToRenderPerBatch oraz updateCellsBatchingPeriod — te parametry kontrolujg, jak
FlatList dokonuje dorzucania elementéw przy scrollowaniu. maxToRenderPerBatch
(domyslnie 10) oznacza ile maksymalnie nowych elementéw wyrenderowac na jedno
przebudzenie listy (czyli gdy zblizamy sie do kornca aktualnie wyrenderowanego
obszaru, ile kolejnych elementéw doczepic). updateCellsBatchingPeriod (domyslnie 50ms)
to opdznienie miedzy takimi porcjami renderéw. Zwiekszenie maxToRenderPerBatch
zmniejszy szanse na puste miejsca (bo doczepiamy wiecej naraz), ale moze
spowodowac dtuzszy jednorazowy lag (bo nagle 20 elementéw sie buduje).
Zmniejszenie sprawi, ze scroll jest bardziej responsywny (mniejsze bloki renderéow),
ale moze pojawic sie chwilowo pustka, jesli uzytkownik przewija szybciej niz te
batch’e sie doczepiaja. updateCellsBatchingPeriod z kolei — mniejsza warto$¢ = czesciej
dobudowujemy elementy (bardziej ptynne, ale wieksze obcigzenie CPU stale),
wieksza = rzadziej (oszczedniej, ale ryzyko lagéw). W praktyce rzadko sie zmienia te
wartosci od domysinych, chyba ze profilowanie wykaze konkretny problem.
getltemLayout — funkcja, ktédrg mozemy dostarczy¢, jesli nasze elementy listy maja
staty, z géry znany rozmiar (wysokosc). Dzieki temu FlatList moze z géry wyliczy¢
pozycje scrolla i offsety, nie musi mierzy¢ elementéw podczas renderowania.
Ustawienie getltemLayout przy statych wysokosciach znaczqco poprawia wydajnosé
listy, bo RN nie musi kazdego elementu renderowaé chocby raz zeby znac jego
wysokosc¢ (eliminuje to tzw. layout pass dla offscreen elementéw). W definicji
getltemLayout wskazujemy: dla index -> {length, offset, index}. Np. jesli kazdy
element ma wysokosc¢ 50, offset to index*50, length=50. FlatList uzyje tego, by np.
szybko przewingc¢ do elementu (scrollTolndex) bez btedu estimations.

Podsumowujac, FlatList daje sporo mozliwosci tuningu. Dobrg praktyka jest profilowanie
(np. w Flipper Perf monitor) scrollowania listy i ewentualna regulacja powyzszych
parametréw. Dokumentacja RN oficjalnie wymienia te propsy jako pomocne w poprawie
wydajnosci. W skrécie:

Masz lagi przy scrollu? — upewnij sie, ze removeClippedSubviews = true (szczegdlnie
Android) i ewentualnie zmniejsz maxToRenderPerBatch.

Masz ,,blank areas” (puste dziury) przy szybkim scrollu? — zwieksz windowSize lub
initiaINumToRender, ewentualnie maxToRenderPerBatch.

Aplikacja zjada za duzo pamieci przy liscie? — zmniejsz windowsSize,
removeClippedSubviews na true i postaraj sie zmniejszy¢ ztozonos¢ renderowanych
elementow.

Wskazoéwki co do elementdw listy: Nawet najlepiej skonfigurowana FlatList moze zwalniag,
jesli pojedyncze elementy listy (komponenty list item) sg ,,ciezkie”. Kilka porad:

Upewnij sie, ze twoje komponenty listy sg jak najprostsze i lekkie. Unikaj w nich
skomplikowanych poddrzew z wieloma warunkami renderowania. Kazdy element
listy renderowany jest wiele razy (przy scrollowaniu), wiec ich optymalnos¢ jest
krytyczna.

Rozwaz uzycie React.memo dla komponentu elementu listy, aby nie re-renderowat sie,
jesli propsy sie nie zmienity. W potgczeniu z odpowiednimi key to spowoduje, ze przy
dodawaniu nowych elementdw, juz wyrenderowane nie bedg bez potrzeby
odswiezane.

Jesli lista ma obrazy, stosuj miniaturki (thumbnails) lub mechanizmy lazy-load dla
obrazkéw. Duze obrazki spowalniajg scroll (zajmujg czas dekodowania i miejsce w
pamieci). Lepiej wyswietla¢ mniejsze wersje, a dopiero po wejsciu np. w szczegoty
tadowad duzy obrazek.

Jezeli mozna, paginacja: zamiast trzymac 1000 elementdw naraz, taduj je w porcjach
(np. 50) i dotadowuj kolejne, gdy uzytkownik zbliza sie do korica (FlatList oferuje
props onEndReached do tego celu). To zmniejsza rozmiar listy w jednym momencie.

4.2 Unikanie zbednych renderéw i przesunie¢ uktadu (layout shifts)

Layout shifts to okreslenie znane z web (Cumulative Layout Shift) — chodzi o nagte przeskoki
uktadu gdy elementy sie zmieniajg. W kontekscie RN nie liczymy punktéw za stabilnos$¢
layoutu, ale réwniez chcemy unika¢ sytuacji, gdzie interfejs ,,skacze” lub gdzie wykonujemy
kosztowne operacje layoutu bez potrzeby. Kilka rad:

State wymiary lub uzycie <FlatList> zamiast manualnego mapowania. Gdy korzystamy
z FlatList, RN wie, ze to lista i zarzadza layoutem wydajnie. Jesli sami w komponencie
robimy data.map(item => <Myltem ...>) wewnatrz ScrollView, to tracimy wirtualizacje, a
takze mozemy powodowac czeste przeliczanie layoutu (ScrollView renderuje
wszystko naraz). Wiec podstawowa rada: uzywaj FlatList dla wiekszych list. Jesli z
jakiego$ powodu nie mozesz (np. potrzebujesz nietypowego layoutu), rozwaz
<VirtualizedList> lub sekcje.
Unikaj niepotrzebnego stanu powodujacego globalny re-render. Np. jesli mamy
duzy ekran z listg i drobny toggle, starajmy sie, by zmiana toggle nie powodowata
przerysowania catej listy. Mozna to osiggngaé np. wydzielajac liste do osobnego
komponentu i stosujgc React.memo lub uzywajgc dedykowanego stanu (np. Redux
slice) tak, by zmiana niezwigzana z listg nie dotykata jej. Ogdlnie, trzymanie
globalnego stanu minimalnego i raczej lokalnych stanéw dla Ul elementéw pomoze
ograniczy¢ zakres renderéw.
Animacje uktadu: Jezeli dodajemy/usuwamy elementy z DOM, to oczywiscie uktad
sie zmieni. Mozna to ztagodzi¢ uzywajac np. Layout Animations, ktére ptynnie
przeprowadzg zmiane, albo planujac Ul tak, by duze zmiany zachodzity w
momentach, gdy uzytkownik sie ich spodziewa (np. przejscie na inny ekran, zamiast
dynamicznie na tym samym ekranie).
Re-render a listy: Bardzo czesty powdd spowolnien — komponent rodzica listy
renderuje sie czesto (np. z powodu zmiany stanu zegara, albo czegokolwiek) i za
kazdym razem dostaje nowg data listy (np. nowa referencja tablicy), co sprawia ze
FlatList mysli, ze dane sg ,,inne” i przerysowuje czes¢ elementéw. Aby temu zapobiec:
o Jezeli generujemy data w renderze, np. const data = items.filter(...).map(...);, to
warto albo uzy¢ useMemo do memoizacji wyniku, albo przenies¢ to wyzej i
przekazywac gotowe data z rodzica, ktory nie renderuje sie tak czesto.

o FlatList ma tez prop extraData do $ledzenia dodatkowych zmian — jesli nie
potrafimy powiedzie¢, co sie zmienito, ale wiemy, ze np. state X wptywa na
liste, mozna to tam wiozy¢. Jednak lepiej kontrolowa¢é referencje danych.

e Wielkos¢ widoku: Upewnij sie, ze stylujesz listy i elementy tak, by nie wymagaty
skomplikowanego layout calculation przez Yoga (silnik layout RN). Np. zbyt
zagniezdzone uktady flex z komponentami ktérymi sterujg zmiany dynamiczne moga
obcigza¢ CPU. W profilowaniu (Flipper Perf -> CPU usage) wida¢, gdy po jakiejs akcji
CPU rosnie bo watek Ul liczy layout — to sygnat, ze moze albo zbyt duza cze$é ekranu
sie zmienia, albo styl jest suboptymalny (np. duzo shadowOffset i cieni moze obcigzac
GPU/CPU przy przesuwaniu elementéw).

¢ Usuwanie elementéw z DOM: Jezeli cos jest niewidoczne, mozna to usung¢ zamiast
chowac (np. usuwaj ekrany modali gdy sg zamkniete, zamiast trzymac je wszystkie w
DOM z display:none). RN co prawda nie ma display:none — jak co$ nie renderujesz, to jest
usuniete. Ale w nawigacji np. stos pamieta ekrany. W przypadku np. TabNavigatora —
ekrany zaktadek mogg by¢ domysinie ,lazy” czyli montowane na zadanie, co jest ok.

Ogdlnie, unikanie zbednych renderéow sprowadza sie do stosowania wspomnianych technik:
memoizacji (React.memo, useMemo, useCallback) — by nie generowaé nowych referencji
gdy nie trzeba, separacji stanéw — by lokalna zmiana nie wptywata globalnie, oraz
profilowania — by wiedzie¢ gdzie jest problem. React DevTools Profiler tutaj jest najlepszym
przyjacielem: pozwoli zobaczy¢ np. ze komponent lista renderuje sie 5 razy podczas jednej
akcji, co nie jest potrzebne.

4.3 Animacje klatkowe vs animacje natywne — wprowadzenie do Reanimated

Animacje w aplikacjach mobilnych mogg tatwo stac sie waskim gardtem wydajnosci, jesli nie
sg wykonane prawidtowo. W React Native tradycyjnie mieli$my biblioteke Animated (API
Animated API) oraz mozliwos¢ uzycia LayoutAnimation czy InteractionManager. Jednak duza
zmiana zaszta wraz z pojawieniem sie biblioteki React Native Reanimated (szczegdlnie w
wers;ji 2 i wyzszych), ktéra pozwala tworzyé ptynne animacje wykonywane po stronie
natywne;j.

Najpierw wyjasnijmy pojecia z tematu: animacje klatkowe vs animacje natywne. Mozna to
rozumiec tak:

e Animacje klatkowe (frame-by-frame) — tu rozumiem to jako animacje sterowane na
kazdej klatce przez JavaScript. Czyli nasz kod JS oblicza, gdzie powinien by¢ obiekt w
danej klatce i ustawia styl (np. zmienia left co 16ms). Takie animacje obcigzajg watek
JavaScript i s podatne na gubienie klatek, jesli JS jest zajety innymi rzeczami (np.
obliczenia, renderowanie). Przyktadem animacji klatkowej moze by¢ uzycie setinterval
do zmiany stanu, co powoduje re-render z lekko zmienionym potozeniem — to
skrajnie niewydajne, bo kazda klatka to nowy render Reacta. Lub uzycie Animated
bez opcji natywnego drivera (w starszym RN useNativeDriver: false powoduje, ze
animacja dzieje sie w JS — styl jest aktualizowany poprzez bridge co klatke).

e Animacje natywne — animacje, ktore sg wykonywane po stronie natywnej (na watku
Ul lub innym natywnym), bez angazowania watku JS na kazdg klatke. W praktyce
znaczy to: z gory okreslamy przebieg animacji (np. ,,przesun obiekt z X do Y w 500ms z

krzywa ease-out”), przekazujemy to do warstwy natywnej i tam to sie odbywa
ptynnie, nawet jesli JS sie zatrzyma. W RN Animated klasyczny sposdéb to
useNativeDriver: true — ale to miato ograniczenia (tylko niektére wtasciwosci, brak
animacji koloru czy layoutu). Reanimated idzie dalej — pozwala definiowac catg logike
animacji i reakcji na gesty jako worklety wykonywane na watku Ul.

React Native Reanimated (2.x i 3.x) — co czyni go wyjatkowym?

Jak podaje dokumentacja: ,,Reanimated pozwala definiowac¢ animacje w czystym JavaScript,
ktore domysinie uruchamiajq sie natywnie na wqtku Ul”. Oznacza to, ze piszemy kod
animacji w JS, ale dzieki mechanizmowi workletow (specjalnych funkcji z dopiskiem 'worklet')
kod ten zostaje wystany do natywnego srodowiska i tam wykonywany co klatke, bez
obcigzania mostu czy JS thread. To daje gtadkie animacje do 60fps, a nawet 120fps na
ekranach je wspierajacych, niezaleznie od obcigzenia JS.

Klatkowe vs natywne — efekty praktyczne: Animacja klatkowa (JS-driven) moze zacza¢ gubic
klatki, jesli w tym samym czasie JS robi co$ ciezkiego. Np. wyobrazmy sobie animacje
wysuwania panelu, a jednoczesnie obstugujemy duzy JSON z API na JS thread — animacja
moze przycina¢, bo JS nie nadgza co 16ms wystaé¢ nowej pozycji. W animacji natywnej
(Reanimated) taka sytuacja nie wptywa — panel sie wysunie ptynnie, bo logika ruchu jest
odseparowana. Dlatego wszystkie istotne animacje w Ul powinny by¢ natywne, by zapewnié
ptynnos$é. Dotyczy to takze reakcji na gesty — np. ptynne przecigganie elementu palcem:
Reanimated w pofaczeniu z React Native Gesture Handler potrafi przenies¢ obstuge gestu i
animacji catkowicie na natywnga strone, eliminujac lagi.

Przyktad réinicy: WeZmy animacje prostg — przesuniecie kwadratu 100px w prawo. W
czystym RN Animated (do wersji RN 0.71 okoto):

Animated.timing(position, {
toValue: 100,
duration: 500,
useNativeDriver: false // (JS-driven)
}).start();

Ta animacja co klatke (co ~16ms) wysle nowa wartos$¢ position przez Bridge do native. Jesli
Bridge sie zapcha albo JS spdzni — bedzie skok. Gdy damy useNativeDriver: true:

Animated.timing(position, {
toValue: 100,
duration: 500,
useNativeDriver: true
}).start();

to RN przesle do natywnego modutu Animated informacje "animuj te wartos¢ od 0 do 100 w
500ms", a natywny kod (Core Animation na iOS / Android Animator) zrobi reszte. To juz jest
natywna animacja i powinna by¢ ptynna. Problem w tym, ze stare Animated z native driver
dziatato tylko dla niektorych stylow (gtéwnie translacje, skala, opacity). Nie mozna nim
animowac np. koloru tta czy potozenia zaleznego od uktadu Flexbox.

Reanimated nie ma takich ograniczen, bo dziata inaczej: mamy shared values i worklets,
mozna animowac dowolne style, bo tak naprawde animacja to po prostu funkcja zmieniajaca
wartos$é, a potem przypisanie jej do stylu w natywnym Shadow Tree. Reanimated 2+
integruje sie z mechanizmem Ul runtime. W efekcie, mozemy np. animowac pozycje zaleznie
od wartosci z czujnikdw (accelerometr), mozemy robi¢ ztozone sekwencje i zagniezdzone
animacje — to wszystko w natywnym kontekscie.

W kontekscie wydajnosci:

e Animacje natywne (Reanimated, lub Animated native driver) praktycznie nie
obcigzajq JS podczas trwania. Obcigzajg natywny watek Ul, ale ten jest w C/ C++ i
bardzo wydajny, plus moze wykorzystywac optymalizacje platformy (np. iOS zrobi to
w CoreAnimation).

e Animacje klatkowe (JS) obcigzajg JS i Bridge — dwa waskie gardta RN. Lepiej ich
unika¢, bo nawet jesli jedna dziata, to przy wielu jednoczesnych bedg sie zawieszac.

W 2025, Reanimated stat sie de-facto standardem dla skomplikowanych animacji i
interakcji. Wiele bibliotek buduje na nim (np. znany bibliotek do dolnych arkuszy "react-
native-bottom-sheet" uzywa Reanimated). Warto chociaz znaé podstawy:

e Pojecia useSharedValue (wartos¢ wspétdzielona animowana),

e useAnimatedStyle (hook ktéry pozwala powigzaé styl komponentu z animowang
wartoscia),

e zestawy animacji typu withSpring, withTiming — funkcje do aktualizacji shared value z
efektami animacji (sprezyna, timing).

o Worklety 'worklet' — czyli funkcje, ktére wykonuja sie na Ul thread. Np. callback w
.onChange gestu zaopatrzony w 'worklet' moze bezposrednio sterowac sharedvalue i to
bedzie natywne.

Krétki przyktad Reanimated (wersja 3+):

import Animated, { useSharedValue, useAnimatedStyle, withSpring } from 'react-native-reanimated’;
import { View, Button } from 'react-native';

export default function Box() {
const offset = useSharedValue(0);
const animatedStyle = useAnimatedStyle(() => {
return {
transform: [{ translateX: offset.value }]
b
N

return (
<View>
<Animated.View style={[{ width: 100, height: 100, backgroundColor: 'red' }, animatedStyle]} />
<Button title="Move" onPress={() => {
// to 'animuje' natywnie, nie blokujac JS
offset.value = withSpring(offset.value + 100);
/>
</View>

);

}

Tutaj klikniecie przycisku powoduje zmiane offset.value za pomocg withSpring. To nie wywota od
razu re-renderu React (Animated.View samo odbierze zmiane), lecz spowoduje
zapoczatkowanie natywnej animacji sprezynowe]j — czerwona kostka przesunie sie ptynnie o
100px. Watek JS tylko zainicjowat animacje, dalej dzieje sie to w natywnym (Ul) watku. Gdy
animacja sie zakonczy, Reanimated moze zasygnalizowac JS (ale nie musi, zalezy). Co wazne,
podczas ruchu mozemy nawet zatrzymac JS (np. wtgczmy dev menu) — animacja i tak
dokonczy.

Animacje a klatki (FPS):

e Ptynna animacja to 60 FPS (w 60Hz ekranach) albo 120 FPS (na iPad Pro np.).

e Animacja klatkowa jesli JS nie nadazy, moze spasc¢ do 30 FPS lub mniej (wida¢ wtedy
"szarpanie").

¢ Reanimated stara sie zapewnic¢ 60 FPS nawet w trudniejszych scenariuszach.
Oczywiscie, jesli wykonujemy skrajnie ciezkie rzeczy w worklecie (np. petle 1e6
iteracji co klatke — co raczej sie nie zdarza), to i natywnie mozna klatki gubié. Ale
normalne transformacje, sprezyny — to jest nic dla nowoczesnych CPU, i do tego
natywne animacje czesto korzystajg z GPU do finalnego renderu.

Ztozone animacje: Reanimated oprdcz animacji pojedynczych styléw oferuje tez Layout
Animations (pozwala animowac elementy podczas mount/unmount), integruje sie z Gesture
Handler (gesty tez na Ul thread — zero laga w drag & drop), i umozliwia tworzenie wtasnych
watkow (tzw. worklet runtime) do duzych obliczen w tle. To ostatnie to ciekawostka — mozna
np. w worklecie liczy¢ cos ciezkiego (jak w przyktadzie sum 1..1000000) i potem przekazac
wynik do JS bez zamrazania aplikacji.

W ramach tego wyktadu jest to wstep do Reanimated — zachecam do dalszej nauki, bo temat
jest obszerny. Najwazniejsze, co warto zapamietac: dazymy do animacji natywnych dla
lepszej wydajnosci. Reanimated to narzedzie, ktére to umozliwia w bardzo elastyczny
sposéb (mozemy animowad prawie wszystko co stylowe, reagowac na gesty ptynnie). W
nowoczesnych aplikacjach RN, Reanimated czesto zastepuje starg bibliotke Animated, choé
RN nadal utrzymuje Animated API (by¢ moze w przysztosci zimplementowane w oparciu o
Reanimated pod spodem — juz teraz jest dyskusja, by spigc te Swiaty).

Podsumowanie tej sekcji: Animacje , klatkowe” (czyli zalezne od JS co klatke) powinny by¢
ograniczone do minimum. Uzywamy mechanizmdéw natywnych — czy to starego
useNativeDriver dla prostych przypadkdw, a najlepiej Reanimated dla petnej kontroli — by
zapewnic ptynnos$¢ 60fps niezaleznie od obcigzenia logikg aplikacji. Dzieki temu interfejs
bedzie odbierany jako nowoczesny i responsywny. A przeciez nic tak nie psuje UX mobilnego
jak animacje/skrollowanie szarpigce jak pokaz slajdéw — tego chcemy uniknac.

5. Demo - refaktoryzacja listy i test komponentu listy

Na koniec przeprowadZzmy mate demo, ktdre taczy kilka omawianych konceptéw: pokazemy
refaktoryzacje istniejacej listy do uzycia FlatList z optymalizacjg wydajnosci, a nastepnie
napiszemy test dla komponentu listy, sprawdzajacy renderowanie i interakcje.

Scenariusz: Zatézmy, ze mamy aplikacje do zadan (TODO list). Dotychczas lista zadan byta
zaimplementowana naiwnie — jako zwykty <ScrollvView> z .map lub nawet w komponencie
rodzicu. Chcemy to poprawic, uzyc¢ FlatList i zastosowac pewne parametry wydajnosciowe.
Dodatkowo, nasza lista ma mozliwos¢ oznaczania zadania jako ukonczonego po kliknieciu
przycisku "Done" obok zadania. Przetestujemy, czy klikniecie faktycznie wywotuje
odpowiednig funkcje (np. przekazang z props).

Kod przed refaktoryzacja (fragment):

// components/TaskListBefore.tsx
import { ScrollView, Text, View, Button } from 'react-native’;

export function TaskListBefore({ tasks, onTaskDone }) {
return (
<ScrollView>
{tasks.map(task => (
<View key={task.id} style={styles.taskltem}>
<Text style={{ textDecorationLine: task.done ? 'line-through' : 'none' }}>
{task.title}
</Text>
{ltask.done && (
<Button title="Done" onPress={() => onTaskDone(task.id)} />
)}
</View>
)}
</ScrollView>
);
}

Ten kod dziata dla matych list, ale jesli tasks bedzie duze, to ScrollView wyrenderuje wszystko
na raz. Uzyjmy FlatList:

// components/TaskList.tsx
import React from 'react’;
import { FlatList, Text, View, Button, ListRenderltem } from 'react-native';

interface Task { id: string; title: string; done: boolean; }
interface TaskListProps { tasks: Task[]; onTaskDone: (id: string) => void; }

export function TaskList({ tasks, onTaskDone }: TaskListProps) {
const renderltem: ListRenderltem<Task> = ({ item }) => (
<View style={styles.taskltem}>

<Text style={{ textDecorationLine: item.done ? 'line-through' : 'none' }}>
{item.title}

</Text>

{litem.done && (
<Button title="Done" onPress={() => onTaskDone(item.id)} testID={"done-btn-${item.id}'} />

}

)}

</View>

);

return (

<FlatList

data=

{tasks}

keyExtractor={(item) => item.id}
renderltem={renderltem}

initiaINumToRender={10}

windowSize={5} // 5 ekrandw (2 przed, 2 za, 1 obecny)
maxToRenderPerBatch={5}
removeClippedSubviews={true}

/>
);

Co sie zmienito:

Uzywamy <FlatList> z data={tasks} i renderltem do okreslenia, jak renderowaé pojedyncze
zadanie.

Dodali$my keyExtractor={(item) => item.id}, aby FlatList uzywat id zadania jako klucza.
Mamy pewnos¢ unikalnosci kluczy (ID zadania jest unikalne).

Ustawilismy kilka propséw: initialNumToRender={10} (renderuj 10 zadan od razu —
zaktadamy, ze to starczy by pokry¢ ekran typowego telefonu), windowsize={5} (to
oznacza 5 okien wysokosci ekranu — po 2 do gory i do dotu, co w sumie da ok. 2*10 +
10 = 30 elementéw w buforze; zmniejszylismy nieco z domysinego 21 aby
zaoszczedzi¢ pamieé, bo lista zadan raczej nie jest przewijana ultraszybko),
maxToRenderPerBatch={5} (2zeby nie doktadac wiecej niz 5 elementéw na raz, co
ograniczy ewentualny lag przy szybkim scrollu), removeClippedSubviews={true} (aby
usuwac z widoku elementy poza ekranem — szczegdlnie przydatne, jesli nasza lista ma
np. duzo obrazkdw, choc tu tylko teksty i buttony).

Wewnatrz renderltem dodali$my testID dla przycisku Done, co utatwi nam selekcje w
testach (np. testiD="done-btn-42" dla zadania o id 42). To praktyka warta stosowania —
generowac testlD zawierajgce identyfikator elementu, jesli bedziemy klikaé
konkretny element na liscie podczas testéw.

W kwestii styldw i layout — styles.taskitem pewnie definiuje cos jak flex row: Text + Button
obok siebie. Wazne, ze kazdy <View> ma nadany key przez FlatList (on sam to robi na
podstawie keyExtractor) i ze dbamy, aby klucz bytfa stabilny i nie zmieniat sie gdy task zmieni
np. nazwe.

Zalety po refaktoryzacji: Teraz nawet jesli tasks ma 1000 pozycji, FlatList nie wyrenderuje
wszystkich — tylko ~30 (zaleznie od wysokosci pojedynczego elementu, initiaINumToRender i
windowsSize). Scroll bedzie ptynny, bo nie trzymamy w pamieci wszystkich elementéw na raz.
Mamy tez pewnos¢ unikalnych kluczy dzieki keyExtractor.

Pisanie testu komponentu listy (render + interakcja):

Chcemy przetestowac, ze TaskList wyswietla poprawng liczbe elementdw i ze klikniecie
"Done" przy konkretnym zadaniu wywotuje funkcje onTaskDone z prawidtowym argumentem
(id zadania). Mozemy to zrobi¢ za pomocg React Native Testing Library:

import React from 'react’;
import { render, fireEvent } from '@testing-library/react-native';
import { TaskList } from '../components/TaskList';

const sampleTasks = [
{id: "1, title: '"Kup mleko', done: false },
{id: '2', title: 'Zaptac rachunki', done: false },
{iid: '3', title: 'Zadanie ukonczone', done: true }

5;

test('renderuje wszystkie zadania na liscie', () => {
const { getByText } = render(<TaskList tasks={sampleTasks} onTaskDone={() => {}} />);
// Sprawdzamy obecnos¢ tytutéw zadan:
expect(getByText('Kup mleko')).toBeTruthy();
expect(getByText('Zaptac rachunki')).toBeTruthy();
expect(getByText('Zadanie ukonczone')).toBeTruthy();
// Sprawdzamy, ze dla ukoriczonego zadania nie ma przycisku "Done":
expect(() => getByText('Done')).not.toThrow();
// UWAGA: powyzsza linia jest podchwytliwa - getByText('Done') znajdzie *pierwszy* pasujacy,
// a mamy dwa nieukornczone zadania, wiec bedg dwa przyciski "Done".
// Lepiej uzy¢ queryAllByText:
const doneButtons = queryAllByText('Done');
expect(doneButtons.length).toBe(2);

N;

Powyzszy test renderuje liste z trzema zadaniami. Sprawdzamy, ze teksty wszystkich tytutow
sg obecne (czyli ze lista renderuje kazdy element). Nastepnie chcemy upewnic sie, ze
element oznaczony jako done (id 3) nie wyswietla przycisku "Done". W naszym kodzie
komponentu warunkowo renderujemy przycisk tylko jesli litem.done. Wiec dla 2 zadan
done=false przycisk bedzie, dla jednego done=true — nie. W tescie moglibysmy prébowac
znalez¢ Done dla kazdego, ale lepiej zebraé wszystkie przyciski "Done" i sprawdzi¢ ich liczbe.
Uzywamy queryAllByText('Done') — to zwrdci tablice pasujgcych elementéw lub pustg tablice jak
brak. Powinnismy dosta¢ 2 elementy (dla id 1i 2). Sprawdzamy .length === 2. Alternatywnie,
mogliby$my zrobi¢:

expect(queryByText('Done’, { selector: ...something for id 3})).toBeNull();
ale to skomplikowane. Liczenie jest proste.
Nastepnie test interakcji:

test('wywotuje onTaskDone z poprawnym ID po nacisnieciu przycisku Done', () => {
const mockOnTaskDone = jest.fn();
const { getByTestld } = render(<TaskList tasks={sampleTasks} onTaskDone={mockOnTaskDone} />);
// Bierzemy np. pierwsze zadanie (id '1') i klikamy jego przycisk
const button = getByTestld('done-btn-1');

fireEvent.press(button);
expect(mockOnTaskDone).toHaveBeenCalledWith('1');
expect(mockOnTaskDone).toHaveBeenCalledTimes(1);

N;

Tutaj tworzymy mockOnTaskDone jako funkcje testowg (spy). Renderujemy TaskList z
sampleTasks. Dzieki temu, ze w TaskList nadalismy testID dla kazdego przycisku zawierajgce
id zadania (done-btn-${item.id}), mozemy w tescie tatwo odwotad sie np. do done-btn-1 dla
pierwszego zadania. Pobieramy ten element przez getByTestld i symulujemy fireEvent.press.
Nastepnie sprawdzamy, ze mockOnTaskDone zostat wywotany raz, i to z argumentem '1'. W ten
sposéb upewniamy sie, ze mechanizm przekazywania ID zadziatat. Mozna ewentualnie
powtdrzyc to dla innego elementu (np. id '2').

Ten test weryfikuje integracje komponentu z logika — czyli czy Ul poprawnie wywotuje
przekazang funkcje z odpowiednim parametrem. W realnej aplikacji onTaskDone mogtoby np.
ustawiac stan lub wysytac akcje Redux. Tutaj tylko sprawdzamy, ze zostat zawotany.

Uruchomienie testow: Po napisaniu powyzszych testow (np. w pliku TaskList.test.js), uzywamy
npm test. Zaktadamy, ze konfiguracja jest ustawiona (Jest, Testing Library). Testy powinny
przejsé, o ile komponent dziata zgodnie z zatozeniami. Gdyby$Smy np. zapomnieli doda¢ testID
do Buttona, to getByTestld('done-btn-1') by nie znalazt elementu i test by failowat — to sygnat, ze
trzeba poprawié¢ implementacje (dodac testID lub znalez¢ inny sposéb identyfikacji, np.
getByText + within konkretnego itemu, ale testID jest najwygodniejsze).

Podsumowanie dema: Pokazalismy, jak przejs¢ od nieoptymalnej implementac;ji listy do
wydajniejszej uzywajac FlatList z odpowiednimi ustawieniami. Jednoczes$nie zwrdcilismy
uwage na testowalnos¢: dodalismy testiD by utatwié wybieranie elementéw w testach, a catg
logike klikniecia zostawilismy w props (onTaskDone), co wpisuje sie w zasade, by
komponenty Ul byty jak najbardziej czyste i sterowane z zewnatrz — co utatwia mockowanie i
testowanie. Nasz test komponentu listy potwierdzit zaréwno renderowanie danych jak i
poprawng obstuge interakcji.

Literatura:

1. https://reactnative.dev/docs/optimizing-flatlist-configuration (Data dostepu:
1.10.2025) — Oficjalna dokumentacja React Native dotyczgca optymalizacji list,
szczegbtowo opisujgca parametry takie jak windowsSize, initialNumToRender oraz techniki
poprawy ptynnosci przewijania.

2. https://wix.github.io/Detox/docs/introduction/getting-started (Data dostepu:
1.10.2025) — Przewodnik po frameworku Detox, wyjasniajacy architekture testow
end-to-end typu gray-box oraz mechanizmy automatycznej synchronizacji z aplikacjg
React Native.

3. https://fbflipper.com/docs/features/react-native/ (Data dostepu: 1.10.2025) —
Dokumentacja narzedzia Flipper, opisujaca funkcje debugowania, w tym Layout
Inspector, Network Inspector oraz integracje z wtyczkg Performance dla aplikacji
mobilnych.

4. https://testing-library.com/docs/react-native-testing-library/intro/ (Data dostepu:
1.10.2025) — Dokumentacja React Native Testing Library (RNTL), prezentujaca dobre
praktyki testowania komponentéw i hookéw w oparciu o interakcje uzytkownika.

https://reactnative.dev/docs/optimizing-flatlist-configuration
https://wix.github.io/Detox/docs/introduction/getting-started
https://fbflipper.com/docs/features/react-native/
https://testing-library.com/docs/react-native-testing-library/intro/

