POLITECHNIKA SWIETOKRZYSKA

Aplikacje mobilne — wyktad
6

Sie¢, APl i React Query w React Native

Mateusz Pawetkiewicz
1.10.2025

1. Podstawy pracy z APl w React Native

W aplikacjach React Native komunikacja z zewnetrznymi APl odbywa sie podobnie jak w
aplikacjach webowych. Dostepne sg standardowe metody takie jak Fetch APl oraz popularne
biblioteki typu Axios. W tej czesci oméwimy oba podejscia, w tym ich mozliwosci
konfiguracyjne (nagtéwki, interceptory, timeouty), anulowanie zapytan oraz poréwnamy ich
zalety i wady.

1.1 Fetch APl — wbudowane zapytania sieciowe

Fetch API jest wbudowang w JavaScript metodg do wykonywania zapytan HTTP. W
Srodowisku React Native fetch jest dostepny globalnie (polifill). Jego sktadnia jest podobna jak
w przegladarce:

// Przyktadowe zapytanie GET za pomocg fetch:

try {
const response = await fetch('https://api.example.com/data');
if (Iresponse.ok) {
// Sprawdzenie kodu statusu (fetch nie rzuca btedu dla btedéw HTTP)
throw new Error('Btgd HTTP: S{response.status}’);

}
const data = await response.json(); // Reczne przetworzenie JSON
console.log('Otrzymane dane:', data);
} catch (error) {
console.error('Btad sieci lub zapytania:', error);

}

Charakterystyka Fetch API:

o Brak konfiguracji globalnej — Nie ma wbudowanego mechanizmu ustawiania
bazowego URL czy domysinych nagtéwkdw dla wszystkich zapytani. Konieczne jest
kazdorazowe podanie opcji lub opakowanie fetch w wtasng funkcje pomocnicza.

e Obstuga odpowiedzi — Fetch nie rzuca wyjatku dla odpowiedzi HTTP z btedem (np.
404, 500). Trzeba samodzielnie sprawdzad response.ok lub response.status. W razie btedu
sieci (brak potfgczenia, DNS itp.) dopiero wtedy fetch rzuci wyjatek, ale btedny kod
HTTP nie jest automatycznie traktowany jako wyjatek.

¢ Parsowanie JSON — Fetch nie przetwarza automatycznie tresci odpowiedzi. Aby
uzyskaé dane, zwykle wywotujemy metode response.json() (lub response.text(),
response.blob() W zaleznosci od formatu).

¢ Brak wbudowanych interceptoréw — Fetch nie oferuje natywnego mechanizmu
przechwytujgcego zgdania/odpowiedzi. Mozna jednak osiggna¢ podobny efekt,
piszgc wiasne funkcje-wrappers lub korzystajgc z innych bibliotek do logowania czy
modyfikacji zapytan

¢ Timeouty i anulowanie — Fetch nie posiada opcji timeout wprost. Aby ograniczy¢ czas
oczekiwania lub méc anulowac zapytanie, stosujemy AbortController (oméwiony
ponizej).

Przyktad ustawienia timeoutu i anulowania zapytania fetch:

const controller = new AbortController();
const id = setTimeout(() => controller.abort(), 5000); // przerwij po 5s

try {
const response = await fetch(url, { signal: controller.signal });
clearTimeout(id);
// ... przetwarzanie odpowiedzi
} catch (err) {
if (err.name ==="AbortError') {
console.log('Zapytanie zostato przerwane (timeout lub anulowanie)');
}else {
console.log('Inny btad zapytania:', err);
}
}

W powyzszym kodzie uzywamy AbortController do wygenerowania sygnatu przerwania.
Metoda controller.abort() powoduje odrzucenie promisy zwracanej przez fetch z btedem o
nazwie "AbortError". Jest to uniwersalny sposdb na anulowanie zapytan (np. przy
wychodzeniu z ekranu, aby nie prébowac zaktualizowa¢ nieistniejgcego komponentu).

Debugowanie: W React Native warto uzy¢ narzedzia Flipper do monitorowania zapytan
sieciowych. Flipper posiada plugin Network, ktory wyswietla liste wszystkich zapytan HTTP
wykonywanych przez aplikacje (zaréwno przez fetch, jak i XHR/axios). Upewnij sie, ze
aplikacja jest uruchomiona w trybie deweloperskim i potgczona z Flipperem — wtedy mozesz
podejrzec¢ szczegoty kazdego requestu (URL, nagtowki, body, odpowiedz, czas trwania) co
bardzo utatwia diagnozowanie probleméw z API. Dodatkowo, w kodzie mozesz dodaé wtasne
logi (np. w .then().catch() dla fetch lub w interceptorach axios), aby logowac requesty i
odpowiedzi podczas developmentu.

1.2 Axios — biblioteka HTTP z dodatkowymi funkcjami

Axios to popularna biblioteka do wykonywania zapytarn HTTP, uzywana zaréwno w
przegladarkach, Node.js, jak i React Native. Wnosi ona sporo utatwien w poréwnaniu z
czystym Fetch API:

e Prostsza sktadnia i automatyczne przetwarzanie — Axios automatycznie dokonuje
serializacji danych do JSON przy wysytaniu (obiekt JavaScript przekazany jako data
zostanie wystany jako JSON) oraz deserializacji odpowiedzi JSON do obiektu
JavaScript (pole response.data zawiera juz sparsowane dane). Nie musimy recznie
wywotywac .json() na odpowiedzi.

¢ Globalna konfiguracja i instancje — Mozemy utworzy¢ instancje axios z
zdefiniowanym baseURL, domys$Inymi nagtdwkami czy parametrami. Utatwia to
zarzgdzanie wspolnymi elementami zgdan w catej aplikacji:

import axios from 'axios';

const api = axios.create({
baseURL: 'https://api.example.com/v1',
timeout: 10000, // maksymalny czas oczekiwania 10s
headers: { 'Content-Type': 'application/json' }

N

Taka instancja api bedzie uzywana do wszystkich zapytan, co eliminuje powtarzanie
adresu bazowego i nagtowkow.

Interceptory — Jedng z najwiekszych zalet axios sg interceptory zadan i odpowiedzi.
Pozwalajg one przechwyci¢ kazde zapytanie lub odpowiedz i zmodyfikowac je lub
obstuzy¢ btedy globalnie:

// Przechwycenie kazdego zgdania — np. dotgczenie tokena auth:
api.interceptors.request.use(config => {
const token = authStorage.getToken(); // pseudokod pobierajacy token
if (token) {
config.headers.Authorization = "Bearer S{token}’;

}

return config;

1
// Przechwycenie odpowiedzi — np. obstuga btedéw 401 globalnie:

api.interceptors.response.use(
response => response,
error => {
if (error.response?.status === 401) {
// np. automatyczna préba od$wiezenia tokena lub wylogowanie
console.log('Btad 401 - nieautoryzowany, odswiezanie tokena...');
// ... (implementacja logiki od$wiezania lub przekierowania do logowania)

}

return Promise.reject(error);

}
);

Interceptory utatwiajg dodawanie wspélnej logiki — np. logowanie wszystkich
requestéw w trybie debug, ustawianie nagtéwkéw Authorization, obstuge btedéw
uwierzytelnienia itp. W przypadku fetch trzeba by recznie opakowywac funkcje,
podczas gdy axios oferuje to gotowe.

Obstuga btedéw HTTP — W przeciwienstwie do fetch, axios automatycznie odrzuca
Promise dla kodoéw odpowiedzi spoza zakresu 2xx. Oznacza to, ze odpowied? z
kodem 404 lub 500 trafi od razu do bloku .catch() z wygodnym obiektem btedu
(zawierajgcym m.in. error.response z danymi odpowiedzi). Dzieki temu tatwiej jest pisac
jednolitg obstuge btedéw w jednym miejscu.

Timeouty i anulowanie — Axios posiada w konfiguracji opcje timeout (jak pokazano w
axios.create powyzej). Jesli odpowiedz nie nadejdzie w podanym czasie, request
zostanie przerwany automatycznie z btedem. Ponadto, axios wspiera mechanizm
anulowania zapytan poprzez AbortController (od wersji 0.22) oraz historyczny (juz
deprecated) CancelToken. Wspotczesne podejscie to uzycie signal z AbortController —
bardzo podobnie jak w fetch:

const controller = new AbortController();
try {
await api.get('/tasks', { signal: controller.signal });
} catch(e) {
if (axios.isCancel(e)) {
// Sprawdzenie czy btagd wynika z anulowania
console.log('Zapytanie anulowane.');

}
}

controller.abort(); // mozna przerwaé zapytanie w dowolnym momencie

Od wersji v0.22 axios zaleca uzywanie AbortController zamiast CancelToken. Mechanizm
jest taki sam jak w fetch — przerwanie sygnatu spowoduje odrzucenie obietnicy. W
axios metoda axios.isCancel(error) pozwala rozpoznac, czy btagd wynika z anulowania.

e Dodatkowe funkcje — Axios umozliwia np. Sledzenie postepu wysytania/odbierania
danych (onUploadProgress, onDownloadProgress), o bywa przydatne przy wysytaniu
plikdw lub pobieraniu wiekszych zasobéw (w RN jednak do duzych plikéw czesto
uzywa sie dedykowanych bibliotek natywnych). Pozwala tez fatwo wykonywac
zapytania rownolegte (metoda axios.all lub uzycie Promise.all z instancjg axios).

Przyktad zapytania POST z axios (dla poréwnania z fetch):

const newTask = { title: 'Nowe zadanie', completed: false };
try {
const response = await api.post('/tasks', newTask);
// Axios sam zserializuje newTask do JSON i ustawi nagtéwek Content-Type
console.log('Utworzono zadanie, dane:', response.data);
} catch (error) {
if (error.response) {
console.log('Btad zapytania:', error.response.status, error.response.data);
}else {
console.log('Btad sieci lub inny:', error.message);
}
}

W powyzszym kodzie widzimy, ze nie ma potrzeby robié JSON.stringify na danych ani
response.json() na odpowiedzi — axios robi to automatycznie. Obstuga btedu tez jest prostsza:
obiekt error.response istnieje tylko gdy serwer zwrdécit odpowiedz z btedem (kod 4xx/5xx).

Porada: W srodowisku React Native nie trzeba osobno instalowac¢ polyfill do fetch — jest on
dostepny globalnie. Jesli jednak decydujemy sie na axios, nalezy zainstalowaé go przez
npm/yarn (npm install axios) i pamietac, ze opiera sie on na natywnym module XHR, ktéry RN
wspiera. Mozna uzywac jednoczesnie fetch i axios w projekcie, ale zazwyczaj lepiej wybrac
jedno podejscie dla spdjnosci.

1.3 Interceptory, nagtowki i konfiguracja globalna
Jak wspomniano, axios wyrdznia sie mozliwoscig globalnej konfiguracji i interceptorami:

¢ Nagtéwki globalne: Mozemy definiowa¢ nagtowki domysine na poziomie instancji
axios. Np. api.defaults.headers.common['Accept-Language'] = 'pl-PL'; ustawi domysiny jezyk.
Podobnie api.defaults.headers.common.Authorization = 'Bearer TOKEN' moze globalnie dodac¢
token (cho¢ lepiej zrobi¢ to dynamicznie w interceptorze, by zawsze pobierac
aktualny token).

¢ Interceptory zadan: Idealne miejsce na dotgczanie tokena uwierzytelnienia przed
wystaniem. W interceptorze mamy dostep do obiektu config — mozemy tam doda¢

lub zmodyfikowaé nagtéwki, zmienié adres itp. Warto rowniez obstugiwac przypadki
odswiezania tokena (wiecej o tym w sekcji autoryzacji).

¢ Interceptory odpowiedzi: Pozwalajg przechwyci¢ btad globalnie. Np. mozemy
sprawdzi¢ kod 500 i zalogowa¢ zdarzenie do zewnetrznej ustugi, albo dla 401
wykonaé¢ automatyczny refresh token. Trzeba jednak uwazac, by nie spowodowac
zapetlenia (np. jesli od$swiezanie tokena tez zwrdci 401). Czesto uzywa sie
mechanizmu kolejki — wstrzymuje sie nowe zgdania w trakcie od$wiezania tokena i
po odswiezeniu kontynuuje.

Fetch nie ma takiego mechanizmu — jak to rozwigza¢? Mozemy pisa¢ nasze funkcje, np.
customFetch(url, options) ktére przed wywotaniem uzupetnig nagtéwki (np. doda token z
pamieci) i po otrzymaniu odpowiedzi sprawdzg status (np. jesli 401 — odswiezg token i
ponowig zapytanie). To jednak wiecej pracy i wieksze pole na btedy. Dlatego wiele aplikacji
RN korzysta z axios dla wygody, cho¢ czysty fetch réwniez jest w porzadku dla prostych
potrzeb.

Poréwnanie fetch vs axios: Fetch jest natywny i nie wymaga zaleznosci, ma prostg skfadnie i
jest wspierany przez przegladarki oraz RN out-of-the-box. Axios to dodatkowa biblioteka,
ale oferuje bogatsze API: interceptory, automatyczne przetwarzanie JSON, lepszg obstuge
btedéw i anulowania. Z punktu widzenia wydajnosci réznice sg pomijalne przy typowych
uzyciach (axios pod spodem uzywa podobnego mechanizmu co fetch/XHR). Jesli aplikacja
wymaga wielu zapytan i rozbudowanej obstugi sieci (np. autoryzacja, globalne logowanie,
specjalne nagtdéwki), axios zapewnia wiekszg wygode. Jesli potrzebujesz minimalizmu lub
chcesz ograniczyé zaleznosci, fetch w zupetnosci wystarczy — wiekszos¢ funkcjonalnosci axios
mozna zaimplementowac recznie przy odrobinie wysitku. Wybor wiec zalezy od preferencji i
potrzeb projektu.

Podsumowujac: Dla React Native oba rozwigzania sg dobre. W kolejnych sekcjach (np. przy
React Query) zobaczymy, ze narzedzia wyzszego poziomu mogg czesciowo przejgé zadania
zwigzane z zapytaniami (np. mechanizmy retry, cache, itp.), co zmniejsza réznice miedzy
fetch a axios, bo pewne rzeczy bedg zarzgdzane przez biblioteke.

2. React Query — zaawansowane zarzgdzanie stanem danych
z API

Wraz ze wzrostem ztozonosci aplikacji, reczne zarzagdzanie stanem danych pochodzacych z
API (np. listy elementdw, szczegdty obiektow, stany tadowania, btedy, odswiezanie danych)
staje sie trudne. React Query (czes$¢ TanStack Query) to biblioteka, ktéra upraszcza prace z
danymi asynchronicznymi: pobieraniem, cache’owaniem, od$wiezaniem i mutacjami. W
kontekscie React Native dziata tak samo jak w React na webie — z pewnymi dodatkami dla
srodowiska mobilnego. Obecnie dostepna jest React Query v5 (TanStack Query v5), ktéra
wprowadza usprawnienia wzgledem poprzednich wersji (m.in. mniejszy rozmiar,
ujednolicone API). Skupimy sie na aktualnej wersji i nowoczesnych hookach.

2.1 Podstawy i konfiguracja React Query

Aby uzywad React Query, nalezy zainstalowac¢ paczke @tanstack/react-query (nOowsza nazwa
biblioteki — dawniej react-query). W projekcie Expo/RN instalacja przebiega standardowo przez
npm/yarn.

Nastepnie konfigurujemy klient zapytan (QueryClient) i Provider na najwyzszym poziomie
aplikacji, zwykle w pliku App.tsx:

import { QueryClient, QueryClientProvider } from '@tanstack/react-query’;

const queryClient = new QueryClient({
defaultOptions: {

queries: {
retry: 2, // domyslnie pondw nieudane zapytanie 2 razy
staleTime: 5 * 60 * 1000, // czas (ms) po ktérym dane uznajemy za "nieswieze"
5
5
1

export default function App() {
return (
<QueryClientProvider client={queryClient}>
<NavigationContainer>{/* reszta aplikacji */}</NavigationContainer>
</QueryClientProvider>

);
}

Powyzej tworzymy instancje QueryClient z domysInymi opcjami. Mozemy tam okreslié
globalne ustawienia, np. ile razy retry ma nastgpic, jaki jest domyslny staleTime, czy query ma
sie odswiezac przy ponownym wejsciu na ekran itp. Umieszczenie catej aplikacji wewnatrz
QueryClientProvider zapewnia dostep do funkcjonalnosci React Query w komponentach.

Uwaga: React Query v5 uproscit APl — wszystkie konfiguracje przekazujemy jako pojedynczy

obiekt zamiast wielu pozycyjnych argumentéw, jak bywato wczesniej. Dla przyktadu, dawniej
useQuery('tasks', fetchTasks) teraz zapisujemy jako useQuery({ queryKey: ['tasks'], queryFn: fetchTasks }).

Dzieki temu TypeScript lepiej wspiera to wywotanie i cata konfiguracja znajduje sie w jednym
obiekcie.

2.2 Zapytania — hook usequery

Hook useQuery stuzy do pobierania danych (zapytania typu GET). Podstawowe uzycie sktada
sie z unikalnego klucza zapytania oraz funkcji ktéra zwraca obietnice (Promise) z danymi:

import { useQuery } from '@tanstack/react-query';
import api from './api'; // zatézmy, ze to instancja axios

function TasksList() {
const {
data: tasks,
error,
isLoading,
isFetching,
refetch

} = useQuery({

queryKey: ['tasks'], // unikalny klucz cache

queryFn: async

()=>{

const res = await api.get('/tasks');

return res.data; // zwracamy dane (lista taskdw)
b
staleTime: 1000 * 30, // dane wazne przez 30s (opcjonalnie)
refetchOnMount: false // opcjonalnie: nie od$wiezaj na montazu jesli dane sg w cache

N;

if (isLoading) {

return <Text>tadowanie zadan...</Text>;

}

if (error) {

return <Text>Btad: nie udato sie pobrac listy zadan.</Text>;

}

return (
<FlatList
data={tasks}

/* ... renderowanie listy zadan ... */
refreshing={isFetching} // mozna wykorzysta¢ isFetching do wskaznika od$swiezania
onRefresh={refetch} // pociagniecie listy w d6t do od$wiezenia

/>
);
}

Kilka rzeczy dzieje sie automatycznie powyzej:

o Pierwsze wykonanie zapytania nastepuje natychmiast po montowaniu komponentu

(chyba
refetch).

Ze ustawimy opcje enabled: false — wtedy uruchomienie jest reczne przez

¢ Hook useQuery zwraca obiekt z wieloma przydatnymi wtasciwosciami:

o

(@]
e Cachei

data — wynik zapytania (zcache’owany). W naszym przyktadzie tasks to zapewne
tablica zadan lub obiekt pobrany z API.

error — obiekt btedu (jesli zapytanie sie nie powiodto). Gdy nie byto btedu,
bedzie undefined.

Stan tadowania: isLoading jest prawdziwy przy pierwszym uruchomieniu
zapytania (dopdki nie nadejdzie odpowiedz). isFetching jest true za kazdym
razem, gdy trwa jakis fetch danych dla tego zapytania — np. rdwniez podczas
odswiezania (refetch). W React Query v5 wprowadzono nowg nazwe isPending
zamiast isLoading dla ujednolicenia stanu w zapytaniach i mutacjach. W kodzie
mozna spotkaé obie nazwy zaleznie od wersji — tu dla czytelnos$ci uzywamy
isLoading.

refetch — funkcja, ktérej wywotanie spowoduje ponowne wykonanie zapytania
(ignorujgc ewentualny cache). Przydaje sie np. do obstugi gestu pull-to-
refresh listy w RN.

Inne: status (string 'loading' | 'error' | 'success'), isSuccess, isError itp. dla wygody.
staleTime: Pod kluczem ['tasks'] React Query przechowa w cache wynik. Poki

dane sg uznawane za $wieze (przez staleTime lub domysInie 0 ms, co oznacza
natychmiast nieswieze), wejscie ponownie na ekran nie spowoduje ponownego

pobierania — od razu pokazg sie dane z cache. Po uptywie staleTime kolejny mount
spowoduje od$wiezenie w tle. Mozemy dostosowac to zachowanie:

o Ustawienie staleTime wiekszego (np. kilka minut) oznacza, ze w tym czasie dane
bedg uznawane za aktualne i nie bedg automatycznie refetchowane przy
ponownym wejsciu.

o Ustawienie refetchOnMount (domyslinie true gdy dane nieswieze) pozwala np.
catkowicie wytgczy¢ odswiezanie na montowanie (refetchOnMount: false), lub
wymusié zawsze od$wiezanie (refetchOnMount: 'always').

o Istnieje tez opcja refetchinterval do odpytywania co jakis czas (polling).

Wspétpraca z TypeScript: useQuery Swietnie wspoétpracuje z TS. Mozna okredli¢ typ danych
wynikowych: useQuery<MyDataType>({ queryKey: [...], queryFn: ... }), ale jesli uzywamy funkcji
queryFn ktdra sama ma dobrze zdefiniowany zwracany typ (np. funkcja wywotujgca axios z
typowanym wynikiem), TS zwykle sam wydedukuje typ data. W przypadku btedu, domysinie
typ to unknown, ale mozna korzystaé z wtasnych klas btedéw lub rzutowaé w razie potrzeby.

Retry (ponawianie): Domysinie React Query ponawia nieudane zapytanie 3 razy (z krotkim
opdznieniem) zanim oznaczy je jako btedne. Mozna to zmienié globalnie lub per zapytanie
(retry: liczba lub retry: false zeby wytgczy¢). Ponawiane sg tylko btedy sieciowe lub btedy
odpowiedzi (np. kod 5xx). To zachowanie bywa przydatne przy niestabilnym pofaczeniu —
uzytkownik nie zobaczy btedu od razu jesli np. pierwsze zagdanie nie dotarfo. Oczywiscie
nalezy uwazaé, by nie powtarzac operacji, ktore nie powinny by¢ idempotentne (cho¢
domyslnie React Query nie ponawia mutacji, tylko zapytania typu get).

Przyktad: Jesli endpoint /tasks czasem losowo zwraca btgd 500, React Query automatycznie
sprébuje do 3 razy go pobrac¢ zanim przekaze btad do interfejsu.

2.3 Mutacje — hook useMutation

Drugim waznym filarem jest useMutation, stuzgcy do operacji zmieniajacych dane
(POST/PUT/DELETE itp.). Mutacje mogg powodowad zmiany w stanie serwera, wiec czesto
po ich wykonaniu chcemy zaktualizowac¢ cache lub odswiezy¢ zapytania GET.

Podstawowe uzycie useMutation:

import { useMutation, useQueryClient } from '@tanstack/react-query’;

function NewTaskForm() {
const queryClient = useQueryClient();

const { mutate: addTask, isLoading: isAdding } = useMutation({

mutationFn: async (newTaskData) => {
const res = await api.post('/tasks', newTaskData);
return res.data; // zaktadamy, ze APl zwraca utworzony obiekt zadania

b

onSuccess: (createdTask) => {
// Po pomyslnym dodaniu zadania, odswiez liste taskow:
queryClient.invalidateQueries({ queryKey: ['tasks'] });
// Alternatywnie: mozna byto od razu zaktualizowa¢ cache zamiast refetch (omdéwione ponizej)

b

onError: (error) => {
console.error('Nie udato sie dodac¢ zadania:', error);

}
N;

// ... Ul formularza z przyciskiem:
const handleSubmit = () => {
addTask({ title: 'Nowe zadanie', completed: false });

5

return (

<Button onPress={handleSubmit} disabled={isAdding} title="Dodaj zadanie" />

);

W powyzszym kodzie definiujemy mutacje do dodawania zadania:

mutationFn — funkcja wykonujgca zapytanie (tu POST /tasks z danymi nowego zadania).
Moze zwracac wynik (np. utworzony obiekt), ktéry potem jest dostepny w onSuccess.
onSuccess — opcjonalny callback wywotywany, gdy mutacja sie powiedzie. Idealne
miejsce by inwalidowaé cache zapytan, ktérych dane mogty sie zmieni¢. Uzywamy do
tego queryClient.invalidateQueries z kluczem — w tym wypadku lista ['tasks'] powinna
zosta¢ ponownie pobrana, aby uwzgledni¢ nowe zadanie. Zamiast invalid, mozna tez
zaktualizowac dane w cache recznie

onError — obstuga btedu (np. pokazanie komunikatu). Mozna tez wykorzystaé obiekt
btedu w komponencie poprzez mutation.error, podobnie jak przy query.

Hook useMutation zwraca m.in.:

mutate (lub mutateAsync) — funkcje do wywotania mutacji z przekazaniem danych.
Stany: isLoading (W V5 nazywany tez isPending), isSuccess, isError — analogicznie jak dla
zapytan, informujg o stanie danego zgdania modyfikujgcego.

Dodatkowo data — wynik zwrdcony z mutacji (np. createdTask w onSuccess), error —
obiekt btedu jesli wystapit.

Optimistic updates — optymistyczne aktualizacje Ul

Optymistyczna aktualizacja polega na tym, ze zaktadamy sukces operacji i natychmiast
modyfikujemy Ul, zanim otrzymamy odpowiedz z serwera. Jesli pdzniej okaze sie, ze
operacja sie nie powiodta, musimy wycofac¢ te zmiany lub zasygnalizowa¢ btad
uzytkownikowi.

React Query wspiera optymistyczne aktualizacje na dwa sposoby:

1. Poprzez Ul i stan mutacji (prostsza metoda w React Query v5): Mozemy wykorzystac

fakt, ze useMutation zwraca nam parametry ostatniej mutacji (variables) oraz stan
isPending. Dzieki temu mozemy np. tymczasowo doda¢ element do listy zadan bez
grzebania w cache:

const addTaskMutation = useMutation({
mutationFn: addTaskApiCall,
onSettled: () => queryClient.invalidateQueries({ queryKey: ['tasks'] })

N;

const { mutate: addTask, variables: newTaskVars, isPending: isAdding } = addTaskMutation;

// ... w komponencie listy zadan:
return (
<View>
{tasks.map(task => <Taskltem key={task.id} {...task} />)}
{isAdding && (
<Taskltem task={{ ...newTaskVars, id: 'temp-id' }} style={{ opacity: 0.5 }} />
)}

</View>

);

W powyzszym schemacie, gdy wywotamy addTask(newTaskData), stan isPending bedzie
true, a variables przechowa newTaskData. Mozemy wiec do listy wyrenderowad
tymczasowy element z danymi nowego zadania (np. z pétprzezroczystym stylem, by
odrdznié). Gdy mutacja sie powiedzie, isPending wroéci do false, a refetch w onSettled
odswiezy liste juz z faktycznym nowym elementem z bazy. Jesli mutacja sie nie
powiedzie, tymczasowy element réwniez zniknie (cho¢ mozemy go zostawic i np.
dodaé przycisk "Spréobuj ponownie" — wykorzystujgc nadal variables nawet po btedzie,
bo React Query nie usuwa ich automatycznie przy errorze).

Ten sposdb jest prostszy, bo nie dotykamy recznie cache — po prostu warunkowo
renderujemy dodatkowy element w oparciu o stan mutacji. W React Query v5
dodano takze hook useMutationState, ktory pozwala sledzi¢ zmiany nawet w innej
czesci aplikacji, jesli mutacja i wyswietlanie tymczasowych danych nie sg w jednym
komponencie.

2. Poprzez modyfikacje cache (tradycyjna metoda): Bardziej zaawansowane podejscie
polega na tym, ze w onMutate mutacji dokonujemy bezposredniej zmiany w cache, a w
onError W razie niepowodzenia przywracamy poprzedni stan. Przyktad dla dodawania
zadania:

const queryClient = useQueryClient();
useMutation({
mutationFn: addTaskApiCall,
// przed wykonaniem mutacji:
onMutate: async (newTask) => {
await queryClient.cancelQueries({ queryKey: ['tasks'] });
const previousTasks = queryClient.getQueryData(['tasks']);
// Optymistycznie ustaw nowe zadanie w cache:
queryClient.setQueryData(['tasks'], old => [...(old | | []), {id:'_temp__', ...newTask }]);
return { previousTasks }; // zwracamy snapshota
2
onError: (err, newTask, context) => {
// przy btedzie odtwarzamy poprzednig liste zadan
queryClient.setQueryData(['tasks'], context.previousTasks);
5
onSettled: () => {
// niezaleznie od wyniku, pobierz aktualne dane z serwera

queryClient.invalidateQueries({ queryKey: ['tasks'] });
}
1

o onMutate zatrzymuje ewentualne biezgce odswiezenia (cancelQueries), pobiera
biezacg liste zadan z cache (previousTasks), a nastepnie dodaje nowy obiekt do
listy za pomocg setQueryData. Uzywamy tymczasowego id:'__temp__' lub czego$
unikalnego, by odrdzni¢ optymistyczny obiekt.

o Zwracamy z onMutate wartosc¢ (tutaj obiekt z poprzednig listg), ktéra bedzie
przekazana do onkrror jesli mutacja sie nie uda.

o W onError przy btedzie przywracamy poprzedni stan listy zadan z
context.previousTasks.

o onSettled (Wywotywane zaréwno po sukcesie jak i btedzie) stuzy do upewnienia
sie, ze finalnie i tak mamy zgodnosc¢ z serwerem — tu poprzez invalidacje i
refetch listy.

To podejscie zapewnia petng kontrole i natychmiastowg reakcje w Ul. Jest nieco
bardziej skomplikowane (trzeba pamietac o przywracaniu stanu), ale bywa konieczne
w niektdérych scenariuszach, np. gdy zmiana jest trudniejsza do odzwierciedlenia
warunkowym renderowaniem.

Wybdr metody zalezy od przypadku. Dla prostego dodawania elementu do listy, metoda
pierwsza (Ul) jest wystarczajgca i mniej podatna na btedy — w razie niepowodzenia element
po prostu zniknie lub mozemy zaoferowac ponawianie. Metoda druga daje petna
elastycznos¢ (mozna np. zaktualizowaé wiele réznych query w cache optymistycznie). React
Query v5 stara sie utatwic ten proces, dlatego wprowadzono uproszczenia i hook
useMutationState.

Mutacje rownolegte: Warto wspomnie¢, ze React Query pozwala wykonywa¢ kilka mutacji
naraz i zarzagdzac ich stanem globalnie. Dzieki uselsMutating() mozna sprawdzi¢, czy
jakakolwiek mutacja jest w toku (np. by zablokowac przyciski globalnie), a useMutationState
pozwala monitorowac aktywne mutacje po kluczu. Np. mozna w jednym komponencie
wywotywac useMutation(mutationKey: ['deleteTask'], ...) dla kasowania zadania, a w innym
nastuchiwac czy jest jakas mutacja deleteTask pending i wyswietlaé np. spinner obok
elementu.

2.4 Cache, refetching i invalidacja danych

Jedng z najwiekszych zalet React Query jest cache danych oparty o klucze. Zrozumienie kilku
pojec¢ pomoze efektywnie z tego korzystac:

e Klucz zapytania (queryKey): tablica lub string unikalnie identyfikujgca dane. Np.
['tasks'] dla listy wszystkich zadan, ale ['task’, id] dla szczegdtdw pojedynczego zadania.
Struktura tablicy moze zawieraé parametry zapytania (np. ['tasks', { page: 2 }] jesli
kluczem ma by¢ strona 2). Klucz decyduje o tym, co jest traktowane jako ta sama
dane w cache.

e Cache time vs stale time:

o Stale Time — czas $wiezosci danych (konfigurujemy, np. 0 domyslinie oznacza
dane od razu stajg sie ,,stale” po pobraniu). Dopdki dane sg swieze, React
Query nie bedzie inicjowat ponownego pobrania przy okazji re-renderow czy
focusu aplikacji.

o Cache Time — czas przechowywania starych danych w pamieci po ich
»wygasnieciu”. Domyslnie 5 minut. Po tym czasie, jesli nie ma zadnego
komponentu uzywajgcego danego query, dane zostang usuniete z pamieci
cache (tzw. garbage collect). W v5 nazwano to lepiej gcTime (garbage
collection time). Jezeli w tym czasie ponownie odwotamy sie do tego query, to
nawet nieSwieze dane mogg zosta¢ pokazane natychmiast (z flagg ze s stale)
i rownolegle nastgpi refetch.

e Invalidacja (invalidateQueries): programowe oznaczenie danych jako nieaktualne.
Uzywamy tego np. po mutacjach w onSuccess, aby powiadomic¢ React Query: ,,hej,
dane pod kluczem X zmienity sie, pobierz je ponownie przy najblizszej okazji”.
Invalidacja ustawia stan stale i jesli dany query jest aktualnie uzywany w Ul, to
spowoduje automatyczny refetch. Jesli nie jest w uzyciu, to kolejny raz gdy sie pojawi
(mount), to pobierze nowsze dane.

e Refetching na fokus/potaczenie: Domyslnie (w przegladarce) React Query odswieza
zapytania przy powrocie do okna (window focus) oraz po odzyskaniu potaczenia
(network reconnect). W React Native te mechanizmy tez mozemy mie¢, ale musimy
recznie zintegrowac:

o Fokus aplikacji: za pomocg focusManager i modutu AppState (React Query
udostepnia focusManager).

o Online status: za pomocg onlineManager i np. biblioteki NetIinfo do
wykrywania braku/odzyskania sieci. Po konfiguracji React Query bedzie
wiedziat, ze np. byt offline i teraz jest online — moze odswiezy¢ zalegte
zapytania.

e Reczne odswiezanie (refetch): jak pokazano, hook useQuery daje metode refetch.
Mozna tez globalnie odswiezyé pewne grupy zapytan: queryClient.refetchQueries({
queryKey: ['tasks'] }) by odswiezy¢ wszystkie zapytania zaczynajgce sie na tasks (co
przydaje sie, gdy np. wiele réznych wariantéw danych zadan ma by¢ odswiezonych,
cho¢ najczesciej invalidate jest wystarczajace).

Integracja z React Native — focus i online: W czystym RN React Query nie ma dostepu do
zdarzen fokusu okna (bo nie ma okna przegladarki) ani do statusu sieci, ale mozna to tatwo
dodaé:

// Gdzie$ w kodzie inicjalizacyjnym aplikacji (np. zaraz po utworzeniu QueryClient):
import NetInfo from '@react-native-community/netinfo';

import { onlineManager, focusManager } from '@tanstack/react-query';

import { AppState } from 'react-native';

// Potaczenie: nastuchuj zmian statusu sieci i informuj React Query
onlineManager.setEventListener(setOnline => {
return NetIinfo.addEventListener(state => {
setOnline(!!state.isConnected);
1
N

// Fokus aplikacji: nastuchuj czy aplikacja jest aktywna (foreground)

AppState.addEventListener('change’, state => {
focusManager.setFocused(state === 'active');

N;

Powyzszy kod sprawi, ze np. jesli urzgdzenie utraci internet, React Query wstrzyma
automatyczne zapytania i oznaczy tryb offline (zapytania mogg wejs¢ w stan error, ktéry
mozna obstuzy¢ odpowiednio). Gdy sie¢ wrdci, onlineManager powiadomi biblioteke —
domyslnie spowoduje to refetch wszystkich wczesniej nieudanych zapytan od razu (co jest
pozgdane zachowanie w wiekszosci przypadkow). Podobnie z fokusem: gdy uzytkownik
zminimalizuje i przywrdci aplikacje, wywotanie focusManager.setFocused(true) moze
spowodowac odswiezenie danych (o ile jakie$ query byto stale). Mozemy tez dostosowac to
zachowanie parametrami refetchOnReconnect, refetchOnFocus (tak jak w web, tylko tutaj to
zalezy od tej integracji).

Obstuga btedéw w React Query: Domysinie btedy zapytan nie sg rzucane jako wyjatki do
komponentu, tylko przekazywane w error i zmieniajg iserror. Mozna jednak wtgczyé tryb, gdzie
przy btedzie zostanie rzucony wyjatek i ztapany przez najblizszy Error Boundary w drzewie.
Stuzy do tego opcja useErrorBoundary: true (globalnie lub przy poszczegélnym query). Jest to
przydatne w wiekszych aplikacjach, gdzie chcemy np. jeden globalny komponent graniczny
btedéw zamiast w kazdym miejscu sprawdzac error.

2.5 Obstuga stanéw tadowania i btedow (Ul)

W interfejsie musimy przewidzie¢ trzy giéwne stany dla zapytan: tadowanie, btad i dane
zatadowane. Powyzej w kodzie TasksList widzieliSmy prostg obstuge przez if (isLoading) ... else if
(error) ... else W praktyce mozna to rozbudowaé:

¢ Loading placeholders: Zamiast zwyktego tekstu "tadowanie..." czesto stosuje sie
komponenty placeholder lub spinnery. Np. w React Native Activitylndicator jako
wskaznik tadowania, lub przygotowane "wydmuszki" Ul (tzw. skeleton screens — np.
szare belki imitujgce liste). Przyktad:

{isLoading && <Activitylndicator size="large" color="#0000ff" />}

Alternatywnie, biblioteki jak react-native-paper czy NativeBase oferujg gotowe
komponenty placeholderdw.

e Stan btedu: W razie btedu warto wyswietli¢ uzytkownikowi przyjazny komunikat. Sam
obiekt error od React Query moze by¢ rézny (dla btedéw HTTP moze to by¢ btad axios
z informacjg o statusie, dla btedéw sieci — moze to by¢ TypeError z fetch). Dlatego
czesto przygotowujemy funkcje pomocniczg, ktéra mapuje rdézne btedy na
komunikat:

function getErrorMessage(error) {
if (lerror?.response) {
return 'Brak potgczenia z internetem.’;
}
const status = error.response.status;
if (status === 404) return 'Nie znaleziono zasobu.";

if (status === 500) return 'Btad serwera, sprébuj ponownie pdzniej.';
return 'Wystgpit btad. Kod: ' + status;

}
/] ...

{error && <Text style={{color: 'red'}}>{getErrorMessage(error)}</Text>}

Taka spdjna obstuga bteddw sprawia, ze uzytkownik dostaje czytelny komunikat
zamiast np. surowego TypeError: Network request failed. Mozna tez rozwazy¢ wysytanie
logdw bteddéw do zewnetrznego systemu (Sentry, LogRocket itp.), ale to juz wykracza
poza nasz wyktad.

e Stan odswiezania: Czesto chcemy sygnalizowaé kiedy dane sg odswiezane w tle (np.
po zeskrolowaniu w dét listy, lub automatycznie co pewien czas). W React Query
stuzy do tego isFetching (dla query) lub isFetchingNextPage (dla infinite query, o tym za
chwile). Mozemy np. pokaza¢ maty wskaznik "Odswiezanie..." na goérze listy albo
zmieni¢ tytut pull-to-refresh. W RN FlatList ma prop refreshing i onRefresh — podpiecie
tam isFetching i refetch jak wyzej automatycznie pokaze spinner przy gestach pull-to-
refresh.

React Query dba tez o zachowanie poprzednich danych podczas refetchu (tzw.
keepPreviousData w v4, obecnie w v5 tgczy sie to z placeholderData) — dzieki temu mozna
np. przy stronicowaniu pokazywaé starg strone dopdki nowa sie nie zataduje, zamiast
pustego ekranu. Domyslnie jednak przy odswiezaniu danych data zostaje nadpisane. Jesli
chcemy, mozemy ustawic keepPreviousData: true by w trakcie fetchu trzymac stare dane (w v5
ta opcja zostata scalona z placeholderData i mozliwe, ze trzeba by to inaczej ustawié, ale idea
jest podobna).

Podsumowujgc: stan tadowania i btedéw powinien by¢ czytelnie obstuzony w Ul. Nie
zostawiajmy uzytkownika z zawieszong aplikacja — lepiej pokazaé spinner. | nie ukrywajmy
btedéw w konsoli — wyswietimy komunikat lub sprébujmy automatycznie ponowic (jesli ma
to sens). React Query duzo utatwia, bo daje te stany od razu bez koniecznosci
wtasnorecznego tworzenia zmiennych typu isLoading.

3. Paginacja i zapytania , nieskonczone” (infinite queries)

Wiele APl udostepnia paginacje wynikdw — np. listy elementdw sg podzielone na strony po
10, 20 elementdw albo udostepniajg mechanizm stronicowania za pomoca kursora. React
Query obstuguje te scenariusze za pomocg dwdch podejs¢:

¢ useQuery z parametrem strony — tradycyjne podejscie: kazda strona jest osobnym
zapytaniem, np. useQuery(['tasks', pagel], queryFn). Mozna wtedy w Ul mie¢ przyciski
"Nastepna strona" / "Poprzednia strona", lub przy przewijaniu dynamicznie zwieksza¢
numer strony i wykonywac kolejne zapytania.

¢ uselnfiniteQuery — specjalny hook React Query, ktéry wspiera docigganie kolejnych
»paczek” danych i tgczenie ich automatycznie. Idealny do list z infinite scroll
(przewijanie w dét powoduje pobranie kolejnej partii wynikow).

3.1 Paginacja offset/limit vs kursory

Zanim przejdziemy do kodu, wyjasnijmy dwa sposoby stronicowania, jakie mozemy spotkac
w API:

o Offset/Limit (lub page/size): Najczestsze podejscie — np. mamy endpoint
/tasks?page=2&Iimit=10 lub /tasks?offset=20&Iimit=10. Serwer zwraca wtedy np. tasks oraz
informacje o tacznej liczbie elementdéw albo adresy do kolejnej/poprzedniej strony.
Offset page wymaga znajomosci ile elementéw poming¢. Wadg bywa, ze przy
dynamicznie zmieniajacych sie danych stronicowanie offsetem moze pomijac¢ lub
dublowac elementy jesli w miedzyczasie doszty/ubyty (np. wstawienie nowego
elementu na poczatku listy zmieni offsety).

e Cursor (lub tokeny kontynuacji): Coraz popularniejsze podejscie — serwer zwraca
znacznik do nastepnej strony, np. nextCursor albo nextPageToken. Zapytanie wtedy
wyglada np. /tasks?cursor=abc123 gdzie abc123 wskazuje, skad kontynuowad. Najczesciej
APl zwraca tez informacje czy jest kolejna strona (np. hasNextPage: true/false). Kursory
sg bardziej odporne na zmiany danych — wskazujg konkretny punkt w
czasie/porzadku.

W React Query obstuzymy oba scenariusze za pomocg uselnfiniteQuery, ale logika
getNextPageParam bedzie nieco inna.

3.2 Hook uselnfiniteQuery

uselnfiniteQuery dziata podobnie do useQuery, ale zaktada, ze bedziemy pobieraé wiele
stron danych. Jego queryFn powinien akceptowac parametr pageParam, a w opcjach musimy
podacd funkcje getNextPageParam, ktéra powie bibliotece, jaki pageParam uzy¢ dla kolejnej
strony.

Przyktad uzycia (dla APl offset/page):

const {
data,
fetchNextPage,
hasNextPage,
isFetchingNextPage,
isLoading
} = uselnfiniteQuery({
queryKey: ['tasks'],
queryFn: ({ pageParam = 1 }) => api.get('/tasks?page=${pageParam}’).then(res => res.data),
getNextPageParam: (lastPage, pages) => {
// Zaktadamy, ze odpowied? lastPage zawiera pole nextPage (numer kolejnej strony) lub null jesli koniec
return lastPage.nextPage ?? false;
// jesli zwrécimy false/undefined, React Query uzna ze nie ma kolejnej strony
}
1

Kilka wyjasnien:

pageParam — parametry strony; przy pierwszym wywotaniu jest rowny domysinej
wartosci (tu 1, bo tak ustawilismy). PéZniej React Query bedzie wstawiac kolejne
wartosci zwrdcone z getNextPageParam.

getNextPageParam(lastPage, allPages) — funkcja dostaje ostatnig pobrang strone (dane
zwrécone przez queryFn) oraz tablice wszystkich dotychczasowych stron. Musi
zwréci¢ wartos¢ pageParam dla nastepnej strony albo false/undefined jesli to juz
koniec. W powyzszym pseudo-kodzie zaktadamy, ze lastPage (dane z serwera) ma pole
nextPage. Alternatywnie, jesli APl zwraca np. currentPage i totalPages, mogliby$my
napisac:

getNextPageParam: (lastPage) => {

}

return lastPage.currentPage < lastPage.totalPages

? lastPage.currentPage + 1
: undefined;

hasNextPage — wartos¢ boolean, ktérg React Query ustala automatycznie na podstawie
getNextPageParam. Jesli getNextPageParam zwrdci wartosé (np. numer strony lub cursor),
to hasNextPage bedzie true. Jesli zwrdci undefined lub false, hasNextPage bedzie false
(koniec danych).
fetchNextPage — funkcja do pobrania kolejnej strony. Wywota wewnetrznie queryFn z
nastepnym pageParam (tym, co getNextPageParam zwrdcit poprzednio).
data — tu struktura jest inna niz przy useQuery. data zawiera obiekt z polami:
o data.pages — tablica, gdzie kazdy element to wynik jednej strony (doktadnie to,
co zwraca queryFn).
o data.pageParams — tablica z parametrami uzytymi dla tych stron (mozna zwykle
ignorowac, chyba ze debugujemy).

Aby przedstawi¢ dane w komponencie, zazwyczaj taczymy wszystkie strony w jedna liste.

<FlatList
data={ data ? data.pages.flatMap(page => page.results) : [] }
renderltem={...}
onEndReached={() => { if (hasNextPage) fetchNextPage(); }}
ListFooterComponent={ isFetchingNextPage ? <Activitylndicator /> : null }

W powyzszym przyktadzie:

Zaktadamy, ze kazda strona (page) ma pole results z tablicg elementéw (jak np. API
zwraca liste zadan). Uzywamy flatMap (lub map(...).flat()) by stworzy¢ jedng spfaszczong
tablice wszystkich wynikéw. Dzieki temu FlatList traktuje to jak jedng ciggtg liste.
onEndReached — event FlatList wywotywany gdy uzytkownik doskroluje blisko dotu listy.
Wewnatrz wywotujemy fetchNextPage() jesli jest kolejna strona. Dodatkowo warto daé
onEndReachedThreshold, np. 0.3 (30%), by wywotac¢ docigganie troche przed samym
koricem scrolla, co zapewni ptynniejsze tadowanie.

ListFooterComponent — komponent wyswietlany na koncu listy. Uzywamy tego, by
pokazac spinner (Activitylndicator) w momencie, gdy isFetchingNextPage jest true (czyli

kolejna strona sie pobiera). Dzieki temu uzytkownik widzi krecgce sie kétko u dotu
listy podczas fadowania kolejnych danych.

Uwaga: FlatList wymaga takze propOw keyExtractor i renderltem — to implementujemy
standardowo. Pamietajmy, by klucze elementdéw listy byty unikalne globalnie. Jesli
dotgczamy elementy z kolejnych stron, najlepszym kluczem bedzie np. unikalne id kazdego
zadania. Jezeli uzywamy indeksdw listy jako key, przy dotadowywaniu stron moze to
powodowac problemy z odswiezaniem elementdéw — lepiej unika¢ indeksu jako key.

Alternatywa — paginacja z przyciskiem ,Zataduj wiecej”: Niekiedy, zamiast infinite scroll,
stosuje sie klasyczny przycisk "Load more". W React Query mozna to zaimplementowaé na
bazie uselnfiniteQuery lub zwyktych useQuery. Np. z uselnfiniteQuery mozna w ogdle
zrezygnowad z onEndReached, a ponizej listy da¢:

{ hasNextPage && lisFetchingNextPage && (
<Button title="Pokaz wiecej" onPress={() => fetchNextPage()} />

)
}

To wyswietli przycisk dopdki jest kolejna strona, a po kliknieciu pobierze nastepna. Po
pobraniu (gdy hasNextPage zmieni sie na false, np. osiggnieto koniec listy) przycisk zniknie. To
podejscie bywa czytelniejsze dla uzytkownika gdy strony sg wyrazne.

Poréwnanie uselnfiniteQuery vs useQuery dla paginacji: Mozna oczywiscie zrobi¢ paginacje
uzywajgc wielu useQuery i stanu strony w komponencie (np. trzymac const [page, setPage] =
useState(1), potem przycisk zwieksza page, a useQuery reaguje na page jako czes¢ queryKey).
Jednak uselnfiniteQuery upraszcza to o tyle, ze:

e Sam zarzadza tablicg stron i ich pofaczeniem.

e Zachowuje informacje czy jest kolejna strona (hasNextPage),

e Zapewnia unikalny isFetchingNextPage odrdzniajgcy docigganie od poczgtkowego
isLoading.

Zatem w przypadku infinite scroll React Query wyraZnie zaleca uzycie uselnfiniteQuery, bo
kod jest czystszy i mniej podatny na btedy.

3.3 Przewijanie listy i dynamiczne docigganie danych (Infinite Scroll)
taczac powyisze, implementacja infinite scroll w RN wyglada nastepujgco:

1. Uzywamy uselnfiniteQuery z odpowiednim getNextPageParam.
2. Wykorzystujemy komponent FlatList do wyswietlania danych:
o Ustawiamy data jako sptaszczong liste wszystkich elementdéw ze stron.
o Prop onEndReached wywotuje fetchNextPage (z zabezpieczeniem na hasNextPage).
o Opcjonalnie onEndReachedThreshold np. 0.5 (lub inna wartos¢) by kontrolowac
moment dociggania. Domyslinie jest 0.5, co znaczy ze gdy przewiniemy do
potowy przed koncem listy, wywota sie onEndReached.
o Prop ListFooterComponent wyswietla spinner, gdy isFetchingNextPage jest true.

o Mozna tez dodad refreshing i onRefresh aby obstuzy¢ pull-to-refresh, np.:

refreshing={ isLoading && data?.pages?.length >0}
onRefresh={ refetch }

Powyzsze zaktada, ze jesli mamy juz jakies dane i isLoading jest true, to znaczy
wykonujemy refresh (np. reczny).

3. Obstuga unmount/wychodzenia z ekranu: React Query automatycznie moze
anulowac zapytania, ktére sg w toku gdy komponent sie unmountuje (np. uzytkownik
wyjdzie z listy zanim doczytata sie kolejna strona). Mechanizm ten opiera sie o
AbortController pod spodem — React Query przekazuje sygnat do queryFn. Jednak
gueryFn musi uzywac fetch lub axios z obstugg sygnatu. W praktyce, korzystajgc z
axios w RN, tez mozemy przekazac signal (React Query w argumentach queryFn
udostepnia je w context.signal w v5, lub abort sam w v4). Trzeba sie upewnic, ze nasza
funkcja fetchujaca to uwzglednia, jesli chcemy czerpaé korzysci z automatycznego
anulowania niepotrzebnych zapytan (np. scroll szybko do dotu i w gdre, by nie trafiaty
w miedzyczasie stare zapytania). Szczegoty tego mechanizmu sg opisane w
dokumentacji TanStack Query, ale w wielu przypadkach nie musimy nic specjalnego
robi¢ — wystarczy uzy¢ axios (20.22) lub fetch i React Query samo anuluje sygnat przy
dezaktywacji zapytania.

Porada wydajnosciowa: Przy bardzo dtugich listach warto ograniczy¢ liczbe zbuforowanych
stron. React Query v5 umozliwia ustawienie maksymalnej liczby przechowywanych stron w
pamieci (opcja maxPages W konfiguracji infiniteQuery). Jezeli lista moze mie¢ setki stron, to
trzymanie ich wszystkich moze zuzywa¢ pamie¢ — mozna np. zawsze wyrzuca¢ najstarsze
strony z cache. Jednak typowe listy (kilkadziesigt elementéw) nie wymagajg takiej
optymalizacji na starcie. Réwniez FlatList ma mechanizmy optymalizacyjne (recycling
elementdéw, removeClippedSubviews itp.), ktdre zapobiegajg problemom z wydajnoscig przy
dtugich listach.

4. Error Boundaries i jednolity fallback Ul

Mimo najlepszych staran, btedy w aplikacjach sg nieuniknione — moze to by¢ btad
programistyczny (np. wyjatek w renderze komponentu) lub btgd sSrodowiska (np. brak sieci).
Error Boundaries to mechanizm Reacta, ktory pozwala przechwyci¢ btedy JavaScript w czasie
renderowania komponentow i wyswietli¢ zamiast nich zapasowy interfejs, zamiast rozbicia
catej aplikacji.

W React (od wersji 16) mozna korzystaé z gotowych implementacji. W kontekscie React
Native czesto siega sie po biblioteki takie jak react-native-error-boundary, ktore dostarczaja
tatwy w uzyciu komponent <ErrorBoundary>.

Przyktad uzycia ErrorBoundary:

import ErrorBoundary from "react-native-error-boundary";

const FallbackUl = ({ error, resetError }) => (

<View style={{ padding: 20 }}>
<Text>Wystgpit nieoczekiwany btgd.</Text>
<Text>{error.toString()}</Text>
<Button title="Sprdbuj ponownie" onPress={resetError} />
</View>

);

export default function App() {
return (
<ErrorBoundary FallbackComponent={FallbackUlI}>
{/* Cata reszta aplikacji / nawigacji */}
<MainNavigator />
</ErrorBoundary>
);
}

W powyzszym kodzie obwijamy gtéwng czes¢ aplikacji w ErrorBoundary. Jesli ktérykolwiek z
komponentow podrzednych rzuci btagd podczas renderowania, zostanie on ztapany, a
zamiast niego wyswietli sie FallbackUl. Pozwala to zapobiec ekranowi biatej Smierci (white
screen of death) i da¢ uzytkownikowi opcje np. ponownej préby (przycisk resetError resetuje
stan w ErrorBoundary, co pozwala ponownie wyrenderowac¢ komponenty jak gdyby nic —
mozna to wykorzystac¢ np. by zresetowac btad po nawigacji lub odswiezeniu danych).

Granularnos$é: Mozemy miec jedno globalne ErrorBoundary na catg aplikacje (wyswietlajgce
np. komunikat ,,Co$ poszto nie tak. Zrestartuj aplikacje.”) lub umieszczaé je bardziej lokalnie,
np. wokét pojedynczych wrazliwych ekranéw, dzieki czemu awaria jednego ekranu nie
wytgczy catej aplikacji. Przyktadowo, jesli mamy osobny ErrorBoundary wokdét komponentu
listy zadan, a ten komponent wpadnie w wyjatek, to pokaze fallback Ul tylko zamiast listy,
ale reszta aplikacji (np. header, menu) bedg dziataé.

Warto podkresli¢: ErrorBoundary chroni przed btedami renderowania i metod zycia
komponentu. Nie wytapie btedéw asynchronicznych w event handlerach czy wewnatrz
promisa (tam trzeba uzy¢ try/catch w kodzie lub .catch w Promise). Btedy zapytan sieciowych
(np. error w React Query) nie sg same w sobie wyjgtkami runtime (chyba ze wtgczymy tryb
useErrorBoundary). Dlatego error boundary przyda sie gtéwnie na nieprzewidziane wyjatki (np.
btad typu TypeError przy odwotaniu do niezdefiniowanego pola).

4.1 Globalna obstuga btedow sieci i komunikaty offline

Poza ErrorBoundary, w aplikacji mobilnej warto pomyslec o spdjnej obstudze braku
potaczenia i btedéw API na poziomie UX:

¢ Brak sieci: Uzywajgc wspomnianego modutu Netinfo, mozemy nastuchiwa¢ zmian
stanu pofgczenia. Gdy isConnected zmieni sie na false, mozemy np. wyswietli¢ globalny
baner na goérze aplikacji z informacjg "Brak potfgczenia z internetem". Mozna to zrobié
poprzez jakis globalny komponent (np. w NavigationContainer w headerze
warunkowo co$ wstawic), albo nawet Popup/Toast. Upewnijmy sie tez, ze akcje
wymagajgce internetu sg zablokowane lub kolejkujg sie, by uzytkownik nie klikat
przyciskéw na darmo.

Jednolite komunikaty btedow: Jak juz omdéwiono, dobrze jest przettumaczy¢ btedy
na ludzki jezyk. Mozna to scentralizowac. Np. mie¢ middleware w axios interceptorze,
ktory dla kazdego btedu wywota funkcje showErrorToast(message). Albo w React
Query mozemy wykorzystac onError globalnie:

const queryClient = new QueryClient({
defaultOptions: {
queries: {
onError: error => {
showErrorToast(getErrorMessage(error));
}
2
mutations: {
onError: error => {
showErrorToast(getErrorMessage(error));
}
}
}
N

Wtedy kazdy btad zapytania/mutacji wywota naszg funkcje pokazujgcg np. Toast z
komunikatem. Biblioteki jak react-native-toast-message czy react-native-flash-
message umozliwiajg tatwe wyswietlenie tadnie wygladajgcego powiadomienia o
btedzie na ekranie. Taka globalna strategia zapewnia, ze btedy nie zostang
przeoczone — uzytkownik zawsze dostanie jaki$ komunikat.

Retry / ponawianie akcji przez uzytkownika: Jesli operacja sie nie powiodta z
powodu sieci, mozna rozwazy¢ mechanizm ponawiania. Na poziomie Ul — np. po
btedzie listy zadan, mozna pokazaé przycisk "Sprébuj ponownie" (ktéry wywota
refetch()). Dla mutacji (np. dodawanie zadania) w przykfadzie optymistycznym
pokazywalismy nawet przycisk "Retry" obok elementu jesli sie nie udato. Wazne, by
uzytkownik nie czut sie zablokowany — jesli cos nie zadziatato, dajmy mu mozliwos¢
reakcji.

Przechwytywanie btedéw nieztapanych: W JavaScript mozna zarejestrowac globalny
handler dla nieobstuzonych obietnic (UnhandledPromiseRejection) oraz dla btedéw
nieobstuzonych (Errorutils w RN lub globalThis.onerror). Jednak w praktyce lepiej uzyé do tego
dedykowanych narzedzi jak Sentry — tutaj wykracza to poza zakres wyktadu, ale w duzych
aplikacjach integracja np. z Sentry umozliwia automatyczne raportowanie kazdego wyjatku
JS wraz ze stack trace.

Podsumowujac, spdjna obstuga bteddéw to:

reagowanie na brak internetu (np. informacja "Jestes$ offline"),

pokazywanie zrozumiatych komunikatéw zamiast pozostawiania uzytkownika bez
informacji,

logowanie bteddéw dla deweloperdéw (by méc je naprawic),

oraz nie rozbijanie catej aplikacji w razie wyjatku (Error Boundary).

5. Autoryzacja i uwierzytelnianie w zapytaniach

W aplikacjach mobilnych czesto musimy komunikowac sie z API, ktére wymaga tokena
uwierzytelniajgcego (np. token JWT przekazywany w nagtéwku Authorization jako Bearer).
W tej sekcji omowimy:

e Przechowywanie tokendéw po zalogowaniu,

e Automatyczne dotgczanie ich do zapytan (np. w interceptorze axios),

e Odswiezanie tokendw (refresh token flow),

e Bezpieczne przechowywanie poswiadczen (SecureStore, EncryptedStorage).

5.1 Przechowywanie tokena - gdzie i jak?

Najprostsze podejscie to trzymanie tokena w pamieci stanu (np. w kontekscie React lub w
jakims globalnym store) w trakcie dziatania aplikacji, a takze zapisanie go do pamieci trwate;j,
by po ponownym uruchomieniu aplikacji nie wymaga¢ logowania od nowa.

AsyncStorage vs Secure Storage: Cho¢ mozna uzy¢ AsyncStorage (asynchroniczna pamiec
klucz-wartos¢ w RN) do przechowania tokena, nie jest to zalecane dla wrazliwych danych,
poniewaz AsyncStorage przechowuje dane jawnie na dysku. Lepszym rozwigzaniem sg
bezpieczne magazyny:

o Expo SecureStore: jesli uzywamy Expo, mamy tatwy dostep do modutu SecureStore.
Pozwala on zapisaé dane zaszyfrowane w Keychain (iOS) lub Keystore (Android).
Przyktad:

import * as SecureStore from 'expo-secure-store';
await SecureStore.setltemAsync('token', accessToken);
// ... potem aby pobrac:

const token = await SecureStore.getltemAsync('token');

SecureStore jest czescig Expo SDK i stuzy do szyfrowanego przechowywania par klucz-
wartosé. Jest idealny do tokendw, haset itp. (max rozmiar wartosci to ok. ~2048
bajtéw, co w zupetnosci starcza na tokeny).

¢ EncryptedStorage (react-native-encrypted-storage): w aplikacjach RN poza Expo
mozna uzyc¢ biblioteki react-native-encrypted-storage. Dziata podobnie — pod spodem na
iOS uzywa Keychain, na Androidzie EncryptedSharedPreferences — i abstrakcyjne daje
prosty API JS:

import EncryptedStorage from 'react-native-encrypted-storage';
await EncryptedStorage.setltem('token’', accessToken);
const token = await EncryptedStorage.getitem('token');

EncryptedStorage jest zabezpieczong alternatywg dla AsyncStorage — uzywa
systemowych mechanizmow bezpiecznego sktadowania, wiec dane sg szyfrowane i
powigzane z aplikacjg (nikt bezposrednio nie odczyta ich z plikéw). Wymaga dodania
natywnego modutu do projektu (podlinkowanie lub autolink).

e Keychain na iOS / Keystore na Androidzie bezposrednio: Istniejg tez biblioteki
pozwalajgce bezposrednio korzystac z iOS Keychain, np. react-native-keychain.
SecureStore czy EncryptedStorage to w zasadzie utatwiajg, ale mozna tez bez Expo
uzy¢ react-native-keychain do zapisu haset/tokendéw z pewnymi dodatkowymi opcjami
(np. kontrola dostepu typu , tylko po odblokowaniu urzgdzenia”).

Wazne jest, by nie przechowywa¢ tokenéw w zwyktych, niezabezpieczonych miejscach
(AsyncStorage, plik, redut,plaintext, itp.), bo jesli ktos uzyska dostep do pamieci telefonu (np.
przez ztosliwg aplikacje na zrootowanym/jailbreakowanym urzadzeniu), tatwiej mu
wyciggnac takie dane. SecureStore/Keychain utrudnia atak — dane sg zaszyfrowane per
aplikacja i system dba o ich ochrone.

Informacja: SecureStore i EncryptedStorage przechowujg dane permanentnie — tj. zostajg
nawet po wytgczeniu aplikacji, a nawet po odinstalowaniu (w przypadku iOS Keychain). Jesli
nie chcemy, by tokeny przezywaty odinstalowanie, w dokumentacji EncryptedStorage
opisano trik czyszczenia Keychain przy pierwszym uruchomieniu po reinstalacji. Zazwyczaj
jednak nie jest to problemem — token i tak wygasnie do tego czasu.

5.2 Dot3aczanie tokena do zapytan (Bearer)

Najlepsze miejsce na to to nasza warstwa komunikacji, np. interceptor axios. Jak wczesniej
pokazano:

api.interceptors.request.use(config => {
const token = authToken; // np. zmienna globalna lub z jakiego$ modutu auth
if (token) {
config.headers.Authorization = "Bearer S{token}’;

}

return config;

N;

Takie rozwigzanie wymaga, by w momencie ustawiania interceptora mie¢ dostep do tokena.
Mozna:

e Wczytac token z SecureStore przy starcie aplikacji do zmiennej (np. w stanie
kontekstu AuthContext). Gdy uzytkownik sie loguje, rowniez zapisa¢ zmienna.

o Ewentualnie, jesli token moze wygasac i by¢ odswiezany, to interceptor mégtby
uzywac zawsze aktualnej wartosci z jakiegos centralnego miejsca (kontekst, modut).

e Pamietajmy, ze SecureStore.getltemAsync jest asynchroniczne. Interceptor axios moze
zwracac promisa — czyli mozna w nim uzy¢ async/await. Alternatywnie prosciej jest
trzymac token w pamieci (bo i tak po logowaniu go mamy) i zsynchronizowac go z
secure storage.

W przypadku uzywania Fetch: nie ma interceptorow, wiec trzeba kazdorazowo dodawac
nagtéwek:

const token = await SecureStore.getltemAsync('token');
fetch(url, {
headers: { Authorization: ‘Bearer ${token}, ... }

1
Co oczywiscie bywa ucigzliwe. Mozna wiec owing¢ fetch:

async function authorizedFetch(endpoint, options = {}) {
const token = await SecureStore.getltemAsync('token');
const authHeaders = token ? { Authorization: ‘Bearer ${token} }: {};
const finalOptions = { ...options, headers: { ...options.headers, ...authHeaders } };
return fetch(baseURL + endpoint, finalOptions);
}

| uzywac authorizedfFetch w catej aplikacji zamiast gotego fetch. Taki pattern zapewnia
centralizacje logiki uwierzytelniania.

5.3 Odswiezanie tokena (Refresh Token flow)

Wiele systemdw uwierzytelniania wydaje dwa tokeny: Access Token (krotkiego zycia, np. 15
min) do autoryzacji requestow oraz Refresh Token (dtuzszego zycia, np. 7 dni lub wiecej),
ktorym mozna uzyska¢ nowy Access Token gdy stary wygasnie. Scenariusz jest taki:

1. Uzytkownik sie loguje — dostajemy AccessToken + RefreshToken.

AccessToken uzywamy w nagtéwkach do kazdej akcji chronione;j.

3. Gdy serwer odpowie, ze AccessToken jest niewazny/expired (np. kod 401 z
informacja "Token expired"), musimy wywota¢ endpoint od$wiezenia z
RefreshTokenem.

4. Po otrzymaniu nowego AccessToken (i czasem nowego RefreshTokena), zapisujemy
je i ponawiamy oryginalne zapytanie, ktére sie nie powiodto.

5. Jesli odswiezenie sie nie uda (np. RefreshToken takze niewazny), to musimy
zalogowac ponownie uzytkownika (np. wyrzuci¢ go na ekran logowania, wyczyscic
stan).

g

Implementacja w axios interceptorze:

let isRefreshing = false;
let pendingRequests = []; // kolejka zapytan oczekujgcych na od$wiezenie

api.interceptors.response.use(
res =>res,
async error => {
const { response } = error;
if (response?.status === 401) {
// Jezeli btad 401 dotyczy wygasniecia tokena:
if (response.data?.message === '"TokenExpired') {
if (lisRefreshing) {
isRefreshing = true;
try {
const refreshToken = await SecureStore.getltemAsync('refreshToken');
const refreshRes = await api.post('/auth/refresh’, { token: refreshToken });
const newAccessToken = refreshRes.data.accessToken;
// Zapisz nowy token
await SecureStore.setltemAsync('token', newAccessToken);
authToken = newAccessToken; // zaktualizuj zmienng w pamieci

isRefreshing = false;
// Odréb zalegte zapytania z nowym tokenem
pendingRequests.forEach(cb => cb(newAccessToken));
pendingRequests = [];
} catch (err) {
isRefreshing = false;
pendingRequests = [];
// Refresh nie powiddt sie — wyloguj uzytkownika
navigateTologin();
return Promise.reject(err);
}
}
// Zwracamy nowy Promise, ktory spowoduje opdznienie wykonania oryginalnego requesta do czasu
odswiezenia:
return new Promise((resolve, reject) => {
pendingRequests.push((token) => {
// Retry oryginalnego requesta z nowym tokenem
error.config.headers.Authorization = 'Bearer ' + token;
resolve(axios(error.config));
1;
1
}
}

return Promise.reject(error);
}
);

Powyzszy kod jest nieco ztozony, ale kluczowe jest:

o isRefreshing — flaga, by jednoczesnie tylko jedno odswiezenie sie wykonywato, nawet
jesli wiele requestéw naraz dostato 401.

¢ pendingRequests — kolejka funkcji, ktére zostang wykonane po odswiezeniu (czyli
ponowig oryginalne requesty).

e Gdy pierwszy 401 z powodem "TokenExpired" przyjdzie, wchodzimy do if. Jesli akurat
nikt nie od$wieza (lisRefreshing), to rozpoczynamy proces odswiezania:

o Wyciggamy refreshToken ze storage,

Wotamy /auth/refresh (zaktadamy, ze zwraca nowy accessToken, ewentualnie
tez nowy refreshToken — to tez nalezatoby obstuzyc).

o Po sukcesie zapisujemy nowy token (w pamieci i secure storage), ustawiamy
isRefreshing = false i wykonujemy wszystkie oczekujgce zapytania z nowym
tokenem (wywotujac callbacki z kolejki).

o Jesli odswiezenie sie nie uda, to znaczy sesja stracona — czyscimy tokeny,
kierujemy na logowanie.

o Jedli kolejne zapytanie trafia 401 podczas gdy isRefreshing jest true (czyli refresh juz
w toku), to nie odswiezamy ponownie, tylko zwracamy nowy Promise i dodajemy
jego resolver do kolejki. Ten Promise jest tym co interceptor bedzie zwracat dla tego
drugiego requesta — wiec oryginalny kod czekajacy na odpowiedz zostanie
wstrzymany. Gdy od$wiezenie dobiegnie konca, wywotamy callback z kolejki, ktéry:

o Ustawi nowy nagtédwek Authorization,

o Wywota oryginalne zapytanie ponownie (axios(error.config)),

o Zewnetrzny Promise sie rozwigze, a wiec oryginalne zapytanie otrzyma swoja
odpowiedz (drugi raz nie wpadnie do interceptora 401, bo token jest nowy).

Taki wzorzec zapewnia, ze przy wygasnieciu tokena nie zalogujemy uzytkownika od razu
tylko ptynnie odnowimy token w tle. Uzytkownik moze nawet nie zauwazy¢, poza moze
minimalnym opdznieniem. Trzeba oczywiscie dopracowac szczegoty (np. co jesli refresh
endpoint sam zwrdci 401 — wtedy tez logout).

Jesli korzystamy z React Query, wiekszos¢ tego dzieje sie na poziomie axios i jest
przezroczyste dla React Query — po prostu zapytanie trwa dtuzej bo czeka na refresh, ale
finalnie dostaje dane. Mozna ewentualnie zareagowac na globalny error 401 inaczej, ale
powyzsze jest dos¢ kompleksowym rozwigzaniem.

Uwaga do Refresh Token: Przechowujemy dwa tokeny — access i refresh. Access trzymamy
np. w pamieci/kontekscie (i secure store dla ponownego otwarcia aplikacji), refresh w secure
store. Refresh token jest jeszcze bardziej wrazliwy — jesli ktos go zdobedzie, moze wytudzic¢
kolejne access tokeny. Dlatego:

e Czas zycia refresh tokena powinien by¢ ograniczony (np. wymuszenie logowania co 2
tygodnie).

¢ Mozna rozwazy¢ trzymanie refresh tokena tylko w SecureStorage i nie trzymanie go
w pamieci nigdy jawnie (tylko jak trzeba to go pobra¢ do odswiezenia).

e Po wylogowaniu pamietaj usung¢ oba tokeny ze storage.

5.4 Bezpieczne przechowywanie — podsumowanie

e expo-secure-store — prosty sposdb na bezpieczne przechowanie tokenéw w Expo.
Korzysta z mechanizméw systemowych (Keychain/Keystore), dlatego jest
rekomendowany do poufnych danych.

¢ react-native-encrypted-storage — analogiczne rozwigzanie poza Expo, tez uzywa
Keychain/EncryptedSharedPrefs. Prosty interfejs czterech metod: setltem, getitem,
removeltem, clear.

e Nie uzywaj AsyncStorage na tokeny — brak szyfrowania, dane w pliku JS. Ostatecznie,
jesli aplikacja nie przechowuje nic krytycznego i nie obawiamy sie o to, mozna uzy¢
AsyncStorage

6. Demo: Aplikacja "Tasks" — praktyczne potaczenie
wszystkich elementéw

Na koniec potgczmy teorie w mini przyktadzie. Wyobrazmy sobie aplikacje Tasks (lista zadan
do zrobienia) z backendem REST. Mamy nastepujgce funkcjonalnosci:

¢ Logowanie uzytkownika (uzyskanie tokena — zatézmy, ze juz jest zalogowany i mamy
token).

¢ Pobieranie listy zadan — endpoint GET /tasks, zwracajgcy liste zadan (paginowang).

« Dodawanie nowego zadania — endpoint POST /tasks (zwraca utworzone zadanie).

e Edycja zadania — endpoint PUT /tasks/:id (zwraca zaktualizowane zadanie).

e Paginacja — zaktadamy, ze lista zadan moze by¢ dtuga, wiec API paginuje wyniki (np.
parametry ?page=).

¢ Autoryzacja — wszystkie powyzsze wymagajg tokena Bearer w nagtowku.

Spréobujmy zbudowac uproszczong architekture:

Krok 1: Konfiguracja APl i React Query

// api.ts - konfiguracja Axios i tokendw
import axios from 'axios';
import * as SecureStore from 'expo-secure-store';

const API_URL = 'https://example.com/api';

export const api = axios.create({
baseURL: API_URL,
timeout: 5000,

1

// Wstaw token do kazdego zgdania (jesli jest)
api.interceptors.request.use(async config => {
const token = await SecureStore.getltemAsync('token');
if (token) {
config.headers.Authorization = ‘Bearer ${token}’;
}

return config;

N;

// (Opcjonalnie) Interceptor odpowiedzi do obstugi od$wiezania tokena/btedow 401:
api.interceptors.response.use(
response => response,
async error => {
const originalRequest = error.config;
if (error.response?.status === 401 && loriginalRequest._retry) {
originalRequest._retry = true;
// Zaktadamy istnienie funkcji refreshToken() ktora pobierze i zapisze nowy token
try {
const newToken = await refreshToken();
originalRequest.headers.Authorization = ‘Bearer ${newToken};
return api(originalRequest); // pondw oryginalne zgdanie z nowym tokenem
} catch (e) {
// Refresh nie powiddt sie - mozna wylogowa¢ uzytkownika
// navigateTolLoginScreen();
return Promise.reject(e);
}
}
return Promise.reject(error);
}
);

Powyze;j:

e Tworzymy axios z baseURL.

e Request interceptor dotgcza token (pobierany z SecureStore za kazdym zgdaniem —
to moze byé nieco nieefektywne, lepiej bytoby trzymac token w zmiennej, ale dla
pewnosci uzywamy storage).

e Response interceptor sprawdza 401. Uzywamy tu uproszczonej logiki: sprawdzamy
flage _retry by nie wpasé w petle. Wotamy refreshToken() — to powinna by¢ funkcja

wykonujgca np. api.post('/auth/refresh') (musielibySmy uwazaé by nie wpas¢ ponownie w
interceptor — mozna uzy¢ innej instancji axios bez interceptoréw do tego). Po
uzyskaniu nowego tokena, zapisujemy go (tu zaktadamy, ze refreshToken() juz to robi
i zwraca accessToken) i ponawiamy oryginalne zgdanie. Jesli sie nie uda, odrzucamy
btad i pewnie w aplikacji przechwycimy to by wylogowac.

Krok 2: Hooki korzystajace z React Query do zapytan:

Aby uporzadkowac, zrobimy wtasne hooki do obstugi zadan:

// tasksApi.ts - funkcje API do tasks

export const fetchTasksPage = async ({ pageParam =11}) => {
const res = await api.get('/tasks?page=S{pageParam}’);
return res.data;

b

export const addTaskRequest = async (newTask) => {
const res = await api.post('/tasks', newTask);
return res.data;

7

export const updateTaskRequest = async ({ id, updates }) => {
const res = await api.put(‘/tasks/${id}’, updates);
return res.data;

5

// tasksHooks.ts - hooki uzywajgce powyzszych funkcji z React Query
import { uselnfiniteQuery, useMutation, useQueryClient } from '@tanstack/react-query';
import { fetchTasksPage, addTaskRequest, updateTaskRequest } from './tasksApi';

export function useTasksList() {
return uselnfiniteQuery({
queryKey: ['tasks'],
queryFn: fetchTasksPage,
getNextPageParam: (lastPage) => lastPage.nextPage ?? undefined
1
}

export function useAddTask() {
const queryClient = useQueryClient();
return useMutation({
mutationFn: addTaskRequest,
onMutate: async (newTask) => {
// Optymistycznie dodaj nowg task do cache:
await queryClient.cancelQueries({ queryKey: ['tasks'] });
const prevData = queryClient.getQueryData(['tasks']);
if (prevData) {
queryClient.setQueryData(['tasks'], (oldData) => {
const newTaskObj = { ...newTask, id: Math.random().toString(36) }; // tymczasowe ID
// Wstaw nowy task na poczatek pierwszej strony (zatézmy)
return {
...oldData,
pages: [
[newTaskObj, ...oldData.pages[0]],
...oldData.pages.slice(1)
]
L

N
}
return { prevData };
2
onError: (err, newTask, context) => {
// cofnij zmiany przy btedzie
if (context?.prevData) {
queryClient.setQueryData(['tasks'], context.prevData);
}
2
onSettled: () => {
// niezaleznie od wyniku - od$wiez liste zadan z serwera
queryClient.invalidateQueries({ queryKey: ['tasks'] });
}
N
}

export function useUpdateTask() {
const queryClient = useQueryClient();
return useMutation({
mutationFn: updateTaskRequest,
onMutate: async ({ id, updates }) => {
await queryClient.cancelQueries({ queryKey: ['tasks'] });
const prevData = queryClient.getQueryData(['tasks']);
if (prevData) {
queryClient.setQueryData(['tasks'], (oldData) => {
// Zaktualizuj task lokalnie
return {
...oldData,
pages: oldData.pages.map(page =>
page.map(task => task.id ===id ? { ...task, ...updates } : task)
)
|3
1
}
return { prevData };
b
onError: (err, vars, context) => {
if (context?.prevData) {
queryClient.setQueryData(['tasks'], context.prevData);
}
2
onSettled: () => {
queryClient.invalidateQueries({ queryKey: ['tasks'] });
}
1
}

Co tu sie dzieje:

e Mamy useTasksList() korzystajgcy z uselnfiniteQuery dla listy. Uzywa fetchTasksPage (ktory
robi GET /tasks?page=). Zaktadamy, ze serwer zwraca np. { tasks: [...], nextPage: 2 } albo
nextPage: null. Funkcja getNextPageParam pobiera lastPage.nextPage.

e Mutacja useAddTask:

onMutate: Anulujemy biezgce zapytania tasks, pobieramy poprzednie dane.
Nastepnie, jesli byty jakies dane (cache istnieje), wstawiamy optymistycznie
nowy task. Tutaj dla uproszczenia generujemy tymczasowe id (losowy string) i
dodajemy nowy obiekt na poczatek pierwszej strony listy (przyjelismy, ze
chcemy go na poczatku listy). Struktura cache w infiniteQuery to obiekt z
pages, wiec wstawiamy do oldData.pages[0]. Zwracamy previousData, by méc
odrollowac.

onError: Przy btedzie przywracamy prevData jesli byto.

onSettled: Po wszystkim (sukces lub btad), invalidujemy tasks — serwerowy
stan ma by¢ prawdg ostateczna.

e Mutacja useUpdateTask:

o

onMutate: podobnie anulujemy, pobieramy prevData. Nastepnie iterujemy
po wszystkich stronach (oldData.pages.map), i kazdg liste task w page mapujemy
— jesli task.id === updatedlid, to tworzymy nowy obiekt z zastosowanymi updates
(np. { completed: true }). To natychmiast zmieni Ul — uzytkownik zobaczy np. ze
zadanie oznaczyto sie jako ukoriczone. Zwracamy prevData.

onError: Przy btedzie przywracamy.

onSettled: invalidacja.

To podejscie powoduje minimalne odczuwalne opdznienie dla uzytkownika — wiekszos¢ akcji
wydaje sie natychmiastowa.

Krok 3: Komponenty Ul korzystajace z tych hookéw:

Zaktadamy, ze

mechanizm logowania jest juz za nami i mamy token (inaczej nalezatoby

dodaé ekran logowania i logike do zapisu tokena w SecureStore po pomysinym logowaniu

itp.).

Dla listy zadan

z infinite scroll:

// TasksListScreen.tsx
import { useTasksList } from './tasksHooks';

export function TasksListScreen({ navigation }) {

const {
data,
isLoading,
isError,
error,
fetchNextPage,
hasNextPage,

isFetchingNextPage,

refetch

} = useTasksList();

if (isLoading) {

return <Activitylndicator size="large" color="#000" style={{ flex: 1, justifyContent: 'center' }} />;

}
if (isError) {
return (

<View style={{ padding: 20 }}>

<Text style={{ color: 'red' }}>Btgd tadowania listy zadan: {error.message}</Text>
<Button title="Sprébuj ponownie" onPress={refetch} />
</View>
);
}

const tasks = data.pages.flatMap(pageData => pageData.tasks); // zatézmy, ze API zwraca {tasks: [], nextPage:

)

return (
<FlatList
data={tasks}
keyExtractor={task => task.id.toString()}
renderltem={({ item }) => (
<TaskListltem task={item} onPress={() => navigation.navigate('TaskDetails', { id: item.id })} />

)}
onEndReached={() => { if (hasNextPage) fetchNextPage(); }}

onEndReachedThreshold={0.5}

ListFooterComponent={ isFetchingNextPage ? <Activitylndicator /> : null }
refreshing={ isLoading} {/* ewentualnie obstuga pull-to-refresh */}
onRefresh={ refetch }

/>

o Korzystamy z useTasksList(). Gdy taduje pierwszg strone (isLoading true) pokazujemy
duzy spinner centrycznie.

o Jesli btad (isError), pokazujemy komunikat i przycisk, ktéry wywota refetch (ponowne
pobranie).

e Gdy dane sg, faczymy wszystkie strony w jedng tablice tasks.

e FlatList wyswietla kazdy task poprzez komponent TaskListitem (to moze by¢ np.
element listy z checkboxem ukonczenia, itd. — szczegdty stylizacji pomijamy).

e onEndReached logic jak omawialismy.

e refreshing/onRefresh umozliwia takze odswiezenie gestem — uzyliSmy isLoading co tutaj
przy powrocie na ekran mogtoby by¢ false jesli dane w cache. Ewentualnie lepiej:
refreshing={isFetching && data} — czyli jesli trwa fetch po pierwszym zatadowaniu.

e (Zatozylismy, ze APl zwraca obiekt z kluczem tasks i nextPage. W naszym tasksApi
funkcjach powinnismy to ewentualnie dostosowaé, ale to szczegdét implementacji.)

Komponent dodawania/edycji zadania:

Zatozmy, ze mamy ekran dodawania nowego zadania oraz edycji istniejgcego zadania (np.
zmiana tytutu lub oznaczenie ukoniczenia). Mozemy to rozwigzaé réznie — np. ekran
"TaskDetails" z opcjg edycji. Dla uproszczenia pokazemy tylko jak by wygladato uzycie
hookéw useAddTask i useUpdateTask:

// NewTaskScreen.tsx

export function NewTaskScreen({ navigation }) {
const { mutate: addTask, isLoading: isAdding } = useAddTask();
const [title, setTitle] = useState(");

const handleSave = () => {
addTask(
{ title, completed: false },

{
onSuccess: () => {
navigation.goBack(); // po dodaniu wrd¢ do listy

return (
<View style={{ padding: 20 }}>
<Text>Nowe zadanie:</Text>
<TextInput value={title} onChangeText={setTitle} placeholder="Tytut zadania" />
{isAdding && <Activitylndicator />}
<Button title="Dodaj" onPress={handleSave} disabled={isAdding | | !title} />
</View>
);
}

Tutaj useAddTask jest uzyty. Gdy uzytkownik kliknie "Dodaj":

o Wywotujemy addTask({ title, completed: false }, { onSuccess: ... }). MoZna W onSuccess
przekazac callback bezposrednio w wywotaniu mutate jesli chcemy wykonac akcje po
sukcesie (alternatywa do definiowania onSuccess w samym hooku, co i tak zrobilismy
dla invalidacji). Tutaj po sukcesie wracamy do poprzedniego ekranu.

e isAdding pozwala pokazad spinner lub zablokowac przycisk by nie dodac¢ wiele razy.

o Dzieki optymistycznej aktualizacji w onMutate listy, uzytkownik wracajac do listy od
razu zobaczy nowy wpis (potprzezroczysty by sygnalizowac, ze jeszcze sie zapisuje —
to by trzeba doda¢ warunkowo styl w TaskListltem np. jesli id jest tymczasowe albo
mozna bazowac na useAddTask state tak jak w przyktadzie Ul optimistic wczesniej). W
naszym kodzie powyzej dalismy Activitylndicator dla isAdding elementu — to
uproszczony przyktad, w praktyce wolelibySmy np. przekazac jakis flage lub uzy¢
variables z useMutation.

Ekran edycji (np. oznacz jako ukonczone):

// TaskDetailsScreen.tsx
export function TaskDetailsScreen({ route, navigation }) {
const {id } = route.params;
const { mutate: updateTask, isLoading: isUpdating } = useUpdateTask();
const task = // ... zatézmy ze przekazalismy obiekt task w nawigacji lub mamy useQuery do pojedynczego taska

const toggleComplete = () => {
updateTask({ id, updates: { completed: !task.completed } }, {
onSuccess: () =>{
// mozna nawiguowac z powrotem lub powiadomié
}
N
L

return (
<View>
<Text>{task.title}</Text>
<Text>Status: {task.completed ? 'ukoriczone' : 'do zrobienia'}</Text>
{isUpdating && <Activitylndicator />}
<Button title={task.completed ? "Oznacz jako nieukoriczone" : "Oznacz jako ukoriczone"}
onPress={toggleComplete} disabled={isUpdating} />
</View>
);
}

Tutaj useUpdateTask zadziata optymistycznie — natychmiast zmieni status na liscie (jesli lista
jest wyswietlana gdzies, np. poprzedni ekran), bo onMutate zaktualizuje cache. Gdy wrdécimy
na liste (jesli uzywamy react-navigation stack, pewnie lista juz zostata zaktualizowana w tle
dzieki temu), uzytkownik widzi od razu zmiane.

Obstuga tokendw: dzieki interceptorowi, nasze zgdania api.get, api.post automatycznie
dofaczajg token. Gdyby token byt nieaktualny, interceptor odswiezania sprébuje go
naprawic.

Globalny btad: jesli odswiezenie sie nie powiedzie i interceptor wyrzuci btagd 401, to mozemy
przechwycic to np. globalnym error boundary lub w nawigacji wykry¢ i przenies¢
uzytkownika do ekranu logowania. Mozna tez sprawdzi¢ w onError mutacji czy btgd ma status
401 i np. wyswietli¢ modal "Sesja wygasta".

Brak sieci: Warto dodac nastuchiwanie Netinfo i np. gdy isConnected === false, to:

e Zablokowac przyciski dodawania/edycji (lub da¢ komunikat "Offline - nie mozna
zsynchronizowac¢ zmian").
e Pokazad baner offline jak wczesniej wspomniano.

React Query wraz z onlineManager moze tez spowodowac, ze kiedy sie¢ wréci, automatycznie
odswiezy dane lub wykona zalegte mutacje (cho¢ mutacje offline domysinie od razu zwracaja
btagd — TanStack Query ma osobne pluginy do persistowania mutacji offline, ale to
zaawansowane zagadnienie).

Debugowanie: Podczas tworzenia takiej aplikacji:

e Korzystaj z logéow (console.log) wewnatrz onError, by sprawdzi¢ co poszto nie tak.

o Sprawdzaj w Flipperze czy zapytania faktycznie wychodzg, jakie URL i statusy wracaja.

e Uzyj trybu debug w React Query — np. enableDevTools() W RN nie jest automatyczne, ale
mozna skorzystac z Flipper pluginu do React Query lub Reactotron plugin.
Wspomniany plugin Flipper (react-query-native-devtools) pozwala podejrze¢ aktywne
guery, cache, etc., co moze by¢ ogromnie pomocne w zrozumieniu co sie dzieje w
React Query. W razie problemdw z cache, mozna tez wywotac
queryClient.getQueryData(['tasks']) w konsoli debuggera, by zobaczy¢ co jest w pamieci.

Podsumowanie: Wykorzystujgc React Query w React Native mozemy znacznie uproscic¢
prace z siecig. Dostajemy automatyczng obstuge standw zapytan, cache danych,
odswiezanie, a takze mechanizmy zaawansowane jak optymistyczne aktualizacje czy infinite
scroll, ktére w czystym podejsciu wymagatyby duzo kodu. Potgczenie tego z bibliotekg axios
(lub natywnym fetch) pozwala pokry¢ wiekszos¢ potrzeb: globalne nagtéwki, obstuga
tokendw przez interceptory i bezpieczne przechowywanie poswiadczen. Pamietajmy o
obstudze btedéw — zaréwno tych od API (komunikaty dla uzytkownika), jak i wyjatkow JS
(Error Boundaries). Dzieki temu aplikacja bedzie reagowac w czytelny sposéb nawet w
sytuacjach problemowych, co poprawi doswiadczenie uzytkownika.

Literatura:

1. https://tanstack.com/query/latest/docs/framework/react/overview (Data dostepu:
1.10.2025) — Oficjalna dokumentacja TanStack Query (React Query), opisujaca zasady
zarzgdzania stanem danych asynchronicznych.

2. https://axios-http.com/docs/intro (Data dostepu: 1.10.2025) — Dokumentacja
biblioteki Axios, omawiajgca konfiguracje instancji, interceptory oraz automatyczne
przetwarzanie JSON.

3. https://reactnative.dev/docs/network (Data dostepu: 1.10.2025) — Oficjalny
przewodnik React Native dotyczacy wykonywania zapytan sieciowych za pomoca
Fetch API.

4. https://docs.expo.dev/versions/latest/sdk/securestore/ (Data dostepu: 1.10.2025) —
Dokumentacja modutu Expo SecureStore, stuzgcego do bezpiecznego
przechowywania tokendw uwierzytelniajgcych.

5. https://github.com/react-native-netinfo/react-native-netinfo (Data dostepu:
1.10.2025) — Dokumentacja biblioteki NetInfo, niezbednej do monitorowania stanu
potgczenia sieciowego w aplikacjach mobilnych.

https://tanstack.com/query/latest/docs/framework/react/overview
https://axios-http.com/docs/intro
https://reactnative.dev/docs/network
https://docs.expo.dev/versions/latest/sdk/securestore/
https://github.com/react-native-netinfo/react-native-netinfo

