
POLITECHNIKA ŚWIĘTOKRZYSKA

Aplikacje mobilne – wykład
6

Sieć, API i React Query w React Native

Mateusz Pawełkiewicz

1.10.2025

1. Podstawy pracy z API w React Native

W aplikacjach React Native komunikacja z zewnętrznymi API odbywa się podobnie jak w
aplikacjach webowych. Dostępne są standardowe metody takie jak Fetch API oraz popularne
biblioteki typu Axios. W tej części omówimy oba podejścia, w tym ich możliwości
konfiguracyjne (nagłówki, interceptory, timeouty), anulowanie zapytań oraz porównamy ich
zalety i wady.

1.1 Fetch API – wbudowane zapytania sieciowe

Fetch API jest wbudowaną w JavaScript metodą do wykonywania zapytań HTTP. W
środowisku React Native fetch jest dostępny globalnie (polifill). Jego składnia jest podobna jak
w przeglądarce:

// Przykładowe zapytanie GET za pomocą fetch:
try {
 const response = await fetch('https://api.example.com/data');
 if (!response.ok) {
 // Sprawdzenie kodu statusu (fetch nie rzuca błędu dla błędów HTTP)
 throw new Error(`Błąd HTTP: ${response.status}`);
 }
 const data = await response.json(); // Ręczne przetworzenie JSON
 console.log('Otrzymane dane:', data);
} catch (error) {
 console.error('Błąd sieci lub zapytania:', error);
}

Charakterystyka Fetch API:

 Brak konfiguracji globalnej – Nie ma wbudowanego mechanizmu ustawiania
bazowego URL czy domyślnych nagłówków dla wszystkich zapytań. Konieczne jest
każdorazowe podanie opcji lub opakowanie fetch w własną funkcję pomocniczą.

 Obsługa odpowiedzi – Fetch nie rzuca wyjątku dla odpowiedzi HTTP z błędem (np.
404, 500). Trzeba samodzielnie sprawdzać response.ok lub response.status. W razie błędu
sieci (brak połączenia, DNS itp.) dopiero wtedy fetch rzuci wyjątek, ale błędny kod
HTTP nie jest automatycznie traktowany jako wyjątek.

 Parsowanie JSON – Fetch nie przetwarza automatycznie treści odpowiedzi. Aby
uzyskać dane, zwykle wywołujemy metodę response.json() (lub response.text(),
response.blob() w zależności od formatu).

 Brak wbudowanych interceptorów – Fetch nie oferuje natywnego mechanizmu
przechwytującego żądania/odpowiedzi. Można jednak osiągnąć podobny efekt,
pisząc własne funkcje-wrappers lub korzystając z innych bibliotek do logowania czy
modyfikacji zapytań

 Timeouty i anulowanie – Fetch nie posiada opcji timeout wprost. Aby ograniczyć czas
oczekiwania lub móc anulować zapytanie, stosujemy AbortController (omówiony
poniżej).

Przykład ustawienia timeoutu i anulowania zapytania fetch:

const controller = new AbortController();
const id = setTimeout(() => controller.abort(), 5000); // przerwij po 5s

try {
 const response = await fetch(url, { signal: controller.signal });
 clearTimeout(id);
 // ... przetwarzanie odpowiedzi
} catch (err) {
 if (err.name === 'AbortError') {
 console.log('Zapytanie zostało przerwane (timeout lub anulowanie)');
 } else {
 console.log('Inny błąd zapytania:', err);
 }
}

W powyższym kodzie używamy AbortController do wygenerowania sygnału przerwania.
Metoda controller.abort() powoduje odrzucenie promisy zwracanej przez fetch z błędem o
nazwie "AbortError". Jest to uniwersalny sposób na anulowanie zapytań (np. przy
wychodzeniu z ekranu, aby nie próbować zaktualizować nieistniejącego komponentu).

Debugowanie: W React Native warto użyć narzędzia Flipper do monitorowania zapytań
sieciowych. Flipper posiada plugin Network, który wyświetla listę wszystkich zapytań HTTP
wykonywanych przez aplikację (zarówno przez fetch, jak i XHR/axios). Upewnij się, że
aplikacja jest uruchomiona w trybie deweloperskim i połączona z Flipperem – wtedy możesz
podejrzeć szczegóły każdego requestu (URL, nagłówki, body, odpowiedź, czas trwania) co
bardzo ułatwia diagnozowanie problemów z API. Dodatkowo, w kodzie możesz dodać własne
logi (np. w .then().catch() dla fetch lub w interceptorach axios), aby logować requesty i
odpowiedzi podczas developmentu.

1.2 Axios – biblioteka HTTP z dodatkowymi funkcjami

Axios to popularna biblioteka do wykonywania zapytań HTTP, używana zarówno w
przeglądarkach, Node.js, jak i React Native. Wnosi ona sporo ułatwień w porównaniu z
czystym Fetch API:

 Prostsza składnia i automatyczne przetwarzanie – Axios automatycznie dokonuje
serializacji danych do JSON przy wysyłaniu (obiekt JavaScript przekazany jako data
zostanie wysłany jako JSON) oraz deserializacji odpowiedzi JSON do obiektu
JavaScript (pole response.data zawiera już sparsowane dane). Nie musimy ręcznie
wywoływać .json() na odpowiedzi.

 Globalna konfiguracja i instancje – Możemy utworzyć instancję axios z
zdefiniowanym baseURL, domyślnymi nagłówkami czy parametrami. Ułatwia to
zarządzanie wspólnymi elementami żądań w całej aplikacji:

import axios from 'axios';
const api = axios.create({
 baseURL: 'https://api.example.com/v1',
 timeout: 10000, // maksymalny czas oczekiwania 10s
 headers: { 'Content-Type': 'application/json' }
});

Taka instancja api będzie używana do wszystkich zapytań, co eliminuje powtarzanie
adresu bazowego i nagłówków.

 Interceptory – Jedną z największych zalet axios są interceptory żądań i odpowiedzi.
Pozwalają one przechwycić każde zapytanie lub odpowiedź i zmodyfikować je lub
obsłużyć błędy globalnie:

// Przechwycenie każdego żądania – np. dołączenie tokena auth:
api.interceptors.request.use(config => {
 const token = authStorage.getToken(); // pseudokod pobierający token
 if (token) {
 config.headers.Authorization = `Bearer ${token}`;
 }
 return config;
});
// Przechwycenie odpowiedzi – np. obsługa błędów 401 globalnie:
api.interceptors.response.use(
 response => response,
 error => {
 if (error.response?.status === 401) {
 // np. automatyczna próba odświeżenia tokena lub wylogowanie
 console.log('Błąd 401 - nieautoryzowany, odświeżanie tokena...');
 // ... (implementacja logiki odświeżania lub przekierowania do logowania)
 }
 return Promise.reject(error);
 }
);

Interceptory ułatwiają dodawanie wspólnej logiki – np. logowanie wszystkich
requestów w trybie debug, ustawianie nagłówków Authorization, obsługę błędów
uwierzytelnienia itp. W przypadku fetch trzeba by ręcznie opakowywać funkcje,
podczas gdy axios oferuje to gotowe.

 Obsługa błędów HTTP – W przeciwieństwie do fetch, axios automatycznie odrzuca
Promise dla kodów odpowiedzi spoza zakresu 2xx. Oznacza to, że odpowiedź z
kodem 404 lub 500 trafi od razu do bloku .catch() z wygodnym obiektem błędu
(zawierającym m.in. error.response z danymi odpowiedzi). Dzięki temu łatwiej jest pisać
jednolitą obsługę błędów w jednym miejscu.

 Timeouty i anulowanie – Axios posiada w konfiguracji opcję timeout (jak pokazano w
axios.create powyżej). Jeśli odpowiedź nie nadejdzie w podanym czasie, request
zostanie przerwany automatycznie z błędem. Ponadto, axios wspiera mechanizm
anulowania zapytań poprzez AbortController (od wersji 0.22) oraz historyczny (już
deprecated) CancelToken. Współczesne podejście to użycie signal z AbortController –
bardzo podobnie jak w fetch:

const controller = new AbortController();
try {
 await api.get('/tasks', { signal: controller.signal });
} catch(e) {
 if (axios.isCancel(e)) {
 // Sprawdzenie czy błąd wynika z anulowania
 console.log('Zapytanie anulowane.');

 }
}
controller.abort(); // można przerwać zapytanie w dowolnym momencie

Od wersji v0.22 axios zaleca używanie AbortController zamiast CancelToken. Mechanizm
jest taki sam jak w fetch – przerwanie sygnału spowoduje odrzucenie obietnicy. W
axios metoda axios.isCancel(error) pozwala rozpoznać, czy błąd wynika z anulowania.

 Dodatkowe funkcje – Axios umożliwia np. śledzenie postępu wysyłania/odbierania
danych (onUploadProgress, onDownloadProgress), co bywa przydatne przy wysyłaniu
plików lub pobieraniu większych zasobów (w RN jednak do dużych plików często
używa się dedykowanych bibliotek natywnych). Pozwala też łatwo wykonywać
zapytania równoległe (metoda axios.all lub użycie Promise.all z instancją axios).

Przykład zapytania POST z axios (dla porównania z fetch):

const newTask = { title: 'Nowe zadanie', completed: false };
try {
 const response = await api.post('/tasks', newTask);
 // Axios sam zserializuje newTask do JSON i ustawi nagłówek Content-Type
 console.log('Utworzono zadanie, dane:', response.data);
} catch (error) {
 if (error.response) {
 console.log('Błąd zapytania:', error.response.status, error.response.data);
 } else {
 console.log('Błąd sieci lub inny:', error.message);
 }
}

W powyższym kodzie widzimy, że nie ma potrzeby robić JSON.stringify na danych ani
response.json() na odpowiedzi – axios robi to automatycznie. Obsługa błędu też jest prostsza:
obiekt error.response istnieje tylko gdy serwer zwrócił odpowiedź z błędem (kod 4xx/5xx).

Porada: W środowisku React Native nie trzeba osobno instalować polyfill do fetch – jest on
dostępny globalnie. Jeśli jednak decydujemy się na axios, należy zainstalować go przez
npm/yarn (npm install axios) i pamiętać, że opiera się on na natywnym module XHR, który RN
wspiera. Można używać jednocześnie fetch i axios w projekcie, ale zazwyczaj lepiej wybrać
jedno podejście dla spójności.

1.3 Interceptory, nagłówki i konfiguracja globalna

Jak wspomniano, axios wyróżnia się możliwością globalnej konfiguracji i interceptorami:

 Nagłówki globalne: Możemy definiować nagłówki domyślne na poziomie instancji
axios. Np. api.defaults.headers.common['Accept-Language'] = 'pl-PL'; ustawi domyślny język.
Podobnie api.defaults.headers.common.Authorization = 'Bearer TOKEN' może globalnie dodać
token (choć lepiej zrobić to dynamicznie w interceptorze, by zawsze pobierać
aktualny token).

 Interceptory żądań: Idealne miejsce na dołączanie tokena uwierzytelnienia przed
wysłaniem. W interceptorze mamy dostęp do obiektu config – możemy tam dodać

lub zmodyfikować nagłówki, zmienić adres itp. Warto również obsługiwać przypadki
odświeżania tokena (więcej o tym w sekcji autoryzacji).

 Interceptory odpowiedzi: Pozwalają przechwycić błąd globalnie. Np. możemy
sprawdzić kod 500 i zalogować zdarzenie do zewnętrznej usługi, albo dla 401
wykonać automatyczny refresh token. Trzeba jednak uważać, by nie spowodować
zapętlenia (np. jeśli odświeżanie tokena też zwróci 401). Często używa się
mechanizmu kolejki – wstrzymuje się nowe żądania w trakcie odświeżania tokena i
po odświeżeniu kontynuuje.

Fetch nie ma takiego mechanizmu – jak to rozwiązać? Możemy pisać nasze funkcje, np.
customFetch(url, options) które przed wywołaniem uzupełnią nagłówki (np. doda token z
pamięci) i po otrzymaniu odpowiedzi sprawdzą status (np. jeśli 401 – odświeżą token i
ponowią zapytanie). To jednak więcej pracy i większe pole na błędy. Dlatego wiele aplikacji
RN korzysta z axios dla wygody, choć czysty fetch również jest w porządku dla prostych
potrzeb.

Porównanie fetch vs axios: Fetch jest natywny i nie wymaga zależności, ma prostą składnię i
jest wspierany przez przeglądarki oraz RN out-of-the-box. Axios to dodatkowa biblioteka,
ale oferuje bogatsze API: interceptory, automatyczne przetwarzanie JSON, lepszą obsługę
błędów i anulowania. Z punktu widzenia wydajności różnice są pomijalne przy typowych
użyciach (axios pod spodem używa podobnego mechanizmu co fetch/XHR). Jeśli aplikacja
wymaga wielu zapytań i rozbudowanej obsługi sieci (np. autoryzacja, globalne logowanie,
specjalne nagłówki), axios zapewnia większą wygodę. Jeśli potrzebujesz minimalizmu lub
chcesz ograniczyć zależności, fetch w zupełności wystarczy – większość funkcjonalności axios
można zaimplementować ręcznie przy odrobinie wysiłku. Wybór więc zależy od preferencji i
potrzeb projektu.

Podsumowując: Dla React Native oba rozwiązania są dobre. W kolejnych sekcjach (np. przy
React Query) zobaczymy, że narzędzia wyższego poziomu mogą częściowo przejąć zadania
związane z zapytaniami (np. mechanizmy retry, cache, itp.), co zmniejsza różnicę między
fetch a axios, bo pewne rzeczy będą zarządzane przez bibliotekę.

2. React Query – zaawansowane zarządzanie stanem danych
z API

Wraz ze wzrostem złożoności aplikacji, ręczne zarządzanie stanem danych pochodzących z
API (np. listy elementów, szczegóły obiektów, stany ładowania, błędy, odświeżanie danych)
staje się trudne. React Query (część TanStack Query) to biblioteka, która upraszcza pracę z
danymi asynchronicznymi: pobieraniem, cache’owaniem, odświeżaniem i mutacjami. W
kontekście React Native działa tak samo jak w React na webie – z pewnymi dodatkami dla
środowiska mobilnego. Obecnie dostępna jest React Query v5 (TanStack Query v5), która
wprowadza usprawnienia względem poprzednich wersji (m.in. mniejszy rozmiar,
ujednolicone API). Skupimy się na aktualnej wersji i nowoczesnych hookach.

2.1 Podstawy i konfiguracja React Query

Aby używać React Query, należy zainstalować paczkę @tanstack/react-query (nowsza nazwa
biblioteki – dawniej react-query). W projekcie Expo/RN instalacja przebiega standardowo przez
npm/yarn.

Następnie konfigurujemy klient zapytań (QueryClient) i Provider na najwyższym poziomie
aplikacji, zwykle w pliku App.tsx:

import { QueryClient, QueryClientProvider } from '@tanstack/react-query';

const queryClient = new QueryClient({
 defaultOptions: {
 queries: {
 retry: 2, // domyślnie ponów nieudane zapytanie 2 razy
 staleTime: 5 * 60 * 1000, // czas (ms) po którym dane uznajemy za "nieświeże"
 },
 },
});

export default function App() {
 return (
 <QueryClientProvider client={queryClient}>
 <NavigationContainer>{/* reszta aplikacji */}</NavigationContainer>
 </QueryClientProvider>
);
}

Powyżej tworzymy instancję QueryClient z domyślnymi opcjami. Możemy tam określić
globalne ustawienia, np. ile razy retry ma nastąpić, jaki jest domyślny staleTime, czy query ma
się odświeżać przy ponownym wejściu na ekran itp. Umieszczenie całej aplikacji wewnątrz
QueryClientProvider zapewnia dostęp do funkcjonalności React Query w komponentach.

Uwaga: React Query v5 uprościł API – wszystkie konfiguracje przekazujemy jako pojedynczy
obiekt zamiast wielu pozycyjnych argumentów, jak bywało wcześniej. Dla przykładu, dawniej
useQuery('tasks', fetchTasks) teraz zapisujemy jako useQuery({ queryKey: ['tasks'], queryFn: fetchTasks }).
Dzięki temu TypeScript lepiej wspiera to wywołanie i cała konfiguracja znajduje się w jednym
obiekcie.

2.2 Zapytania – hook useQuery

Hook useQuery służy do pobierania danych (zapytania typu GET). Podstawowe użycie składa
się z unikalnego klucza zapytania oraz funkcji która zwraca obietnicę (Promise) z danymi:

import { useQuery } from '@tanstack/react-query';
import api from './api'; // załóżmy, że to instancja axios

function TasksList() {
 const {
 data: tasks,
 error,
 isLoading,
 isFetching,
 refetch

 } = useQuery({
 queryKey: ['tasks'], // unikalny klucz cache
 queryFn: async () => {
 const res = await api.get('/tasks');
 return res.data; // zwracamy dane (lista tasków)
 },
 staleTime: 1000 * 30, // dane ważne przez 30s (opcjonalnie)
 refetchOnMount: false // opcjonalnie: nie odświeżaj na montażu jeśli dane są w cache
 });

 if (isLoading) {
 return <Text>Ładowanie zadań...</Text>;
 }
 if (error) {
 return <Text>Błąd: nie udało się pobrać listy zadań.</Text>;
 }

 return (
 <FlatList
 data={tasks}
 /* ... renderowanie listy zadań ... */
 refreshing={isFetching} // można wykorzystać isFetching do wskaźnika odświeżania
 onRefresh={refetch} // pociągnięcie listy w dół do odświeżenia
 />
);
}

Kilka rzeczy dzieje się automatycznie powyżej:

 Pierwsze wykonanie zapytania następuje natychmiast po montowaniu komponentu
(chyba że ustawimy opcję enabled: false – wtedy uruchomienie jest ręczne przez
refetch).

 Hook useQuery zwraca obiekt z wieloma przydatnymi właściwościami:
o data – wynik zapytania (zcache’owany). W naszym przykładzie tasks to zapewne

tablica zadań lub obiekt pobrany z API.
o error – obiekt błędu (jeśli zapytanie się nie powiodło). Gdy nie było błędu,

będzie undefined.
o Stan ładowania: isLoading jest prawdziwy przy pierwszym uruchomieniu

zapytania (dopóki nie nadejdzie odpowiedź). isFetching jest true za każdym
razem, gdy trwa jakiś fetch danych dla tego zapytania – np. również podczas
odświeżania (refetch). W React Query v5 wprowadzono nową nazwę isPending
zamiast isLoading dla ujednolicenia stanu w zapytaniach i mutacjach. W kodzie
można spotkać obie nazwy zależnie od wersji – tu dla czytelności używamy
isLoading.

o refetch – funkcja, której wywołanie spowoduje ponowne wykonanie zapytania
(ignorując ewentualny cache). Przydaje się np. do obsługi gestu pull-to-
refresh listy w RN.

o Inne: status (string 'loading' | 'error' | 'success'), isSuccess, isError itp. dla wygody.
 Cache i staleTime: Pod kluczem ['tasks'] React Query przechowa w cache wynik. Póki

dane są uznawane za świeże (przez staleTime lub domyślnie 0 ms, co oznacza
natychmiast nieświeże), wejście ponownie na ekran nie spowoduje ponownego

pobierania – od razu pokażą się dane z cache. Po upływie staleTime kolejny mount
spowoduje odświeżenie w tle. Możemy dostosować to zachowanie:

o Ustawienie staleTime większego (np. kilka minut) oznacza, że w tym czasie dane
będą uznawane za aktualne i nie będą automatycznie refetchowane przy
ponownym wejściu.

o Ustawienie refetchOnMount (domyślnie true gdy dane nieświeże) pozwala np.
całkowicie wyłączyć odświeżanie na montowanie (refetchOnMount: false), lub
wymusić zawsze odświeżanie (refetchOnMount: 'always').

o Istnieje też opcja refetchInterval do odpytywania co jakiś czas (polling).

Współpraca z TypeScript: useQuery świetnie współpracuje z TS. Można określić typ danych
wynikowych: useQuery<MyDataType>({ queryKey: [...], queryFn: ... }), ale jeśli używamy funkcji
queryFn która sama ma dobrze zdefiniowany zwracany typ (np. funkcja wywołująca axios z
typowanym wynikiem), TS zwykle sam wydedukuje typ data. W przypadku błędu, domyślnie
typ to unknown, ale można korzystać z własnych klas błędów lub rzutować w razie potrzeby.

Retry (ponawianie): Domyślnie React Query ponawia nieudane zapytanie 3 razy (z krótkim
opóźnieniem) zanim oznaczy je jako błędne. Można to zmienić globalnie lub per zapytanie
(retry: liczba lub retry: false żeby wyłączyć). Ponawiane są tylko błędy sieciowe lub błędy
odpowiedzi (np. kod 5xx). To zachowanie bywa przydatne przy niestabilnym połączeniu –
użytkownik nie zobaczy błędu od razu jeśli np. pierwsze żądanie nie dotarło. Oczywiście
należy uważać, by nie powtarzać operacji, które nie powinny być idempotentne (choć
domyślnie React Query nie ponawia mutacji, tylko zapytania typu get).

Przykład: Jeśli endpoint /tasks czasem losowo zwraca błąd 500, React Query automatycznie
spróbuje do 3 razy go pobrać zanim przekaże błąd do interfejsu.

2.3 Mutacje – hook useMutation

Drugim ważnym filarem jest useMutation, służący do operacji zmieniających dane
(POST/PUT/DELETE itp.). Mutacje mogą powodować zmiany w stanie serwera, więc często
po ich wykonaniu chcemy zaktualizować cache lub odświeżyć zapytania GET.

Podstawowe użycie useMutation:

import { useMutation, useQueryClient } from '@tanstack/react-query';

function NewTaskForm() {
 const queryClient = useQueryClient();

 const { mutate: addTask, isLoading: isAdding } = useMutation({
 mutationFn: async (newTaskData) => {
 const res = await api.post('/tasks', newTaskData);
 return res.data; // zakładamy, że API zwraca utworzony obiekt zadania
 },
 onSuccess: (createdTask) => {
 // Po pomyślnym dodaniu zadania, odśwież listę tasków:
 queryClient.invalidateQueries({ queryKey: ['tasks'] });
 // Alternatywnie: można było od razu zaktualizować cache zamiast refetch (omówione poniżej)
 },

 onError: (error) => {
 console.error('Nie udało się dodać zadania:', error);
 }
 });

 // ... UI formularza z przyciskiem:
 const handleSubmit = () => {
 addTask({ title: 'Nowe zadanie', completed: false });
 };

 return (
 <Button onPress={handleSubmit} disabled={isAdding} title="Dodaj zadanie" />
);
}

W powyższym kodzie definiujemy mutację do dodawania zadania:

 mutationFn – funkcja wykonująca zapytanie (tu POST /tasks z danymi nowego zadania).
Może zwracać wynik (np. utworzony obiekt), który potem jest dostępny w onSuccess.

 onSuccess – opcjonalny callback wywoływany, gdy mutacja się powiedzie. Idealne
miejsce by inwalidować cache zapytań, których dane mogły się zmienić. Używamy do
tego queryClient.invalidateQueries z kluczem – w tym wypadku lista ['tasks'] powinna
zostać ponownie pobrana, aby uwzględnić nowe zadanie. Zamiast invalid, można też
zaktualizować dane w cache ręcznie

 onError – obsługa błędu (np. pokazanie komunikatu). Można też wykorzystać obiekt
błędu w komponencie poprzez mutation.error, podobnie jak przy query.

Hook useMutation zwraca m.in.:

 mutate (lub mutateAsync) – funkcję do wywołania mutacji z przekazaniem danych.
 Stany: isLoading (w v5 nazywany też isPending), isSuccess, isError – analogicznie jak dla

zapytań, informują o stanie danego żądania modyfikującego.
 Dodatkowo data – wynik zwrócony z mutacji (np. createdTask w onSuccess), error –

obiekt błędu jeśli wystąpił.

Optimistic updates – optymistyczne aktualizacje UI

Optymistyczna aktualizacja polega na tym, że zakładamy sukces operacji i natychmiast
modyfikujemy UI, zanim otrzymamy odpowiedź z serwera. Jeśli później okaże się, że
operacja się nie powiodła, musimy wycofać te zmiany lub zasygnalizować błąd
użytkownikowi.

React Query wspiera optymistyczne aktualizacje na dwa sposoby:

1. Poprzez UI i stan mutacji (prostsza metoda w React Query v5): Możemy wykorzystać
fakt, że useMutation zwraca nam parametry ostatniej mutacji (variables) oraz stan
isPending. Dzięki temu możemy np. tymczasowo dodać element do listy zadań bez
grzebania w cache:

const addTaskMutation = useMutation({
 mutationFn: addTaskApiCall,
 onSettled: () => queryClient.invalidateQueries({ queryKey: ['tasks'] })
});
const { mutate: addTask, variables: newTaskVars, isPending: isAdding } = addTaskMutation;

// ... w komponencie listy zadań:
return (
 <View>
 {tasks.map(task => <TaskItem key={task.id} {...task} />)}
 {isAdding && (
 <TaskItem task={{ ...newTaskVars, id: 'temp-id' }} style={{ opacity: 0.5 }} />
)}
 </View>
);

W powyższym schemacie, gdy wywołamy addTask(newTaskData), stan isPending będzie
true, a variables przechowa newTaskData. Możemy więc do listy wyrenderować
tymczasowy element z danymi nowego zadania (np. z półprzezroczystym stylem, by
odróżnić). Gdy mutacja się powiedzie, isPending wróci do false, a refetch w onSettled
odświeży listę już z faktycznym nowym elementem z bazy. Jeśli mutacja się nie
powiedzie, tymczasowy element również zniknie (choć możemy go zostawić i np.
dodać przycisk "Spróbuj ponownie" – wykorzystując nadal variables nawet po błędzie,
bo React Query nie usuwa ich automatycznie przy errorze).

Ten sposób jest prostszy, bo nie dotykamy ręcznie cache – po prostu warunkowo
renderujemy dodatkowy element w oparciu o stan mutacji. W React Query v5
dodano także hook useMutationState, który pozwala śledzić zmiany nawet w innej
części aplikacji, jeśli mutacja i wyświetlanie tymczasowych danych nie są w jednym
komponencie.

2. Poprzez modyfikację cache (tradycyjna metoda): Bardziej zaawansowane podejście
polega na tym, że w onMutate mutacji dokonujemy bezpośredniej zmiany w cache, a w
onError w razie niepowodzenia przywracamy poprzedni stan. Przykład dla dodawania
zadania:

const queryClient = useQueryClient();
useMutation({
 mutationFn: addTaskApiCall,
 // przed wykonaniem mutacji:
 onMutate: async (newTask) => {
 await queryClient.cancelQueries({ queryKey: ['tasks'] });
 const previousTasks = queryClient.getQueryData(['tasks']);
 // Optymistycznie ustaw nowe zadanie w cache:
 queryClient.setQueryData(['tasks'], old => [...(old || []), { id: '__temp__', ...newTask }]);
 return { previousTasks }; // zwracamy snapshota
 },
 onError: (err, newTask, context) => {
 // przy błędzie odtwarzamy poprzednią listę zadań
 queryClient.setQueryData(['tasks'], context.previousTasks);
 },
 onSettled: () => {
 // niezależnie od wyniku, pobierz aktualne dane z serwera

 queryClient.invalidateQueries({ queryKey: ['tasks'] });
 }
});

o onMutate zatrzymuje ewentualne bieżące odświeżenia (cancelQueries), pobiera
bieżącą listę zadań z cache (previousTasks), a następnie dodaje nowy obiekt do
listy za pomocą setQueryData. Używamy tymczasowego id: '__temp__' lub czegoś
unikalnego, by odróżnić optymistyczny obiekt.

o Zwracamy z onMutate wartość (tutaj obiekt z poprzednią listą), która będzie
przekazana do onError jeśli mutacja się nie uda.

o W onError przy błędzie przywracamy poprzedni stan listy zadań z
context.previousTasks.

o onSettled (wywoływane zarówno po sukcesie jak i błędzie) służy do upewnienia
się, że finalnie i tak mamy zgodność z serwerem – tu poprzez invalidację i
refetch listy.

To podejście zapewnia pełną kontrolę i natychmiastową reakcję w UI. Jest nieco
bardziej skomplikowane (trzeba pamiętać o przywracaniu stanu), ale bywa konieczne
w niektórych scenariuszach, np. gdy zmiana jest trudniejsza do odzwierciedlenia
warunkowym renderowaniem.

Wybór metody zależy od przypadku. Dla prostego dodawania elementu do listy, metoda
pierwsza (UI) jest wystarczająca i mniej podatna na błędy – w razie niepowodzenia element
po prostu zniknie lub możemy zaoferować ponawianie. Metoda druga daje pełną
elastyczność (można np. zaktualizować wiele różnych query w cache optymistycznie). React
Query v5 stara się ułatwić ten proces, dlatego wprowadzono uproszczenia i hook
useMutationState.

Mutacje równoległe: Warto wspomnieć, że React Query pozwala wykonywać kilka mutacji
naraz i zarządzać ich stanem globalnie. Dzięki useIsMutating() można sprawdzić, czy
jakakolwiek mutacja jest w toku (np. by zablokować przyciski globalnie), a useMutationState
pozwala monitorować aktywne mutacje po kluczu. Np. można w jednym komponencie
wywoływać useMutation(mutationKey: ['deleteTask'], ...) dla kasowania zadania, a w innym
nasłuchiwać czy jest jakaś mutacja deleteTask pending i wyświetlać np. spinner obok
elementu.

2.4 Cache, refetching i invalidacja danych

Jedną z największych zalet React Query jest cache danych oparty o klucze. Zrozumienie kilku
pojęć pomoże efektywnie z tego korzystać:

 Klucz zapytania (queryKey): tablica lub string unikalnie identyfikująca dane. Np.
['tasks'] dla listy wszystkich zadań, ale ['task', id] dla szczegółów pojedynczego zadania.
Struktura tablicy może zawierać parametry zapytania (np. ['tasks', { page: 2 }] jeśli
kluczem ma być strona 2). Klucz decyduje o tym, co jest traktowane jako ta sama
dane w cache.

 Cache time vs stale time:

o Stale Time – czas świeżości danych (konfigurujemy, np. 0 domyślnie oznacza
dane od razu stają się „stale” po pobraniu). Dopóki dane są świeże, React
Query nie będzie inicjował ponownego pobrania przy okazji re-renderów czy
focusu aplikacji.

o Cache Time – czas przechowywania starych danych w pamięci po ich
„wygaśnięciu”. Domyślnie 5 minut. Po tym czasie, jeśli nie ma żadnego
komponentu używającego danego query, dane zostaną usunięte z pamięci
cache (tzw. garbage collect). W v5 nazwano to lepiej gcTime (garbage
collection time). Jeżeli w tym czasie ponownie odwołamy się do tego query, to
nawet nieświeże dane mogą zostać pokazane natychmiast (z flagą że są stale)
i równolegle nastąpi refetch.

 Invalidacja (invalidateQueries): programowe oznaczenie danych jako nieaktualne.
Używamy tego np. po mutacjach w onSuccess, aby powiadomić React Query: „hej,
dane pod kluczem X zmieniły się, pobierz je ponownie przy najbliższej okazji”.
Invalidacja ustawia stan stale i jeśli dany query jest aktualnie używany w UI, to
spowoduje automatyczny refetch. Jeśli nie jest w użyciu, to kolejny raz gdy się pojawi
(mount), to pobierze nowsze dane.

 Refetching na fokus/połączenie: Domyślnie (w przeglądarce) React Query odświeża
zapytania przy powrocie do okna (window focus) oraz po odzyskaniu połączenia
(network reconnect). W React Native te mechanizmy też możemy mieć, ale musimy
ręcznie zintegrować:

o Fokus aplikacji: za pomocą focusManager i modułu AppState (React Query
udostępnia focusManager).

o Online status: za pomocą onlineManager i np. biblioteki NetInfo do
wykrywania braku/odzyskania sieci. Po konfiguracji React Query będzie
wiedział, że np. był offline i teraz jest online – może odświeżyć zaległe
zapytania.

 Ręczne odświeżanie (refetch): jak pokazano, hook useQuery daje metodę refetch.
Można też globalnie odświeżyć pewne grupy zapytań: queryClient.refetchQueries({

queryKey: ['tasks'] }) by odświeżyć wszystkie zapytania zaczynające się na tasks (co
przydaje się, gdy np. wiele różnych wariantów danych zadań ma być odświeżonych,
choć najczęściej invalidate jest wystarczające).

Integracja z React Native – focus i online: W czystym RN React Query nie ma dostępu do
zdarzeń fokusu okna (bo nie ma okna przeglądarki) ani do statusu sieci, ale można to łatwo
dodać:

// Gdzieś w kodzie inicjalizacyjnym aplikacji (np. zaraz po utworzeniu QueryClient):
import NetInfo from '@react-native-community/netinfo';
import { onlineManager, focusManager } from '@tanstack/react-query';
import { AppState } from 'react-native';

// Połączenie: nasłuchuj zmian statusu sieci i informuj React Query
onlineManager.setEventListener(setOnline => {
 return NetInfo.addEventListener(state => {
 setOnline(!!state.isConnected);
 });
});

// Fokus aplikacji: nasłuchuj czy aplikacja jest aktywna (foreground)

AppState.addEventListener('change', state => {
 focusManager.setFocused(state === 'active');
});

Powyższy kod sprawi, że np. jeśli urządzenie utraci internet, React Query wstrzyma
automatyczne zapytania i oznaczy tryb offline (zapytania mogą wejść w stan error, który
można obsłużyć odpowiednio). Gdy sieć wróci, onlineManager powiadomi bibliotekę –
domyślnie spowoduje to refetch wszystkich wcześniej nieudanych zapytań od razu (co jest
pożądane zachowanie w większości przypadków). Podobnie z fokusem: gdy użytkownik
zminimalizuje i przywróci aplikację, wywołanie focusManager.setFocused(true) może
spowodować odświeżenie danych (o ile jakieś query było stale). Możemy też dostosować to
zachowanie parametrami refetchOnReconnect, refetchOnFocus (tak jak w web, tylko tutaj to
zależy od tej integracji).

Obsługa błędów w React Query: Domyślnie błędy zapytań nie są rzucane jako wyjątki do
komponentu, tylko przekazywane w error i zmieniają isError. Można jednak włączyć tryb, gdzie
przy błędzie zostanie rzucony wyjątek i złapany przez najbliższy Error Boundary w drzewie.
Służy do tego opcja useErrorBoundary: true (globalnie lub przy poszczególnym query). Jest to
przydatne w większych aplikacjach, gdzie chcemy np. jeden globalny komponent graniczny
błędów zamiast w każdym miejscu sprawdzać error.

2.5 Obsługa stanów ładowania i błędów (UI)

W interfejsie musimy przewidzieć trzy główne stany dla zapytań: ładowanie, błąd i dane
załadowane. Powyżej w kodzie TasksList widzieliśmy prostą obsługę przez if (isLoading) ... else if

(error) ... else W praktyce można to rozbudować:

 Loading placeholders: Zamiast zwykłego tekstu "Ładowanie..." często stosuje się
komponenty placeholder lub spinnery. Np. w React Native ActivityIndicator jako
wskaźnik ładowania, lub przygotowane "wydmuszki" UI (tzw. skeleton screens – np.
szare belki imitujące listę). Przykład:

{isLoading && <ActivityIndicator size="large" color="#0000ff" />}

Alternatywnie, biblioteki jak react-native-paper czy NativeBase oferują gotowe
komponenty placeholderów.

 Stan błędu: W razie błędu warto wyświetlić użytkownikowi przyjazny komunikat. Sam
obiekt error od React Query może być różny (dla błędów HTTP może to być błąd axios
z informacją o statusie, dla błędów sieci – może to być TypeError z fetch). Dlatego
często przygotowujemy funkcję pomocniczą, która mapuje różne błędy na
komunikat:

function getErrorMessage(error) {
 if (!error?.response) {
 return 'Brak połączenia z internetem.';
 }
 const status = error.response.status;
 if (status === 404) return 'Nie znaleziono zasobu.';

 if (status === 500) return 'Błąd serwera, spróbuj ponownie później.';
 return 'Wystąpił błąd. Kod: ' + status;
}
// ...
{error && <Text style={{color: 'red'}}>{getErrorMessage(error)}</Text>}

Taka spójna obsługa błędów sprawia, że użytkownik dostaje czytelny komunikat
zamiast np. surowego TypeError: Network request failed. Można też rozważyć wysyłanie
logów błędów do zewnętrznego systemu (Sentry, LogRocket itp.), ale to już wykracza
poza nasz wykład.

 Stan odświeżania: Często chcemy sygnalizować kiedy dane są odświeżane w tle (np.
po zeskrolowaniu w dół listy, lub automatycznie co pewien czas). W React Query
służy do tego isFetching (dla query) lub isFetchingNextPage (dla infinite query, o tym za
chwilę). Możemy np. pokazać mały wskaźnik "Odświeżanie..." na górze listy albo
zmienić tytuł pull-to-refresh. W RN FlatList ma prop refreshing i onRefresh – podpięcie
tam isFetching i refetch jak wyżej automatycznie pokaże spinner przy gestach pull-to-
refresh.

React Query dba też o zachowanie poprzednich danych podczas refetchu (tzw.
keepPreviousData w v4, obecnie w v5 łączy się to z placeholderData) – dzięki temu można
np. przy stronicowaniu pokazywać starą stronę dopóki nowa się nie załaduje, zamiast
pustego ekranu. Domyślnie jednak przy odświeżaniu danych data zostaje nadpisane. Jeśli
chcemy, możemy ustawić keepPreviousData: true by w trakcie fetchu trzymać stare dane (w v5
ta opcja została scalona z placeholderData i możliwe, że trzeba by to inaczej ustawić, ale idea
jest podobna).

Podsumowując: stan ładowania i błędów powinien być czytelnie obsłużony w UI. Nie
zostawiajmy użytkownika z zawieszoną aplikacją – lepiej pokazać spinner. I nie ukrywajmy
błędów w konsoli – wyświetlmy komunikat lub spróbujmy automatycznie ponowić (jeśli ma
to sens). React Query dużo ułatwia, bo daje te stany od razu bez konieczności
własnoręcznego tworzenia zmiennych typu isLoading.

3. Paginacja i zapytania „nieskończone” (infinite queries)

Wiele API udostępnia paginację wyników – np. listy elementów są podzielone na strony po
10, 20 elementów albo udostępniają mechanizm stronicowania za pomocą kursora. React
Query obsługuje te scenariusze za pomocą dwóch podejść:

 useQuery z parametrem strony – tradycyjne podejście: każda strona jest osobnym
zapytaniem, np. useQuery(['tasks', page], queryFn). Można wtedy w UI mieć przyciski
"Następna strona" / "Poprzednia strona", lub przy przewijaniu dynamicznie zwiększać
numer strony i wykonywać kolejne zapytania.

 useInfiniteQuery – specjalny hook React Query, który wspiera dociąganie kolejnych
„paczek” danych i łączenie ich automatycznie. Idealny do list z infinite scroll
(przewijanie w dół powoduje pobranie kolejnej partii wyników).

3.1 Paginacja offset/limit vs kursory

Zanim przejdziemy do kodu, wyjaśnijmy dwa sposoby stronicowania, jakie możemy spotkać
w API:

 Offset/Limit (lub page/size): Najczęstsze podejście – np. mamy endpoint
/tasks?page=2&limit=10 lub /tasks?offset=20&limit=10. Serwer zwraca wtedy np. tasks oraz
informację o łącznej liczbie elementów albo adresy do kolejnej/poprzedniej strony.
Offset page wymaga znajomości ile elementów pominąć. Wadą bywa, że przy
dynamicznie zmieniających się danych stronicowanie offsetem może pomijać lub
dublować elementy jeśli w międzyczasie doszły/ubyły (np. wstawienie nowego
elementu na początku listy zmieni offsety).

 Cursor (lub tokeny kontynuacji): Coraz popularniejsze podejście – serwer zwraca
znacznik do następnej strony, np. nextCursor albo nextPageToken. Zapytanie wtedy
wygląda np. /tasks?cursor=abc123 gdzie abc123 wskazuje, skąd kontynuować. Najczęściej
API zwraca też informację czy jest kolejna strona (np. hasNextPage: true/false). Kursory
są bardziej odporne na zmiany danych – wskazują konkretny punkt w
czasie/porządku.

W React Query obsłużymy oba scenariusze za pomocą useInfiniteQuery, ale logika
getNextPageParam będzie nieco inna.

3.2 Hook useInfiniteQuery

useInfiniteQuery działa podobnie do useQuery, ale zakłada, że będziemy pobierać wiele
stron danych. Jego queryFn powinien akceptować parametr pageParam, a w opcjach musimy
podać funkcję getNextPageParam, która powie bibliotece, jaki pageParam użyć dla kolejnej
strony.

Przykład użycia (dla API offset/page):

const {
 data,
 fetchNextPage,
 hasNextPage,
 isFetchingNextPage,
 isLoading
} = useInfiniteQuery({
 queryKey: ['tasks'],
 queryFn: ({ pageParam = 1 }) => api.get(`/tasks?page=${pageParam}`).then(res => res.data),
 getNextPageParam: (lastPage, pages) => {
 // Zakładamy, że odpowiedź lastPage zawiera pole nextPage (numer kolejnej strony) lub null jeśli koniec
 return lastPage.nextPage ?? false;
 // jeśli zwrócimy false/undefined, React Query uzna że nie ma kolejnej strony
 }
});

Kilka wyjaśnień:

 pageParam – parametry strony; przy pierwszym wywołaniu jest równy domyślnej
wartości (tu 1, bo tak ustawiliśmy). Później React Query będzie wstawiać kolejne
wartości zwrócone z getNextPageParam.

 getNextPageParam(lastPage, allPages) – funkcja dostaje ostatnią pobraną stronę (dane
zwrócone przez queryFn) oraz tablicę wszystkich dotychczasowych stron. Musi
zwrócić wartość pageParam dla następnej strony albo false/undefined jeśli to już
koniec. W powyższym pseudo-kodzie zakładamy, że lastPage (dane z serwera) ma pole
nextPage. Alternatywnie, jeśli API zwraca np. currentPage i totalPages, moglibyśmy
napisać:

getNextPageParam: (lastPage) => {
 return lastPage.currentPage < lastPage.totalPages
 ? lastPage.currentPage + 1
 : undefined;
}

 hasNextPage – wartość boolean, którą React Query ustala automatycznie na podstawie
getNextPageParam. Jeśli getNextPageParam zwróci wartość (np. numer strony lub cursor),
to hasNextPage będzie true. Jeśli zwróci undefined lub false, hasNextPage będzie false
(koniec danych).

 fetchNextPage – funkcja do pobrania kolejnej strony. Wywoła wewnętrznie queryFn z
następnym pageParam (tym, co getNextPageParam zwrócił poprzednio).

 data – tu struktura jest inna niż przy useQuery. data zawiera obiekt z polami:
o data.pages – tablica, gdzie każdy element to wynik jednej strony (dokładnie to,

co zwraca queryFn).
o data.pageParams – tablica z parametrami użytymi dla tych stron (można zwykle

ignorować, chyba że debugujemy).

Aby przedstawić dane w komponencie, zazwyczaj łączymy wszystkie strony w jedną listę.
Np.:

<FlatList
 data={ data ? data.pages.flatMap(page => page.results) : [] }
 renderItem={...}
 onEndReached={() => { if (hasNextPage) fetchNextPage(); }}
 ListFooterComponent={ isFetchingNextPage ? <ActivityIndicator /> : null }
/>

W powyższym przykładzie:

 Zakładamy, że każda strona (page) ma pole results z tablicą elementów (jak np. API
zwraca listę zadań). Używamy flatMap (lub map(...).flat()) by stworzyć jedną spłaszczoną
tablicę wszystkich wyników. Dzięki temu FlatList traktuje to jak jedną ciągłą listę.

 onEndReached – event FlatList wywoływany gdy użytkownik doskroluje blisko dołu listy.
Wewnątrz wywołujemy fetchNextPage() jeśli jest kolejna strona. Dodatkowo warto dać
onEndReachedThreshold, np. 0.3 (30%), by wywołać dociąganie trochę przed samym
końcem scrolla, co zapewni płynniejsze ładowanie.

 ListFooterComponent – komponent wyświetlany na końcu listy. Używamy tego, by
pokazać spinner (ActivityIndicator) w momencie, gdy isFetchingNextPage jest true (czyli

kolejna strona się pobiera). Dzięki temu użytkownik widzi kręcące się kółko u dołu
listy podczas ładowania kolejnych danych.

Uwaga: FlatList wymaga także propów keyExtractor i renderItem – to implementujemy
standardowo. Pamiętajmy, by klucze elementów listy były unikalne globalnie. Jeśli
dołączamy elementy z kolejnych stron, najlepszym kluczem będzie np. unikalne id każdego
zadania. Jeżeli używamy indeksów listy jako key, przy doładowywaniu stron może to
powodować problemy z odświeżaniem elementów – lepiej unikać indeksu jako key.

Alternatywa – paginacja z przyciskiem „Załaduj więcej”: Niekiedy, zamiast infinite scroll,
stosuje się klasyczny przycisk "Load more". W React Query można to zaimplementować na
bazie useInfiniteQuery lub zwykłych useQuery. Np. z useInfiniteQuery można w ogóle
zrezygnować z onEndReached, a poniżej listy dać:

{ hasNextPage && !isFetchingNextPage && (
 <Button title="Pokaż więcej" onPress={() => fetchNextPage()} />
)
}

To wyświetli przycisk dopóki jest kolejna strona, a po kliknięciu pobierze następną. Po
pobraniu (gdy hasNextPage zmieni się na false, np. osiągnięto koniec listy) przycisk zniknie. To
podejście bywa czytelniejsze dla użytkownika gdy strony są wyraźne.

Porównanie useInfiniteQuery vs useQuery dla paginacji: Można oczywiście zrobić paginację
używając wielu useQuery i stanu strony w komponencie (np. trzymać const [page, setPage] =

useState(1), potem przycisk zwiększa page, a useQuery reaguje na page jako część queryKey).
Jednak useInfiniteQuery upraszcza to o tyle, że:

 Sam zarządza tablicą stron i ich połączeniem.
 Zachowuje informacje czy jest kolejna strona (hasNextPage),
 Zapewnia unikalny isFetchingNextPage odróżniający dociąganie od początkowego

isLoading.

Zatem w przypadku infinite scroll React Query wyraźnie zaleca użycie useInfiniteQuery, bo
kod jest czystszy i mniej podatny na błędy.

3.3 Przewijanie listy i dynamiczne dociąganie danych (Infinite Scroll)

Łącząc powyższe, implementacja infinite scroll w RN wygląda następująco:

1. Używamy useInfiniteQuery z odpowiednim getNextPageParam.
2. Wykorzystujemy komponent FlatList do wyświetlania danych:

o Ustawiamy data jako spłaszczoną listę wszystkich elementów ze stron.
o Prop onEndReached wywołuje fetchNextPage (z zabezpieczeniem na hasNextPage).
o Opcjonalnie onEndReachedThreshold np. 0.5 (lub inna wartość) by kontrolować

moment dociągania. Domyślnie jest 0.5, co znaczy że gdy przewiniemy do
połowy przed końcem listy, wywoła się onEndReached.

o Prop ListFooterComponent wyświetla spinner, gdy isFetchingNextPage jest true.

o Można też dodać refreshing i onRefresh aby obsłużyć pull-to-refresh, np.:

refreshing={ isLoading && data?.pages?.length > 0 }
onRefresh={ refetch }

Powyższe zakłada, że jeśli mamy już jakieś dane i isLoading jest true, to znaczy
wykonujemy refresh (np. ręczny).

3. Obsługa unmount/wychodzenia z ekranu: React Query automatycznie może
anulować zapytania, które są w toku gdy komponent się unmountuje (np. użytkownik
wyjdzie z listy zanim doczytała się kolejna strona). Mechanizm ten opiera się o
AbortController pod spodem – React Query przekazuje sygnał do queryFn. Jednak
queryFn musi używać fetch lub axios z obsługą sygnału. W praktyce, korzystając z
axios w RN, też możemy przekazać signal (React Query w argumentach queryFn
udostępnia je w context.signal w v5, lub abort sam w v4). Trzeba się upewnić, że nasza
funkcja fetchująca to uwzględnia, jeśli chcemy czerpać korzyści z automatycznego
anulowania niepotrzebnych zapytań (np. scroll szybko do dołu i w górę, by nie trafiały
w międzyczasie stare zapytania). Szczegóły tego mechanizmu są opisane w
dokumentacji TanStack Query, ale w wielu przypadkach nie musimy nic specjalnego
robić – wystarczy użyć axios (≥0.22) lub fetch i React Query samo anuluje sygnał przy
dezaktywacji zapytania.

Porada wydajnościowa: Przy bardzo długich listach warto ograniczyć liczbę zbuforowanych
stron. React Query v5 umożliwia ustawienie maksymalnej liczby przechowywanych stron w
pamięci (opcja maxPages w konfiguracji infiniteQuery). Jeżeli lista może mieć setki stron, to
trzymanie ich wszystkich może zużywać pamięć – można np. zawsze wyrzucać najstarsze
strony z cache. Jednak typowe listy (kilkadziesiąt elementów) nie wymagają takiej
optymalizacji na starcie. Również FlatList ma mechanizmy optymalizacyjne (recycling
elementów, removeClippedSubviews itp.), które zapobiegają problemom z wydajnością przy
długich listach.

4. Error Boundaries i jednolity fallback UI

Mimo najlepszych starań, błędy w aplikacjach są nieuniknione – może to być błąd
programistyczny (np. wyjątek w renderze komponentu) lub błąd środowiska (np. brak sieci).
Error Boundaries to mechanizm Reacta, który pozwala przechwycić błędy JavaScript w czasie
renderowania komponentów i wyświetlić zamiast nich zapasowy interfejs, zamiast rozbicia
całej aplikacji.

W React (od wersji 16) można korzystać z gotowych implementacji. W kontekście React
Native często sięga się po biblioteki takie jak react-native-error-boundary, które dostarczają
łatwy w użyciu komponent <ErrorBoundary>.

Przykład użycia ErrorBoundary:

import ErrorBoundary from "react-native-error-boundary";

const FallbackUI = ({ error, resetError }) => (

 <View style={{ padding: 20 }}>
 <Text>Wystąpił nieoczekiwany błąd.</Text>
 <Text>{error.toString()}</Text>
 <Button title="Spróbuj ponownie" onPress={resetError} />
 </View>
);

export default function App() {
 return (
 <ErrorBoundary FallbackComponent={FallbackUI}>
 {/* Cała reszta aplikacji / nawigacji */}
 <MainNavigator />
 </ErrorBoundary>
);
}

W powyższym kodzie obwijamy główną część aplikacji w ErrorBoundary. Jeśli którykolwiek z
komponentów podrzędnych rzuci błąd podczas renderowania, zostanie on złapany, a
zamiast niego wyświetli się FallbackUI. Pozwala to zapobiec ekranowi białej śmierci (white
screen of death) i dać użytkownikowi opcję np. ponownej próby (przycisk resetError resetuje
stan w ErrorBoundary, co pozwala ponownie wyrenderować komponenty jak gdyby nic –
można to wykorzystać np. by zresetować błąd po nawigacji lub odświeżeniu danych).

Granularność: Możemy mieć jedno globalne ErrorBoundary na całą aplikację (wyświetlające
np. komunikat „Coś poszło nie tak. Zrestartuj aplikację.”) lub umieszczać je bardziej lokalnie,
np. wokół pojedynczych wrażliwych ekranów, dzięki czemu awaria jednego ekranu nie
wyłączy całej aplikacji. Przykładowo, jeśli mamy osobny ErrorBoundary wokół komponentu
listy zadań, a ten komponent wpadnie w wyjątek, to pokaże fallback UI tylko zamiast listy,
ale reszta aplikacji (np. header, menu) będą działać.

Warto podkreślić: ErrorBoundary chroni przed błędami renderowania i metod życia
komponentu. Nie wyłapie błędów asynchronicznych w event handlerach czy wewnątrz
promisa (tam trzeba użyć try/catch w kodzie lub .catch w Promise). Błędy zapytań sieciowych
(np. error w React Query) nie są same w sobie wyjątkami runtime (chyba że włączymy tryb
useErrorBoundary). Dlatego error boundary przyda się głównie na nieprzewidziane wyjątki (np.
błąd typu TypeError przy odwołaniu do niezdefiniowanego pola).

4.1 Globalna obsługa błędów sieci i komunikaty offline

Poza ErrorBoundary, w aplikacji mobilnej warto pomyśleć o spójnej obsłudze braku
połączenia i błędów API na poziomie UX:

 Brak sieci: Używając wspomnianego modułu NetInfo, możemy nasłuchiwać zmian
stanu połączenia. Gdy isConnected zmieni się na false, możemy np. wyświetlić globalny
baner na górze aplikacji z informacją "Brak połączenia z internetem". Można to zrobić
poprzez jakiś globalny komponent (np. w NavigationContainer w headerze
warunkowo coś wstawić), albo nawet Popup/Toast. Upewnijmy się też, że akcje
wymagające internetu są zablokowane lub kolejkują się, by użytkownik nie klikał
przycisków na darmo.

 Jednolite komunikaty błędów: Jak już omówiono, dobrze jest przetłumaczyć błędy
na ludzki język. Można to scentralizować. Np. mieć middleware w axios interceptorze,
który dla każdego błędu wywoła funkcję showErrorToast(message). Albo w React
Query możemy wykorzystać onError globalnie:

const queryClient = new QueryClient({
 defaultOptions: {
 queries: {
 onError: error => {
 showErrorToast(getErrorMessage(error));
 }
 },
 mutations: {
 onError: error => {
 showErrorToast(getErrorMessage(error));
 }
 }
 }
});

Wtedy każdy błąd zapytania/mutacji wywoła naszą funkcję pokazującą np. Toast z
komunikatem. Biblioteki jak react-native-toast-message czy react-native-flash-
message umożliwiają łatwe wyświetlenie ładnie wyglądającego powiadomienia o
błędzie na ekranie. Taka globalna strategia zapewnia, że błędy nie zostaną
przeoczone – użytkownik zawsze dostanie jakiś komunikat.

 Retry / ponawianie akcji przez użytkownika: Jeśli operacja się nie powiodła z
powodu sieci, można rozważyć mechanizm ponawiania. Na poziomie UI – np. po
błędzie listy zadań, można pokazać przycisk "Spróbuj ponownie" (który wywoła
refetch()). Dla mutacji (np. dodawanie zadania) w przykładzie optymistycznym
pokazywaliśmy nawet przycisk "Retry" obok elementu jeśli się nie udało. Ważne, by
użytkownik nie czuł się zablokowany – jeśli coś nie zadziałało, dajmy mu możliwość
reakcji.

Przechwytywanie błędów niezłapanych: W JavaScript można zarejestrować globalny
handler dla nieobsłużonych obietnic (UnhandledPromiseRejection) oraz dla błędów
nieobsłużonych (ErrorUtils w RN lub globalThis.onerror). Jednak w praktyce lepiej użyć do tego
dedykowanych narzędzi jak Sentry – tutaj wykracza to poza zakres wykładu, ale w dużych
aplikacjach integracja np. z Sentry umożliwia automatyczne raportowanie każdego wyjątku
JS wraz ze stack trace.

Podsumowując, spójna obsługa błędów to:

 reagowanie na brak internetu (np. informacja "Jesteś offline"),
 pokazywanie zrozumiałych komunikatów zamiast pozostawiania użytkownika bez

informacji,
 logowanie błędów dla deweloperów (by móc je naprawić),
 oraz nie rozbijanie całej aplikacji w razie wyjątku (Error Boundary).

5. Autoryzacja i uwierzytelnianie w zapytaniach

W aplikacjach mobilnych często musimy komunikować się z API, które wymaga tokena
uwierzytelniającego (np. token JWT przekazywany w nagłówku Authorization jako Bearer).
W tej sekcji omówimy:

 Przechowywanie tokenów po zalogowaniu,
 Automatyczne dołączanie ich do zapytań (np. w interceptorze axios),
 Odświeżanie tokenów (refresh token flow),
 Bezpieczne przechowywanie poświadczeń (SecureStore, EncryptedStorage).

5.1 Przechowywanie tokena – gdzie i jak?

Najprostsze podejście to trzymanie tokena w pamięci stanu (np. w kontekście React lub w
jakimś globalnym store) w trakcie działania aplikacji, a także zapisanie go do pamięci trwałej,
by po ponownym uruchomieniu aplikacji nie wymagać logowania od nowa.

AsyncStorage vs Secure Storage: Choć można użyć AsyncStorage (asynchroniczna pamięć
klucz-wartość w RN) do przechowania tokena, nie jest to zalecane dla wrażliwych danych,
ponieważ AsyncStorage przechowuje dane jawnie na dysku. Lepszym rozwiązaniem są
bezpieczne magazyny:

 Expo SecureStore: jeśli używamy Expo, mamy łatwy dostęp do modułu SecureStore.
Pozwala on zapisać dane zaszyfrowane w Keychain (iOS) lub Keystore (Android).
Przykład:

import * as SecureStore from 'expo-secure-store';
await SecureStore.setItemAsync('token', accessToken);
// ... potem aby pobrać:
const token = await SecureStore.getItemAsync('token');

SecureStore jest częścią Expo SDK i służy do szyfrowanego przechowywania par klucz-
wartość. Jest idealny do tokenów, haseł itp. (max rozmiar wartości to ok. ~2048
bajtów, co w zupełności starcza na tokeny).

 EncryptedStorage (react-native-encrypted-storage): w aplikacjach RN poza Expo
można użyć biblioteki react-native-encrypted-storage. Działa podobnie – pod spodem na
iOS używa Keychain, na Androidzie EncryptedSharedPreferences – i abstrakcyjne daje
prosty API JS:

import EncryptedStorage from 'react-native-encrypted-storage';
await EncryptedStorage.setItem('token', accessToken);
const token = await EncryptedStorage.getItem('token');

EncryptedStorage jest zabezpieczoną alternatywą dla AsyncStorage – używa
systemowych mechanizmów bezpiecznego składowania, więc dane są szyfrowane i
powiązane z aplikacją (nikt bezpośrednio nie odczyta ich z plików). Wymaga dodania
natywnego modułu do projektu (podlinkowanie lub autolink).

 Keychain na iOS / Keystore na Androidzie bezpośrednio: Istnieją też biblioteki
pozwalające bezpośrednio korzystać z iOS Keychain, np. react-native-keychain.
SecureStore czy EncryptedStorage to w zasadzie ułatwiają, ale można też bez Expo
użyć react-native-keychain do zapisu haseł/tokenów z pewnymi dodatkowymi opcjami
(np. kontrola dostępu typu „tylko po odblokowaniu urządzenia”).

Ważne jest, by nie przechowywać tokenów w zwykłych, niezabezpieczonych miejscach
(AsyncStorage, plik, redut,plaintext, itp.), bo jeśli ktoś uzyska dostęp do pamięci telefonu (np.
przez złośliwą aplikację na zrootowanym/jailbreakowanym urządzeniu), łatwiej mu
wyciągnąć takie dane. SecureStore/Keychain utrudnia atak – dane są zaszyfrowane per
aplikacja i system dba o ich ochronę.

Informacja: SecureStore i EncryptedStorage przechowują dane permanentnie – tj. zostają
nawet po wyłączeniu aplikacji, a nawet po odinstalowaniu (w przypadku iOS Keychain). Jeśli
nie chcemy, by tokeny przeżywały odinstalowanie, w dokumentacji EncryptedStorage
opisano trik czyszczenia Keychain przy pierwszym uruchomieniu po reinstalacji. Zazwyczaj
jednak nie jest to problemem – token i tak wygaśnie do tego czasu.

5.2 Dołączanie tokena do zapytań (Bearer)

Najlepsze miejsce na to to nasza warstwa komunikacji, np. interceptor axios. Jak wcześniej
pokazano:

api.interceptors.request.use(config => {
 const token = authToken; // np. zmienna globalna lub z jakiegoś modułu auth
 if (token) {
 config.headers.Authorization = `Bearer ${token}`;
 }
 return config;
});

Takie rozwiązanie wymaga, by w momencie ustawiania interceptora mieć dostęp do tokena.
Można:

 Wczytać token z SecureStore przy starcie aplikacji do zmiennej (np. w stanie
kontekstu AuthContext). Gdy użytkownik się loguje, również zapisać zmienną.

 Ewentualnie, jeśli token może wygasać i być odświeżany, to interceptor mógłby
używać zawsze aktualnej wartości z jakiegoś centralnego miejsca (kontekst, moduł).

 Pamiętajmy, że SecureStore.getItemAsync jest asynchroniczne. Interceptor axios może
zwracać promisa – czyli można w nim użyć async/await. Alternatywnie prościej jest
trzymać token w pamięci (bo i tak po logowaniu go mamy) i zsynchronizować go z
secure storage.

W przypadku używania Fetch: nie ma interceptorów, więc trzeba każdorazowo dodawać
nagłówek:

const token = await SecureStore.getItemAsync('token');
fetch(url, {
 headers: { Authorization: `Bearer ${token}`, ... }

});

Co oczywiście bywa uciążliwe. Można więc owinąć fetch:

async function authorizedFetch(endpoint, options = {}) {
 const token = await SecureStore.getItemAsync('token');
 const authHeaders = token ? { Authorization: `Bearer ${token}` } : {};
 const finalOptions = { ...options, headers: { ...options.headers, ...authHeaders } };
 return fetch(baseURL + endpoint, finalOptions);
}

I używać authorizedFetch w całej aplikacji zamiast gołego fetch. Taki pattern zapewnia
centralizację logiki uwierzytelniania.

5.3 Odświeżanie tokena (Refresh Token flow)

Wiele systemów uwierzytelniania wydaje dwa tokeny: Access Token (krótkiego życia, np. 15
min) do autoryzacji requestów oraz Refresh Token (dłuższego życia, np. 7 dni lub więcej),
którym można uzyskać nowy Access Token gdy stary wygaśnie. Scenariusz jest taki:

1. Użytkownik się loguje – dostajemy AccessToken + RefreshToken.
2. AccessToken używamy w nagłówkach do każdej akcji chronionej.
3. Gdy serwer odpowie, że AccessToken jest nieważny/expired (np. kod 401 z

informacją "Token expired"), musimy wywołać endpoint odświeżenia z
RefreshTokenem.

4. Po otrzymaniu nowego AccessToken (i czasem nowego RefreshTokena), zapisujemy
je i ponawiamy oryginalne zapytanie, które się nie powiodło.

5. Jeśli odświeżenie się nie uda (np. RefreshToken także nieważny), to musimy
zalogować ponownie użytkownika (np. wyrzucić go na ekran logowania, wyczyścić
stan).

Implementacja w axios interceptorze:

let isRefreshing = false;
let pendingRequests = []; // kolejka zapytań oczekujących na odświeżenie

api.interceptors.response.use(
 res => res,
 async error => {
 const { response } = error;
 if (response?.status === 401) {
 // Jeżeli błąd 401 dotyczy wygaśnięcia tokena:
 if (response.data?.message === 'TokenExpired') {
 if (!isRefreshing) {
 isRefreshing = true;
 try {
 const refreshToken = await SecureStore.getItemAsync('refreshToken');
 const refreshRes = await api.post('/auth/refresh', { token: refreshToken });
 const newAccessToken = refreshRes.data.accessToken;
 // Zapisz nowy token
 await SecureStore.setItemAsync('token', newAccessToken);
 authToken = newAccessToken; // zaktualizuj zmienną w pamięci

 isRefreshing = false;
 // Odrób zaległe zapytania z nowym tokenem
 pendingRequests.forEach(cb => cb(newAccessToken));
 pendingRequests = [];
 } catch (err) {
 isRefreshing = false;
 pendingRequests = [];
 // Refresh nie powiódł się – wyloguj użytkownika
 navigateToLogin();
 return Promise.reject(err);
 }
 }
 // Zwracamy nowy Promise, który spowoduje opóźnienie wykonania oryginalnego requesta do czasu
odświeżenia:
 return new Promise((resolve, reject) => {
 pendingRequests.push((token) => {
 // Retry oryginalnego requesta z nowym tokenem
 error.config.headers.Authorization = 'Bearer ' + token;
 resolve(axios(error.config));
 });
 });
 }
 }
 return Promise.reject(error);
 }
);

Powyższy kod jest nieco złożony, ale kluczowe jest:

 isRefreshing – flaga, by jednocześnie tylko jedno odświeżenie się wykonywało, nawet
jeśli wiele requestów naraz dostało 401.

 pendingRequests – kolejka funkcji, które zostaną wykonane po odświeżeniu (czyli
ponowią oryginalne requesty).

 Gdy pierwszy 401 z powodem "TokenExpired" przyjdzie, wchodzimy do if. Jeśli akurat
nikt nie odświeża (!isRefreshing), to rozpoczynamy proces odświeżania:

o Wyciągamy refreshToken ze storage,
o Wołamy /auth/refresh (zakładamy, że zwraca nowy accessToken, ewentualnie

też nowy refreshToken – to też należałoby obsłużyć).
o Po sukcesie zapisujemy nowy token (w pamięci i secure storage), ustawiamy

isRefreshing = false i wykonujemy wszystkie oczekujące zapytania z nowym
tokenem (wywołując callbacki z kolejki).

o Jeśli odświeżenie się nie uda, to znaczy sesja stracona – czyścimy tokeny,
kierujemy na logowanie.

 Jeśli kolejne zapytanie trafia 401 podczas gdy isRefreshing jest true (czyli refresh już
w toku), to nie odświeżamy ponownie, tylko zwracamy nowy Promise i dodajemy
jego resolver do kolejki. Ten Promise jest tym co interceptor będzie zwracał dla tego
drugiego requesta – więc oryginalny kod czekający na odpowiedź zostanie
wstrzymany. Gdy odświeżenie dobiegnie końca, wywołamy callback z kolejki, który:

o Ustawi nowy nagłówek Authorization,
o Wywoła oryginalne zapytanie ponownie (axios(error.config)),
o Zewnętrzny Promise się rozwiąże, a więc oryginalne zapytanie otrzyma swoją

odpowiedź (drugi raz nie wpadnie do interceptora 401, bo token jest nowy).

Taki wzorzec zapewnia, że przy wygaśnięciu tokena nie zalogujemy użytkownika od razu
tylko płynnie odnowimy token w tle. Użytkownik może nawet nie zauważyć, poza może
minimalnym opóźnieniem. Trzeba oczywiście dopracować szczegóły (np. co jeśli refresh
endpoint sam zwróci 401 – wtedy też logout).

Jeśli korzystamy z React Query, większość tego dzieje się na poziomie axios i jest
przezroczyste dla React Query – po prostu zapytanie trwa dłużej bo czeka na refresh, ale
finalnie dostaje dane. Można ewentualnie zareagować na globalny error 401 inaczej, ale
powyższe jest dość kompleksowym rozwiązaniem.

Uwaga do Refresh Token: Przechowujemy dwa tokeny – access i refresh. Access trzymamy
np. w pamięci/kontekście (i secure store dla ponownego otwarcia aplikacji), refresh w secure
store. Refresh token jest jeszcze bardziej wrażliwy – jeśli ktoś go zdobędzie, może wyłudzić
kolejne access tokeny. Dlatego:

 Czas życia refresh tokena powinien być ograniczony (np. wymuszenie logowania co 2
tygodnie).

 Można rozważyć trzymanie refresh tokena tylko w SecureStorage i nie trzymanie go
w pamięci nigdy jawnie (tylko jak trzeba to go pobrać do odświeżenia).

 Po wylogowaniu pamiętaj usunąć oba tokeny ze storage.

5.4 Bezpieczne przechowywanie – podsumowanie

 expo-secure-store – prosty sposób na bezpieczne przechowanie tokenów w Expo.
Korzysta z mechanizmów systemowych (Keychain/Keystore), dlatego jest
rekomendowany do poufnych danych.

 react-native-encrypted-storage – analogiczne rozwiązanie poza Expo, też używa
Keychain/EncryptedSharedPrefs. Prosty interfejs czterech metod: setItem, getItem,
removeItem, clear.

 Nie używaj AsyncStorage na tokeny – brak szyfrowania, dane w pliku JS. Ostatecznie,
jeśli aplikacja nie przechowuje nic krytycznego i nie obawiamy się o to, można użyć
AsyncStorage

6. Demo: Aplikacja "Tasks" – praktyczne połączenie
wszystkich elementów

Na koniec połączmy teorię w mini przykładzie. Wyobraźmy sobie aplikację Tasks (lista zadań
do zrobienia) z backendem REST. Mamy następujące funkcjonalności:

 Logowanie użytkownika (uzyskanie tokena – załóżmy, że już jest zalogowany i mamy
token).

 Pobieranie listy zadań – endpoint GET /tasks, zwracający listę zadań (paginowaną).
 Dodawanie nowego zadania – endpoint POST /tasks (zwraca utworzone zadanie).
 Edycja zadania – endpoint PUT /tasks/:id (zwraca zaktualizowane zadanie).
 Paginacja – zakładamy, że lista zadań może być długa, więc API paginuje wyniki (np.

parametry ?page=).
 Autoryzacja – wszystkie powyższe wymagają tokena Bearer w nagłówku.

Spróbujmy zbudować uproszczoną architekturę:

Krok 1: Konfiguracja API i React Query

// api.ts - konfiguracja Axios i tokenów
import axios from 'axios';
import * as SecureStore from 'expo-secure-store';

const API_URL = 'https://example.com/api';

export const api = axios.create({
 baseURL: API_URL,
 timeout: 5000,
});

// Wstaw token do każdego żądania (jeśli jest)
api.interceptors.request.use(async config => {
 const token = await SecureStore.getItemAsync('token');
 if (token) {
 config.headers.Authorization = `Bearer ${token}`;
 }
 return config;
});

// (Opcjonalnie) Interceptor odpowiedzi do obsługi odświeżania tokena/błędów 401:
api.interceptors.response.use(
 response => response,
 async error => {
 const originalRequest = error.config;
 if (error.response?.status === 401 && !originalRequest._retry) {
 originalRequest._retry = true;
 // Zakładamy istnienie funkcji refreshToken() która pobierze i zapisze nowy token
 try {
 const newToken = await refreshToken();
 originalRequest.headers.Authorization = `Bearer ${newToken}`;
 return api(originalRequest); // ponów oryginalne żądanie z nowym tokenem
 } catch (e) {
 // Refresh nie powiódł się - można wylogować użytkownika
 // navigateToLoginScreen();
 return Promise.reject(e);
 }
 }
 return Promise.reject(error);
 }
);

Powyżej:

 Tworzymy axios z baseURL.
 Request interceptor dołącza token (pobierany z SecureStore za każdym żądaniem –

to może być nieco nieefektywne, lepiej byłoby trzymać token w zmiennej, ale dla
pewności używamy storage).

 Response interceptor sprawdza 401. Używamy tu uproszczonej logiki: sprawdzamy
flagę _retry by nie wpaść w pętlę. Wołamy refreshToken() – to powinna być funkcja

wykonująca np. api.post('/auth/refresh') (musielibyśmy uważać by nie wpaść ponownie w
interceptor – można użyć innej instancji axios bez interceptorów do tego). Po
uzyskaniu nowego tokena, zapisujemy go (tu zakładamy, że refreshToken() już to robi
i zwraca accessToken) i ponawiamy oryginalne żądanie. Jeśli się nie uda, odrzucamy
błąd i pewnie w aplikacji przechwycimy to by wylogować.

Krok 2: Hooki korzystające z React Query do zapytań:

Aby uporządkować, zrobimy własne hooki do obsługi zadań:

// tasksApi.ts - funkcje API do tasks
export const fetchTasksPage = async ({ pageParam = 1 }) => {
 const res = await api.get(`/tasks?page=${pageParam}`);
 return res.data;
};
export const addTaskRequest = async (newTask) => {
 const res = await api.post('/tasks', newTask);
 return res.data;
};
export const updateTaskRequest = async ({ id, updates }) => {
 const res = await api.put(`/tasks/${id}`, updates);
 return res.data;
};

// tasksHooks.ts - hooki używające powyższych funkcji z React Query
import { useInfiniteQuery, useMutation, useQueryClient } from '@tanstack/react-query';
import { fetchTasksPage, addTaskRequest, updateTaskRequest } from './tasksApi';

export function useTasksList() {
 return useInfiniteQuery({
 queryKey: ['tasks'],
 queryFn: fetchTasksPage,
 getNextPageParam: (lastPage) => lastPage.nextPage ?? undefined
 });
}

export function useAddTask() {
 const queryClient = useQueryClient();
 return useMutation({
 mutationFn: addTaskRequest,
 onMutate: async (newTask) => {
 // Optymistycznie dodaj nową task do cache:
 await queryClient.cancelQueries({ queryKey: ['tasks'] });
 const prevData = queryClient.getQueryData(['tasks']);
 if (prevData) {
 queryClient.setQueryData(['tasks'], (oldData) => {
 const newTaskObj = { ...newTask, id: Math.random().toString(36) }; // tymczasowe ID
 // Wstaw nowy task na początek pierwszej strony (załóżmy)
 return {
 ...oldData,
 pages: [
 [newTaskObj, ...oldData.pages[0]],
 ...oldData.pages.slice(1)
]
 };

 });
 }
 return { prevData };
 },
 onError: (err, newTask, context) => {
 // cofnij zmiany przy błędzie
 if (context?.prevData) {
 queryClient.setQueryData(['tasks'], context.prevData);
 }
 },
 onSettled: () => {
 // niezależnie od wyniku - odśwież listę zadań z serwera
 queryClient.invalidateQueries({ queryKey: ['tasks'] });
 }
 });
}

export function useUpdateTask() {
 const queryClient = useQueryClient();
 return useMutation({
 mutationFn: updateTaskRequest,
 onMutate: async ({ id, updates }) => {
 await queryClient.cancelQueries({ queryKey: ['tasks'] });
 const prevData = queryClient.getQueryData(['tasks']);
 if (prevData) {
 queryClient.setQueryData(['tasks'], (oldData) => {
 // Zaktualizuj task lokalnie
 return {
 ...oldData,
 pages: oldData.pages.map(page =>
 page.map(task => task.id === id ? { ...task, ...updates } : task)
)
 };
 });
 }
 return { prevData };
 },
 onError: (err, vars, context) => {
 if (context?.prevData) {
 queryClient.setQueryData(['tasks'], context.prevData);
 }
 },
 onSettled: () => {
 queryClient.invalidateQueries({ queryKey: ['tasks'] });
 }
 });
}

Co tu się dzieje:

 Mamy useTasksList() korzystający z useInfiniteQuery dla listy. Używa fetchTasksPage (który
robi GET /tasks?page=). Zakładamy, że serwer zwraca np. { tasks: [...], nextPage: 2 } albo
nextPage: null. Funkcja getNextPageParam pobiera lastPage.nextPage.

 Mutacja useAddTask:

o onMutate: Anulujemy bieżące zapytania tasks, pobieramy poprzednie dane.
Następnie, jeśli były jakieś dane (cache istnieje), wstawiamy optymistycznie
nowy task. Tutaj dla uproszczenia generujemy tymczasowe id (losowy string) i
dodajemy nowy obiekt na początek pierwszej strony listy (przyjęliśmy, że
chcemy go na początku listy). Struktura cache w infiniteQuery to obiekt z
pages, więc wstawiamy do oldData.pages[0]. Zwracamy previousData, by móc
odrollować.

o onError: Przy błędzie przywracamy prevData jeśli było.
o onSettled: Po wszystkim (sukces lub błąd), invalidujemy tasks – serwerowy

stan ma być prawdą ostateczną.
 Mutacja useUpdateTask:

o onMutate: podobnie anulujemy, pobieramy prevData. Następnie iterujemy
po wszystkich stronach (oldData.pages.map), i każdą listę task w page mapujemy
– jeśli task.id === updatedId, to tworzymy nowy obiekt z zastosowanymi updates
(np. { completed: true }). To natychmiast zmieni UI – użytkownik zobaczy np. że
zadanie oznaczyło się jako ukończone. Zwracamy prevData.

o onError: Przy błędzie przywracamy.
o onSettled: invalidacja.

To podejście powoduje minimalne odczuwalne opóźnienie dla użytkownika – większość akcji
wydaje się natychmiastowa.

Krok 3: Komponenty UI korzystające z tych hooków:

Zakładamy, że mechanizm logowania jest już za nami i mamy token (inaczej należałoby
dodać ekran logowania i logikę do zapisu tokena w SecureStore po pomyślnym logowaniu
itp.).

Dla listy zadań z infinite scroll:

// TasksListScreen.tsx
import { useTasksList } from './tasksHooks';

export function TasksListScreen({ navigation }) {
 const {
 data,
 isLoading,
 isError,
 error,
 fetchNextPage,
 hasNextPage,
 isFetchingNextPage,
 refetch
 } = useTasksList();

 if (isLoading) {
 return <ActivityIndicator size="large" color="#000" style={{ flex: 1, justifyContent: 'center' }} />;
 }
 if (isError) {
 return (
 <View style={{ padding: 20 }}>

 <Text style={{ color: 'red' }}>Błąd ładowania listy zadań: {error.message}</Text>
 <Button title="Spróbuj ponownie" onPress={refetch} />
 </View>
);
 }

 const tasks = data.pages.flatMap(pageData => pageData.tasks); // załóżmy, że API zwraca {tasks: [], nextPage:
...}

 return (
 <FlatList
 data={tasks}
 keyExtractor={task => task.id.toString()}
 renderItem={({ item }) => (
 <TaskListItem task={item} onPress={() => navigation.navigate('TaskDetails', { id: item.id })} />
)}
 onEndReached={() => { if (hasNextPage) fetchNextPage(); }}
 onEndReachedThreshold={0.5}
 ListFooterComponent={ isFetchingNextPage ? <ActivityIndicator /> : null }
 refreshing={ isLoading } {/* ewentualnie obsługa pull-to-refresh */}
 onRefresh={ refetch }
 />
);
}

Tutaj:

 Korzystamy z useTasksList(). Gdy ładuje pierwszą stronę (isLoading true) pokazujemy
duży spinner centrycznie.

 Jeśli błąd (isError), pokazujemy komunikat i przycisk, który wywoła refetch (ponowne
pobranie).

 Gdy dane są, łączymy wszystkie strony w jedną tablicę tasks.
 FlatList wyświetla każdy task poprzez komponent TaskListItem (to może być np.

element listy z checkboxem ukończenia, itd. – szczegóły stylizacji pomijamy).
 onEndReached logic jak omawialiśmy.
 refreshing/onRefresh umożliwia także odświeżenie gestem – użyliśmy isLoading co tutaj

przy powrocie na ekran mogłoby być false jeśli dane w cache. Ewentualnie lepiej:
refreshing={isFetching && data} – czyli jeśli trwa fetch po pierwszym załadowaniu.

 (Założyliśmy, że API zwraca obiekt z kluczem tasks i nextPage. W naszym tasksApi
funkcjach powinniśmy to ewentualnie dostosować, ale to szczegół implementacji.)

Komponent dodawania/edycji zadania:

Załóżmy, że mamy ekran dodawania nowego zadania oraz edycji istniejącego zadania (np.
zmiana tytułu lub oznaczenie ukończenia). Możemy to rozwiązać różnie – np. ekran
"TaskDetails" z opcją edycji. Dla uproszczenia pokażemy tylko jak by wyglądało użycie
hooków useAddTask i useUpdateTask:

// NewTaskScreen.tsx
export function NewTaskScreen({ navigation }) {
 const { mutate: addTask, isLoading: isAdding } = useAddTask();
 const [title, setTitle] = useState('');

 const handleSave = () => {
 addTask(
 { title, completed: false },
 {
 onSuccess: () => {
 navigation.goBack(); // po dodaniu wróć do listy
 }
 }
);
 };

 return (
 <View style={{ padding: 20 }}>
 <Text>Nowe zadanie:</Text>
 <TextInput value={title} onChangeText={setTitle} placeholder="Tytuł zadania" />
 {isAdding && <ActivityIndicator />}
 <Button title="Dodaj" onPress={handleSave} disabled={isAdding || !title} />
 </View>
);
}

Tutaj useAddTask jest użyty. Gdy użytkownik kliknie "Dodaj":

 Wywołujemy addTask({ title, completed: false }, { onSuccess: ... }). Można w onSuccess
przekazać callback bezpośrednio w wywołaniu mutate jeśli chcemy wykonać akcję po
sukcesie (alternatywa do definiowania onSuccess w samym hooku, co i tak zrobiliśmy
dla invalidacji). Tutaj po sukcesie wracamy do poprzedniego ekranu.

 isAdding pozwala pokazać spinner lub zablokować przycisk by nie dodać wiele razy.
 Dzięki optymistycznej aktualizacji w onMutate listy, użytkownik wracając do listy od

razu zobaczy nowy wpis (półprzezroczysty by sygnalizować, że jeszcze się zapisuje –
to by trzeba dodać warunkowo styl w TaskListItem np. jeśli id jest tymczasowe albo
można bazować na useAddTask state tak jak w przykładzie UI optimistic wcześniej). W
naszym kodzie powyżej daliśmy ActivityIndicator dla isAdding elementu – to
uproszczony przykład, w praktyce wolelibyśmy np. przekazać jakiś flagę lub użyć
variables z useMutation.

Ekran edycji (np. oznacz jako ukończone):

// TaskDetailsScreen.tsx
export function TaskDetailsScreen({ route, navigation }) {
 const { id } = route.params;
 const { mutate: updateTask, isLoading: isUpdating } = useUpdateTask();
 const task = // ... załóżmy że przekazaliśmy obiekt task w nawigacji lub mamy useQuery do pojedynczego taska

 const toggleComplete = () => {
 updateTask({ id, updates: { completed: !task.completed } }, {
 onSuccess: () => {
 // można nawiguować z powrotem lub powiadomić
 }
 });
 };

 return (
 <View>
 <Text>{task.title}</Text>
 <Text>Status: {task.completed ? 'ukończone' : 'do zrobienia'}</Text>
 {isUpdating && <ActivityIndicator />}
 <Button title={task.completed ? "Oznacz jako nieukończone" : "Oznacz jako ukończone"}
 onPress={toggleComplete} disabled={isUpdating} />
 </View>
);
}

Tutaj useUpdateTask zadziała optymistycznie – natychmiast zmieni status na liście (jeśli lista
jest wyświetlana gdzieś, np. poprzedni ekran), bo onMutate zaktualizuje cache. Gdy wrócimy
na listę (jeśli używamy react-navigation stack, pewnie lista już została zaktualizowana w tle
dzięki temu), użytkownik widzi od razu zmianę.

Obsługa tokenów: dzięki interceptorowi, nasze żądania api.get, api.post automatycznie
dołączają token. Gdyby token był nieaktualny, interceptor odświeżania spróbuje go
naprawić.

Globalny błąd: jeśli odświeżenie się nie powiedzie i interceptor wyrzuci błąd 401, to możemy
przechwycić to np. globalnym error boundary lub w nawigacji wykryć i przenieść
użytkownika do ekranu logowania. Można też sprawdzić w onError mutacji czy błąd ma status
401 i np. wyświetlić modal "Sesja wygasła".

Brak sieci: Warto dodać nasłuchiwanie NetInfo i np. gdy isConnected === false, to:

 Zablokować przyciski dodawania/edycji (lub dać komunikat "Offline - nie można
zsynchronizować zmian").

 Pokazać baner offline jak wcześniej wspomniano.

React Query wraz z onlineManager może też spowodować, że kiedy sieć wróci, automatycznie
odświeży dane lub wykona zaległe mutacje (choć mutacje offline domyślnie od razu zwracają
błąd – TanStack Query ma osobne pluginy do persistowania mutacji offline, ale to
zaawansowane zagadnienie).

Debugowanie: Podczas tworzenia takiej aplikacji:

 Korzystaj z logów (console.log) wewnątrz onError, by sprawdzić co poszło nie tak.
 Sprawdzaj w Flipperze czy zapytania faktycznie wychodzą, jakie URL i statusy wracają.
 Użyj trybu debug w React Query – np. enableDevTools() w RN nie jest automatyczne, ale

można skorzystać z Flipper pluginu do React Query lub Reactotron plugin.
Wspomniany plugin Flipper (react-query-native-devtools) pozwala podejrzeć aktywne
query, cache, etc., co może być ogromnie pomocne w zrozumieniu co się dzieje w
React Query. W razie problemów z cache, można też wywołać
queryClient.getQueryData(['tasks']) w konsoli debuggera, by zobaczyć co jest w pamięci.

Podsumowanie: Wykorzystując React Query w React Native możemy znacznie uprościć
pracę z siecią. Dostajemy automatyczną obsługę stanów zapytań, cache danych,
odświeżanie, a także mechanizmy zaawansowane jak optymistyczne aktualizacje czy infinite
scroll, które w czystym podejściu wymagałyby dużo kodu. Połączenie tego z biblioteką axios
(lub natywnym fetch) pozwala pokryć większość potrzeb: globalne nagłówki, obsługa
tokenów przez interceptory i bezpieczne przechowywanie poświadczeń. Pamiętajmy o
obsłudze błędów – zarówno tych od API (komunikaty dla użytkownika), jak i wyjątków JS
(Error Boundaries). Dzięki temu aplikacja będzie reagować w czytelny sposób nawet w
sytuacjach problemowych, co poprawi doświadczenie użytkownika.

Literatura:

1. https://tanstack.com/query/latest/docs/framework/react/overview (Data dostępu:
1.10.2025) – Oficjalna dokumentacja TanStack Query (React Query), opisująca zasady
zarządzania stanem danych asynchronicznych.

2. https://axios-http.com/docs/intro (Data dostępu: 1.10.2025) – Dokumentacja
biblioteki Axios, omawiająca konfigurację instancji, interceptory oraz automatyczne
przetwarzanie JSON.

3. https://reactnative.dev/docs/network (Data dostępu: 1.10.2025) – Oficjalny
przewodnik React Native dotyczący wykonywania zapytań sieciowych za pomocą
Fetch API.

4. https://docs.expo.dev/versions/latest/sdk/securestore/ (Data dostępu: 1.10.2025) –
Dokumentacja modułu Expo SecureStore, służącego do bezpiecznego
przechowywania tokenów uwierzytelniających.

5. https://github.com/react-native-netinfo/react-native-netinfo (Data dostępu:
1.10.2025) – Dokumentacja biblioteki NetInfo, niezbędnej do monitorowania stanu
połączenia sieciowego w aplikacjach mobilnych.

https://tanstack.com/query/latest/docs/framework/react/overview
https://axios-http.com/docs/intro
https://reactnative.dev/docs/network
https://docs.expo.dev/versions/latest/sdk/securestore/
https://github.com/react-native-netinfo/react-native-netinfo

