
POLITECHNIKA ŚWIĘTOKRZYSKA

Aplikacje mobilne – wykład
5

Formularze i walidacja w React Native

Mateusz Pawełkiewicz

1.10.2025

Wprowadzenie

Formularze stanowią kluczowy element większości aplikacji mobilnych – pozwalają
użytkownikom wprowadzać dane, logować się, rejestrować konta czy składać zamówienia.
Implementacja formularzy w React Native wymaga uwzględnienia specyfiki platform
mobilnych, takich jak obsługa klawiatury ekranowej czy zapewnienie odpowiedniej walidacji
wprowadzanych danych. W 2025 roku dysponujemy nowoczesnymi bibliotekami i wzorcami,
które upraszczają tworzenie formularzy i poprawiają doświadczenie użytkownika (UX). W
niniejszym wykładzie omówimy szczegółowo:

 Podstawowe komponenty formularza w RN, m.in. TextInput, obsługę zdarzeń
fokus/blur oraz sposoby unikania zasłonięcia pól przez klawiaturę (np. za pomocą
KeyboardAvoidingView).

 Wykorzystanie biblioteki react-hook-form do łatwego zarządzania stanem
formularza, w tym komponent Controller, obsługę błędów i zdarzenia onSubmit.

 Walidację schematyczną przy użyciu bibliotek Zod lub Yup – porównamy je,
pokażemy integrację z react-hook-form i sposób generowania komunikatów błędów.

 Najlepsze praktyki UX formularzy mobilnych: użycie pól wyboru (pickerów), date-
pickerów, masek na pola tekstowe (np. numer telefonu), przełączanie focusu między
polami, obsługa przycisku submit oraz kwestii dostępności (accessibility).

 Kompleksowy przykład (demo): zaimplementujemy od podstaw formularz
rejestracji/logowania z wykorzystaniem react-hook-form i Zod, z pełną walidacją i
poprawnym UX mobilnym.

Komponenty formularza w React Native

React Native dostarcza podstawowe komponenty do budowy formularzy, z których
najważniejszym jest TextInput – służący do wprowadzania tekstu przez użytkownika. Oprócz
niego często wykorzystujemy przełączniki (Switch), przyciski (Button lub dotykowe
komponenty z rodziny Touchable*), a także komponenty z bibliotek zewnętrznych (np. pickery
dat czy list rozwijanych). W tej części skupimy się na TextInput oraz powiązanych
zagadnieniach: zdarzeniach focus/blur i obsłudze klawiatury ekranowej.

TextInput – podstawy i zdarzenia focus/blur

TextInput jest bazowym komponentem RN do wpisywania tekstu. Działa podobnie jak <input>
w React (web), lecz posiada własne właściwości i metody. Najważniejsze cechy:

 Możemy nasłuchiwać zdarzeń onChangeText (każda zmiana tekstu), onFocus (wejście w
pole) i onBlur (wyjście z pola). Umożliwia to np. dynamiczne zmiany stylu pola,
walidację po opuszczeniu, itp.

 Komponent udostępnia metody .focus() i .blur() do programowego ustawiania lub
zabierania fokusu. Dokumentacja RN wskazuje, że TextInput posiada metody .focus() i
.blur() umożliwiające odpowiednio ustawienie fokusu na polu lub jego usunięcie. Dzięki
nim możemy np. automatycznie przenieść fokus na kolejne pole formularza.

 Wiele właściwości pozwala dostosować klawiaturę ekranową: np. keyboardType
(określa typ klawiatury, np. numeryczna, email), secureTextEntry (tryb hasła),
returnKeyType (tekst przycisku return/enter na klawiaturze – np. „Next” lub „Done”),
czy autoCapitalize (auto-kapitalizacja liter). Odpowiednie ustawienie tych opcji
poprawia UX – np. dla pola email ustawiamy keyboardType="email-address" i
autoCapitalize="none".

 Na iOS możemy użyć też textContentType i autoComplete aby skorzystać z mechanizmów
autofill systemu (np. textContentType="emailAddress" podpowiada zapamiętane e-maile
użytkownika). Warto to wykorzystywać wrażliwie, by ułatwić użytkownikom
wypełnianie formularzy.

Zdarzenia fokus i blur: React Native pozwala reagować na moment, gdy pole zostaje
aktywowane (fokus) lub opuszczone (utrata fokusu). Typowe zastosowania:

 Zmiana obramowania lub tła pola, aby wyróżnić aktualnie edytowane pole.
 Walidacja po opuszczeniu pola – np. gdy użytkownik wyjdzie z pola, sprawdzamy czy

wartość jest poprawna i ewentualnie wyświetlamy komunikat błędu.
 Śledzenie „odwiedzonych” pól (tzw. touched fields) – to ważne przy wyświetlaniu

błędów dopiero po tym, jak użytkownik próbował coś wpisać.

W praktyce do obsługi tych zdarzeń przypisujemy funkcje do propsów onFocus i onBlur. Jeśli
korzystamy z biblioteki formularzy (jak react-hook-form), to często nie musimy ręcznie
obsługiwać touched – biblioteka może oznaczać pole jako „touched” automatycznie przy
blur.

Unikanie zasłonięcia pól przez klawiaturę

Na urządzeniach mobilnych klawiatura ekranowa potrafi zająć sporą część ekranu i zasłonić
pola tekstowe znajdujące się niżej. Bez odpowiednich działań użytkownik może nie widzieć,
co wpisuje. Istnieje kilka technik radzenia sobie z tym problemem:

 KeyboardAvoidingView: Jest to wbudowany komponent RN, który automatycznie
dostosowuje wysokość lub pozycję widoku rodzica, gdy pojawia się klawiatura, tak
aby aktywne pole pozostało widoczne. Najczęściej opakowuje się cały ekran (lub
sekcję z formularzem) w <KeyboardAvoidingView behavior="padding" /> lub "position" – dla
iOS zwykle sprawdza się behavior="padding", dla Androida czasem lepszy jest "height".
Należy także ustawić keyboardVerticalOffset jeśli używamy np. headera – pozwala to
skorygować pozycję o wysokość nagłówka. KeyboardAvoidingView to proste
rozwiązanie, ale czasem bywa niewystarczające (np. przy bardzo długich
formularzach).

 ScrollView z opcją przewijania: Opakowanie formularza w ScrollView pozwala
przewijać zawartość, dzięki czemu użytkownik może ręcznie przesunąć ekran, by
zobaczyć pola spod klawiatury. Dobrą praktyką jest ustawienie
keyboardShouldPersistTaps="handled" lub "always" – dzięki temu dotknięcie obszaru
ScrollView poza polem zamknie klawiaturę (jeśli żaden inny element nie obsłuży tego
dotyku). Rozwiązanie to zapobiega sytuacji, gdzie naciskanie na tło tylko chowa
klawiaturę (zamiast np. otworzyć inny przycisk). Wspomniany parametr sprawia, że

tapnięcia są przekazywane dalej, skutkując zamknięciem klawiatury tylko gdy
tapnięto w pusty obszar.

 Dismiss na tapnięcie w tło: Możemy ręcznie obsłużyć ukrycie klawiatury, gdy
użytkownik tapnie poza polem. RN udostępnia moduł Keyboard z metodą dismiss(),
która chowa klawiaturę. Typowy wzorzec to opakowanie całego ekranu w
TouchableWithoutFeedback lub Pressable, którego onPress wywołuje Keyboard.dismiss(). W ten
sposób kliknięcie w dowolne miejsce tła zamyka klawiaturę.

import { Keyboard, TouchableWithoutFeedback } from 'react-native';

const DismissKeyboardView: React.FC = ({ children }) => (
 <TouchableWithoutFeedback onPress={Keyboard.dismiss} accessible={false}>
 {children}
 </TouchableWithoutFeedback>
);

Następnie używamy <DismissKeyboardView> jako kontenera najwyższego poziomu ekranu
formularza. Ważny szczegół: ustawienie accessible={false} na tym wrapperze sprawia, że
element ten będzie ignorowany przez czytniki ekranu (VoiceOver/TalkBack) i nie zakłóci
dostępu do pól wejściowych. Gdybyśmy o tym zapomnieli, nasz dotykowy wrapper mógłby
zostać potraktowany jako element interfejsu przez mechanizmy dostępności, utrudniając
korzystanie z formularza osobom niewidomym.

Podsumowanie: Najlepsze efekty daje kombinacja powyższych podejść: np. cały ekran
objęty KeyboardAvoidingView + ScrollView z możliwością tapnięcia w tło + mechanizm
automatycznego dismiss. W praktyce można utworzyć komponent wyższego rzędu (HOC) lub
po prostu zagnieździć te elementy: KeyboardAvoidingView -> ScrollView (z keyboardShouldPersistTaps)
-> nasza zawartość formularza wewnątrz TouchableWithoutFeedback. Taki układ gwarantuje, że
pola nie zostaną zasłonięte, można przewijać długie formularze, a kliknięcie obok pola
schowa klawiaturę.

Przełączanie fokusu między polami

Na mobilnym UX istotne jest ułatwienie użytkownikowi szybkiego przechodzenia przez
formularz. Gdy użytkownik wypełni jedno pole i naciśnie przycisk „Dalej” (Next) na
klawiaturze, chcemy automatycznie przenieść fokus do kolejnego pola. W RN realizujemy to
następująco:

 Każdy TextInput (poza ostatnim) ustawiamy returnKeyType="next". Ostatniemu polu (np.
hasło przy logowaniu) dajemy returnKeyType="done" lub go – tak by użytkownik widział,
że kończy wprowadzanie.

 Na komponentach TextInput nasłuchujemy onSubmitEditing – zdarzenie wywoływane
po naciśnięciu przycisku „Enter/Next” na klawiaturze. Dla pierwszego pola
onSubmitEditing powinno wywołać .focus() na refie do drugiego pola, dla drugiego –
fokus na trzecie, itd. W ten sposób użytkownik może przechodzić przez pola bez
dotykania ekranu.

 Implementacja: korzystamy z referencji (useRef) do kolejnych TextInputów. Przykład
dla dwóch pól:

const passwordRef = useRef<TextInput>(null);

<TextInput
 placeholder="Email"
 returnKeyType="next"
 onSubmitEditing={() => passwordRef.current?.focus()}
/>
<TextInput
 ref={passwordRef}
 placeholder="Hasło"
 returnKeyType="done"
 onSubmitEditing={handleSubmit(onSubmit)} // dla ostatniego pola wywołujemy submit
/>

W powyższym kodzie, gdy użytkownik wpisując email naciśnie „Next”, wywołujemy
passwordRef.current.focus(), przenosząc kursor do pola hasła. Gdy jest w polu hasła i naciśnie
„Done”, wywołujemy handleSubmit(onSubmit) (metoda z react-hook-form) aby wysłać
formularz. Taka nawigacja znacznie poprawia ergonomię formularza.

Podsumowanie sekcji

Budując formularz w RN musimy zwrócić uwagę nie tylko na same pola, ale także na
otoczenie: klawiaturę i nawigację między polami. Stosując KeyboardAvoidingView, przewijanie
oraz mechanizm chowania klawiatury na tapnięcie zapewnimy, że użytkownik zawsze widzi
aktywne pole. Z kolei obsługa przycisku Next/Done na klawiaturze umożliwia szybkie
uzupełnianie formularza bez odrywania rąk od klawiatury. W kolejnych częściach
przejdziemy do biblioteki ułatwiającej zarządzanie stanem formularza i walidacją.

React Hook Form – zarządzanie stanem formularzy

React Hook Form (RHF) to obecnie jedna z najpopularniejszych bibliotek do obsługi
formularzy w ekosystemie React (w tym React Native). Jej pojawienie się zrewolucjonizowało
podejście do formularzy dzięki skupieniu na wydajności i prostocie.

Dlaczego React Hook Form?

Tradycyjne podejście do formularzy w React (kontrolowanie wartości inputów przez state i
obsługa na onChange) bywa nieefektywne – każda zmiana powoduje render komponentu, co
w przypadku wielu pól jest kosztowne. React Hook Form został zaprojektowany z myślą o
wykorzystaniu niekontrolowanych komponentów i referencji, minimalizując liczbę
renderów potrzebnych do obsługi formularza. Według dokumentacji: react-hook-form
buduje formularze w oparciu o niekontrolowane inputy, dążąc do maksymalnej wydajności i
minimalnej liczby ponownych renderowań. Dzięki temu idealnie nadaje się do React Native,
gdzie nadmierne renderowanie pól (zwłaszcza tych z animacjami lub formatowaniem) może
powodować widoczne opóźnienia.

Kilka kluczowych zalet RHF:

 Wydajność: RHF nie trzyma wartości każdego pola w stanie komponentu React, tylko
polega na natywnych elementach (TextInput) i referencjach. Aktualizuje stan Reacta
tylko wtedy, gdy jest to konieczne (np. wystąpi błąd walidacji). To oznacza minimalne
ponowne renderowanie i lepszą wydajność w porównaniu z podejściem
kontrolowanym.

 Prostota API: Biblioteka udostępnia hook useForm, który dostarcza narzędzia do
obsługi formularza (np. register, handleSubmit, errors). Integruje się z natywnymi
elementami formularza w React i RN, nie wymuszając użycia specjalnych
komponentów formularza (jak to czyni Formik).

 Integracja z walidatorami: RHF łatwo łączy się z zewnętrznymi bibliotekami walidacji
schematów (Yup, Zod itp.) poprzez tzw. resolvers. Możemy więc definiować reguły
walidacji w jednym miejscu i mieć zarówno walidację jak i typowanie danych.

 Mniejsze gabaryty i zależności: RHF jest dość lekką biblioteką, bez dużych zależności,
co ma znaczenie w aplikacjach mobilnych (rozmiar pakietu).

 Społeczność i wsparcie: Stała się standardem de-facto w nowych projektach, stąd
dużo materiałów, przykładów i aktywne wsparcie.

Podstawy użycia react-hook-form w RN

Aby skorzystać z RHF, należy zainstalować pakiet:

npm install react-hook-form @hookform/resolvers

Uwaga: @hookform/resolvers to dodatkowy pakiet, który zawiera tzw. resolvery do integracji z
bibliotekami walidacji (Yup, Zod itp.). Wrócimy do niego w sekcji o walidacji schematów.

Najważniejszy hook to useForm – wywołujemy go wewnątrz komponentu, który zawiera
formularz. Przykład użycia w komponencie funkcyjnym:

import { useForm } from 'react-hook-form';

type FormData = {
 email: string;
 password: string;
};

const { control, handleSubmit, formState: { errors } } = useForm<FormData>();

Tutaj wywołaliśmy useForm<FormData>() przekazując opcjonalnie generyczny typ formularza
(dzięki temu errors itp. będą typowane). Otrzymujemy obiekt z kilkoma właściwościami:

 control: obiekt kontrolny formularza, potrzebny m.in. do powiązania z komponentem
Controller.

 handleSubmit: funkcja służąca do obsługi wysłania formularza. Używamy jej, by
owrapować naszą funkcję onSubmit – zapewnia walidację i przekazuje nam zebrane
dane jeśli wszystko jest OK.

 formState: { errors }: obiekt zawierający ewentualne błędy walidacji dla pól (właściwości
odpowiadają nazwom pól). Jeśli dane pole ma błąd, errors.fieldName będzie zawierać
np. message z komunikatem.

 (Opcjonalnie register – jednak w kontekście React Native zwykle zamiast manualnego
rejestrowania inputów korzysta się z Controller, o czym dalej).

Standardowo w RN nie mamy elementu <form> jak w web, więc nie ma zdarzenia onSubmit
formularza – dlatego używamy handleSubmit. W praktyce często robimy coś takiego przy
przycisku Submit:

<TouchableOpacity onPress={handleSubmit(onSubmit)}>
 <Text>Wyślij</Text>
</TouchableOpacity>

Wywołanie handleSubmit(onSubmit) zwraca funkcję, która po kliknięciu: przeprowadzi walidację
wszystkich pól, a jeśli przejdzie pomyślnie, wywoła nasz onSubmit(data) z obiektem danych.
Dzięki temu mamy pewność, że onSubmit dostaje tylko poprawne dane (w przeciwnym razie
onSubmit się nie wykona, a błędy zostaną zapisane w errors).

Użycie komponentu Controller w React Native

W React Hook Form na web (np. z <input>), często stosuje się atrybut ref lub register
bezpośrednio na polu, np. <input {...register('email')}>. Jednak w przypadku React Native i
TextInput nie mamy łatwego sposobu na zarejestrowanie go poprzez ref (komponent nie jest
czysto HTML-owy). Zamiast tego biblioteka RHF dostarcza komponent <Controller>, który pełni
rolę „mostu” między naszą logiką formularza a komponentem interfejsu.

Controller przyjmuje kilka propsów:

 name – nazwa pola (musi odpowiadać kluczowi w obiekcie danych formularza).
 control – przekazujemy tutaj obiekt control uzyskany z useForm().
 rules (opcjonalnie) – obiekt z podstawowymi regułami walidacji (jeśli nie korzystamy z

resolvera schematów). Możemy tu ustawić np. required: true albo bardziej
szczegółowo: maxLength: { value: 100, message: "Max 100 znaków" }.

 render – funkcja renderująca, która powinna zwrócić nasz właściwy komponent
inputu. Ta funkcja otrzymuje pewne parametry (rozpakowywane często jako { field: {

onChange, onBlur, value } }), które musimy przekazać do naszego komponentu
wejściowego.

Aby lepiej zrozumieć, spójrzmy na fragment kodu z użyciem Controller dla pola tekstowego:

<Controller
 control={control}
 name="email"
 rules={{
 required: "Email jest wymagany",
 pattern: { value: /\S+@\S+\.\S+/, message: "Nieprawidłowy email" }
 }}
 render={({ field: { onChange, onBlur, value } }) => (
 <View style={styles.inputGroup}>

 <TextInput
 placeholder="E-mail"
 keyboardType="email-address"
 autoCapitalize="none"
 value={value}
 onChangeText={onChange}
 onBlur={onBlur}
 style={styles.input}
 />
 {errors.email && (
 <Text style={styles.errorText}>{errors.email.message}</Text>
)}
 </View>
)}
/>

Wyjaśnienie:

 Przekazujemy control z naszego formularza oraz name="email" – dzięki temu Controller
„wie”, z którym polem pracuje.

 W rules zdefiniowaliśmy, że email jest wymagany (komunikat błędu, jeśli pusty) i
powinien pasować do prostego regexu adresu email (inaczej pokaże komunikat
nieprawidłowego formatu). Uwaga: Powyższe podejście z rules pokazuje wbudowaną
walidację RHF. W dalszej części zobaczymy, jak można użyć zamiast tego walidacji
schematem (Yup/Zod).

 Prop render to funkcja, która dostaje obiekt zawierający m.in. field: { onChange, onBlur,

value, name }. Destrukturyzujemy to i używamy:
o onChange przypisujemy do onChangeText TextInputa – dzięki temu każda zmiana

tekstu uaktualni wartość w stanie formularza. Ważne: nie wywołujemy tu
setState własnego – RHF sam zarządza wartością.

o onBlur przypisujemy do onBlur TextInputa – w momencie opuszczenia pola RHF
oznaczy to pole jako „dotknięte” i ewentualnie uruchomi walidację (np.
pokaże błąd "required" jeśli puste).

o value przypisujemy do value komponentu – wartość kontrolowana jest przez
RHF.

 Następnie w JSX obok pola warunkowo renderujemy komunikat błędu jeśli errors.email
istnieje. errors.email.message będzie zawierało tekst błędu przekazany w rules (lub z
resolvera schematu).

Dzięki Controllerowi możemy korzystać z niekontrolowanych komponentów RN, a
jednocześnie podpiąć je pod kontrolę biblioteki formularza.

Kilka uwag praktycznych:

 Nie musimy używać Controller dla każdego elementu. Jeśli np. mamy prosty
przełącznik Switch lub suwak, możemy często zarejestrować go inaczej. Jednak w
większości przypadków w RN jest to najwygodniejsza metoda.

 Istnieje również hook useController dający podobny efekt w komponencie bez JSX, ale
zazwyczaj prostszy jest komponent <Controller> w JSX.

 rules obsługuje podstawowe walidacje – jednak przy bardziej złożonych warunkach
lub wielu polach zależnych od siebie, lepiej użyć walidatora schematów.

 Gdy używamy walidacji schematem (resolver), nie trzeba duplikować reguł w rules –
możemy je wtedy pominąć lub użyć do drobnych dodatkowych spraw (np. rules={{

required: true }} tylko do oznaczenia obowiązkowości – choć i to może być w
schemacie).

Obsługa błędów i komunikatów

RHF udostępnia w formState.errors informacje o błędach. Każdy wpis errors[namePola] zawiera
m.in. message (jeśli zdefiniowaliśmy komunikat w rules lub dostarcza go walidator schematu),
type (typ błędu, np. "required", "maxLength" itp.), a także inne informacje (np. actual i required
przy walidacji długości).

Najprostsze podejście to wyświetlać błąd pod polem, co zostało pokazane wyżej. Kilka
dobrych praktyk:

 Komunikaty błędów powinny być krótkie, zrozumiałe i pomagać poprawić dane (np.
„Hasło musi mieć co najmniej 8 znaków”).

 Warto stylować błędy wyróżniającym kolorem (czerwony) i np. mniejszą czcionką.
 Można też oznaczać pola z błędem wizualnie (np. czerwonym obramowaniem). W

tym celu możemy dodać do stylu TextInputa warunek: style={[styles.input, errors.password

&& styles.inputError]} – wcześniej definiując w styles.inputError np. borderColor: 'red'.

Jeśli chodzi o UX wyświetlania błędów – często lepiej pokazywać błędy dopiero gdy
użytkownik zakończył interakcję z polem (onBlur) lub próbował wysłać formularz. RHF
wspiera to – domyślnie handleSubmit oznacza wszystkie pola jako touched przy próbie wysłania,
więc błędy się pokażą. Możemy też zmienić domyślne ustawienia, np. useForm({ mode: 'onBlur' })
spowoduje, że walidacja będzie wykonywana po opuszczeniu pola, a mode: 'onChange' – na
bieżąco w trakcie pisania (co czasem bywa zbyt agresywne). Domyślne mode to 'onSubmit'
(walidacja głównie przy submit, ale błędy i tak możemy wyświetlać wcześniej jeśli pole jest
touched).

Podsumowując pracę z RHF: Nasz komponent formularza w RN będzie zawierał:

 Inicjalizację useForm z odpowiednim resolver (jeśli używamy Yup/Zod) lub z defaultValues
(jeśli potrzebujemy).

 Kilka <Controller> odpowiadających polom, wewnątrz których znajdują się konkretne
<TextInput> lub inne elementy (Picker, Switch etc.) powiązane przez onChange/value.

 Elementy tekstowe wyświetlające błędy pod polami.
 Przycisk Submit (TouchableOpacity/Button) wywołujący handleSubmit(onSubmit).
 Ewentualnie dodatkowe przyciski, np. „Reset” (który może użyć reset() z RHF) lub

nawigacja (np. link „Masz już konto? Zaloguj” – choć to poza samym formularzem).

Przejdźmy teraz do kluczowej kwestii walidacji – zwłaszcza z użyciem zewnętrznych bibliotek
do definiowania reguł.

Schematyczna walidacja formularzy (Zod vs Yup)

Walidacja schematyczna polega na zdefiniowaniu struktury danych (schematu) i reguł dla
poszczególnych pól, a następnie wykorzystaniu tego schematu do zweryfikowania
poprawności danych. Podejście to ma kilka zalet:

 Centralizacja reguł: Wszystkie zasady walidacji zebrane są w jednym miejscu
(schemacie), a nie porozrzucane po komponentach.

 Możliwość ponownego użycia: Ten sam schemat można zastosować po stronie
frontendu (dla wstępnej walidacji) i backendu (dla ostatecznej walidacji danych np.
przed zapisaniem do bazy), co redukuje duplikację.

 Lepsza integracja z TypeScript: Biblioteki takie jak Zod pozwalają automatycznie
wyprowadzić typ TypeScript na podstawie schematu walidacji. Dzięki temu nasze
dane formularza mogą mieć typy ściśle zgodne z regułami walidacji – co zwiększa
bezpieczeństwo i wygodę pracy.

W ekosystemie React dominują dwie biblioteki do walidacji schematów: Yup (długo
popularna, dobrze zintegrowana z Formikiem) i Zod (stosunkowo nowsza, zyskująca na
popularności ze względu na ścisłą integrację z TypeScript). Przyjrzyjmy się krótko obu:

 Yup: Walidator wzorowany na bibliotece Joi (znanej z Node.js). Pozwala
deklaratywnie tworzyć schematy za pomocą łańcuchowania metod (np.
yup.string().email().required() dla pola email). Ma wbudowane walidacje typów prostych,
stringów, liczb, tablic itp., obsługuje zależności między polami (ref do innego pola,
metoda when do warunkowej walidacji).

 Zod: Biblioteka od podstaw zaprojektowana pod TypeScript. Tworzenie schematu
polega na wywoływaniu funkcji (np. z.string().email()), bardzo podobnie do Yup, ale
każdy schemat Zod jest jednocześnie typem TypeScript – możemy użyć z.infer<typeof

schema> by uzyskać typ. Zod wymusza parsing danych (metoda .parse() albo bezpieczna
.safeParse()), integruje walidację i parse w jedno (co zmniejsza ryzyko niespójności
typów).

Porównanie: Obie biblioteki osiągają podobne cele, składnia jest zbliżona. W praktyce:

 Yup jest „starszy”, więc wiele przykładów i projektów (zwłaszcza z Formikiem) go
używa. Ma dojrzałe API, ale integracja z TS jest nieco sztukowana (Yup potrafi
generować typy, ale bywa to zawodne przy bardziej złożonych schematach).

 Zod jest „nowszy” i TS-first – każdy schemat to źródło prawdy dla walidacji i typów.
Zod nie pozwoli np. użyć wartości spoza zdefiniowanego enumu bez zgłoszenia błędu
typów (przy użyciu infer). Posiada też lepsze mechanizmy walidacji złożonej
(refinements) i łatwiej nim walidować zagnieżdżone struktury oraz pola zależne
logicznie.

Integracja schematów z react-hook-form (resolvers)

React Hook Form udostępnia wspomniany pakiet @hookform/resolvers, który zawiera gotowe
integracje z różnymi bibliotekami walidacji (Yup, Zod, Joi, AJV itp.). Dzięki temu możemy
dodać do useForm opcję resolver, a RHF zajmie się resztą – tj. przy wywołaniu handleSubmit
automatycznie zweryfikuje dane schematem i wypełni obiekt errors ewentualnymi błędami.

Przykład z Zod: Załóżmy, że mamy schemat Zod:

import { z } from 'zod';

const LoginSchema = z.object({
 email: z.string().email("Nieprawidłowy format email").nonempty("Email jest wymagany"),
 password: z.string().min(6, "Hasło musi mieć min. 6 znaków").nonempty("Hasło jest wymagane"),
});

Tutaj zdefiniowaliśmy, że email musi być niepusty i w formacie email, a hasło niepuste i min.
6 znaków. Możemy teraz zrobić:

import { useForm } from 'react-hook-form';
import { zodResolver } from '@hookform/resolvers/zod';

type LoginData = z.infer<typeof LoginSchema>; // automatyczny typ danych na podstawie schematu

const { control, handleSubmit, formState: { errors } } = useForm<LoginData>({
 resolver: zodResolver(LoginSchema)
});

To jedno przypisanie resolver: zodResolver(LoginSchema) sprawia, że gdy użytkownik będzie
wysyłał formularz, RHF:

 pobierze aktualne wartości wszystkich pól,
 przekaże je do walidatora Zod,
 otrzyma wynik walidacji – jeżeli są błędy, automatycznie wypełni errors i NIE wywoła

onSubmit; jeżeli brak błędów, pozwoli wywołać onSubmit z danymi.

Warto wspomnieć, że resolvery mogą także wykonywać pewne transformacje – np. Zod
może sparsować dane (np. zamienić string na number jeśli tak zdefiniujemy). RHF domyślnie
używa mode: 'onSubmit' przy użyciu resolvera, ale można to zmienić (np. mode: 'onBlur' aby
walidować każde pole po wyjściu).

Komunikaty błędów: W schemacie powyżej zauważmy, że przy każdym ograniczeniu
przekazaliśmy komunikat (np. "Nieprawidłowy format email"). Zod pozwala w metodach jak
.email() czy .min() od razu podać wiadomość błędu, która będzie zwrócona. Yup ma podobny
mechanizm – np. .min(6, "Hasło za krótkie"). Dobrą praktyką jest zdefiniowanie wszystkich
tekstów błędów w jednym miejscu (schemacie), co ułatwia ewentualne tłumaczenia lub
modyfikacje. RHF poprzez resolver automatycznie ustawi te komunikaty w
errors[field].message, więc w komponencie możemy je wyświetlać tak jak wcześniej.

Walidacja między polami: Często potrzebujemy sprawdzić zależności, np. potwierdzenie
hasła musi się zgadzać z hasłem. Jak to zrobić? Można wykorzystać mechanizmy schematu:

 W Yup można użyć .oneOf([yup.ref('password')], "Hasła muszą być takie same") dla pola
confirmPassword, albo użyć .test() z dostępem do całego obiektu (this.parent).

 W Zod możemy użyć .superRefine() lub .refine() na obiekcie. Przykład:

const RegisterSchema = z.object({
 password: z.string().min(6, "Min 6 znaków"),
 confirm: z.string()
}).refine(data => data.confirm === data.password, {
 path: ['confirm'], // wskazujemy, że błąd dotyczy pola confirm
 message: "Hasła nie są zgodne"
});

Powyższe wywołanie .refine doda własną regułę walidacyjną na poziomie całego obiektu:
jeżeli warunek (confirm === password) nie będzie spełniony, to wygeneruje błąd przypisany
do pola confirm z podanym komunikatem. Zod pozwala też w superRefine mieć dostęp do
kontekstu walidacji, w którym można dodać wiele błędów dla różnych pól naraz (np.
sprawdzanie spójności daty „od” i „do” itp.).

Wynik walidacji a TypeScript: W przypadku Zod, użycie z.infer<typeof schema> zapewnia, że
obiekt danych LoginData dokładnie odpowiada schematowi (np. email jest stringiem, hasło
stringiem, itp.). W Yup, możemy użyć InferType<typeof schema> z pakietu yup (Yup ma
yup.InferType), ale jest pewne ryzyko, że definicja typów nie odda wszystkich złożonych
zależności. Zod gwarantuje, że jeśli walidacja przejdzie, dane wyjściowe spełniają podany typ,
bo samo walidowanie odbywa się metodą .parse która rzuci wyjątek przy niezgodności typów.
W Yup walidacja jest oddzielona od mechanizmu typowania (bardziej opiera się na zaufaniu
programisty, że dane pasują do zadanego interfejsu). Jak wskazuje analiza, Zod eliminuje
ryzyko niespójności między typami a walidacją – schemat jest jedynym źródłem prawdy dla
obu.

Którą bibliotekę wybrać?

W 2025 roku wybór często pada na Zod w nowych projektach TS, natomiast Yup w
istniejących projektach może pozostać z uwagi na dojrzałość i przyzwyczajenie. Obie spełnią
swoje zadanie. Z perspektywy React Native i wydajności nie ma dużej różnicy – walidacja i
tak odbywa się w JavaScripcie (choć można tu dodać, że Zod bywa minimalnie szybszy przy
prostszych schematach, a Yup nieco szybszy przy bardzo złożonych – ale nie jest to
zauważalna różnica).

Jeśli zależy nam na pełnym wykorzystaniu TypeScript – Zod daje przewagę. Jeśli mamy
gotowe schematy w Yup (np. z wcześniejszego projektu) i działają – nie ma konieczności
przepisywania na Zod na siłę.

Integracja z RHF jest świetna dla obu: wystarczy wybrać odpowiedni resolver (yupResolver lub
zodResolver). Przykład integracji z Yup z kodu : użyto resolver: yupResolver(loginSchema) przy
inicjacji useForm, co analogicznie jak w naszym przykładzie z Zod włącza walidację schematu
przy submit.

Na zakończenie tej sekcji warto podkreślić: Niezależnie czy użyjemy Yup czy Zod, centralne
definiowanie walidacji bardzo ułatwia rozwój i utrzymanie formularzy. Dzięki temu unikamy
rozproszenia logiki po wielu miejscach i możemy łatwo modyfikować reguły (np. zmiana
minimalnej długości hasła w jednym miejscu).

UX formularzy mobilnych – dobre praktyki

Oprócz poprawnej funkcjonalności i walidacji formularza, musimy zadbać o doświadczenie
użytkownika (UX). Użytkownicy mobilni oczekują, że formularz będzie wygodny, intuicyjny
oraz dostosowany do urządzenia (np. użyje odpowiedniej klawiatury dla pola numeru
telefonu). Omówmy kluczowe aspekty UX formularzy na platformach mobilnych:

Przyjazne komponenty wejściowe

Select / Picker (listy wyboru): Czasem pola formularza powinny pozwolić użytkownikowi
wybrać jedną z predefiniowanych opcji (np. kraj, płeć, przedział wiekowy). Na web
zrobilibyśmy <select>, a w RN? RN do wersji 0.65 posiadał wbudowany Picker, obecnie jest on
dostępny jako osobny pakiet @react-native-picker/picker. Picker w iOS prezentuje się jako
klasyczny obracany wybierak na dole ekranu, a na Androidzie jako rozwijana lista lub modal.
Dobre praktyki:

 Dla małych list (kilka opcji) można ewentualnie użyć ActionSheet (iOS) lub Modal z
własną listą opcji – ale najlepiej użyć natywnego pickera dla spójności doświadczenia
użytkownika.

 Integracja pickera z RHF: można opakować go Controllerem podobnie jak TextInput.
Ponieważ picker nie ma onChangeText, ale np. onValueChange, musimy odpowiednio
przekazać: onChange -> onValueChange, value -> selectedValue.

 Upewnij się, że dla pickera ustawiona jest wartość domyślna lub placeholder typu
„Wybierz opcję…”, aby użytkownik wiedział, że trzeba coś wybrać. W walidacji
możemy traktować brak wyboru jako błąd wymagany.

DatePicker (wybór daty/czasu): Wiele formularzy wymaga dat (np. data urodzenia, termin
rezerwacji). W mobilnym UX nie zmuszamy użytkownika do wpisywania daty ręcznie –
zamiast tego używamy natywnych kontrolek wyboru daty/czasu. W RN standardem jest
biblioteka @react-native-community/datetimepicker, która udostępnia natywne okna
wyboru daty i czasu (iOS: rolki lub kalendarz, Android: dialog). Jak to włączyć:

 Można użyć trybu inline (embedding) na iOS, jednak częściej pojawia się jako
modal/dialog po interakcji. Zazwyczaj robimy tak: w miejscu gdzie data ma być
wybrana dajemy tekstowe pole (np. TextInput lub po prostu TouchableOpacity
wyświetlające bieżący wybór), i po kliknięciu ustawiamy stan showDatePicker = true,
który powoduje wyświetlenie komponentu DateTimePicker. Po wyborze daty wywoła
on onChange – tam wyłączamy widoczność i ustawiamy wybraną datę w stanie
formularza.

 Integracja z RHF: możemy traktować pole daty jako zwykłą wartość. Najprościej –
przechowywać datę w stanie komponentu (useState) i w onChange pickera wywoływać
setValue('birthDate', selectedDate) z RHF (dostajemy setValue z useForm()). Alternatywnie,

można zrobić własny kontrolowany komponent DatePicker i użyć Controller (gdzie w
render będzie nasz mechanizm wyświetlania i modalu).

 Walidacja daty: Zod ma typ z.date() do walidacji obiektu daty, Yup ma date().
Pamiętajmy, że date-picker zwraca obiekt typu Date (nie string), więc nasz schemat i
typ formularza też powinien to przewidywać.

Masked Input (maski formatowania): Wprowadzanie danych takich jak numer telefonu,
PESEL, karta kredytowa, kod pocztowy itp. bywa obarczone specyficznym formatem. Maski
wejściowe to rozwiązanie, które dynamicznie formatuje wpisywany tekst zgodnie z
określonym wzorcem, ułatwiając użytkownikowi zadanie i zapobiegając błędom
formatowania. Przykładowo: numer telefonu może automatycznie pojawiać się jako 123-456-

789 w trakcie wpisywania, a kod kredytowy w grupach po 4 cyfry.

W RN istnieje kilka bibliotek do masek, m.in.:

 react-native-text-input-mask – popularna biblioteka napisana częściowo w
natywnym kodzie (iOS/Android), oferująca wydajne maskowanie bez opóźnień.

 react-native-mask-input – biblioteka czysto JS, łatwa w użyciu, korzystająca z
wyrażeń regularnych do definicji maski. Pozwala np. maskę numeru telefonu
zdefiniować jako mask={['+', /\d/, /\d/, ' ', /\d/, /\d/, /\d/, ...]}. Jest nieco mniej wydajna niż
natywne rozwiązania i może powodować krótkie mignięcie niepoprawnego znaku
przed usunięciem (bo maskowanie odbywa się po stronie JS).

 Inne: react-native-masked-text (starsza), react-input-mask (webowe podejście, raczej nie
RN), lub własne rozwiązanie (np. poprzez onChangeText i formatowanie tekstu
manualnie).

Czy warto używać maski? Tak, jeśli format jest ściśle określony i powszechnie używany
(telefony, daty, karty). Zwiększa to walidację prewencyjną – użytkownik nie wpisze złego
znaku, bo maska na to nie pozwoli. Ponadto poprawia czytelność (np. łatwiej odczytać
numer karty w grupach cyfr). Należy jednak:

 Wybrać bibliotekę maskującą rozważnie – np. react-native-text-input-mask zapewni
płynne działanie (ważne przy długich maskach), podczas gdy czysto JS-owe mogą
sporadycznie powodować efekt „jumpowania” kursora (zwłaszcza w nowych
architekturach RN). Wspomniana analiza pokazuje, że biblioteki działające w JS mogą
chwilowo pokazać niedozwolony znak zanim go usuną, bo maskowanie następuje
asynchronicznie po wpisaniu. Wrażenia te minimalizuje natywna implementacja.

 Pamiętać o integracji z RHF – maskowany input w gruncie rzeczy wciąż jest
TextInputem. Najprościej użyć Controller i wewnątrz w render użyć komponentu
maskującego (np. <MaskInput value={value} onChangeText={onChange} mask={...} />). W razie
problemów z wydajnością, można rozważyć nie kontrolować go przez RHF na każde
wpisanie, tylko użyć maski zewnętrznie i przekazywać gotową wartość np. dopiero
przy onBlur. To zaawansowany temat, ale wspominam, bo np. przy bardzo długich
formularzach z wieloma maskami, kontrolowanie ich wszystkich może jednak
generować pewne overheady.

 W walidacji i tak warto sprawdzić dane – np. zdjąć maskę i policzyć cyfry. Maski
pomagają, ale nie zastępują walidacji biznesowej (np. czy numer karty jest poprawny,

czy numer telefonu ma 9 cyfr – bo ktoś może wkleić tekst zamiast wpisywać
manualnie itp.).

Przykład użycia maski (fragment):

<Controller
 control={control}
 name="phone"
 render={({ field: { onChange, value } }) => (
 <MaskInput
 value={value}
 onChangeText={(formatted, raw) => {
 onChange(raw); // zapisujemy tylko cyfry (surowe)
 }}
 mask={['+','4','8',' ', /\d/, /\d/, /\d/, ' ', /\d/, /\d/, /\d/, ' ', /\d/, /\d/, /\d/]}
 placeholder="+48 ___ ___ ___"
 keyboardType="number-pad"
 />
)}
/>

Tutaj maska wymusza format polskiego numeru kierunkowego +48 i 9 cyfr z odstępami co 3.
Używamy funkcji onChangeText komponentu maski, która dostarcza formatted (sformatowany
tekst do wyświetlenia) oraz raw (sam ciąg cyfr) – zapisujemy w stanie formularza tylko raw
(np. do walidacji). Jednocześnie użytkownik widzi formatowany numer podczas wpisywania.

Nawigacja i interakcja

Kolejność focus (tab order): Już wcześniej omówiliśmy mechanizm przełączania fokusu
poprzez onSubmitEditing. Ważne jest, by ustawić tę kolejność logicznie odpowiadającą ułożeniu
pól na ekranie. Np. jeśli layout ma dwa pola w wierszu (co na mobilnych rzadziej, ale
możliwe), zastanówmy się czy focus ma iść wierszami czy kolumnami – zwykle naturalnie
wierszami. W RN kolejność fokusów to kolejność w strukturze komponentów, a
onSubmitEditing daje pełną kontrolę – co oznacza, że musimy to jawnie obsłużyć. Testujmy na
urządzeniu: wpisywanie i naciskanie Next powinno intuicyjnie przejść do następnego pola, a
Done wysłać formularz.

Przycisk Submit: Powinien być wyraźnie widoczny po wypełnieniu formularza. Często styluje
się go wyróżniającym kolorem i umieszcza na dole ekranu (ale tak, by przy wysuniętej
klawiaturze też był dostępny – np. wewnątrz ScrollView, który można przewinąć).

 Dezaktywacja przycisku: Dobrym zwyczajem jest dezaktywowanie przycisku „Wyślij”
dopóki formularz ma niepoprawne lub brakujące dane. Np. jeśli korzystamy z RHF,
można wykorzystać formState.isValid (dostępne, gdy podamy mode: 'onChange' lub
użyjemy useForm({ mode: 'onChange', reValidateMode: 'onChange' }) – wtedy isValid będzie
true tylko gdy wszystkie reguły spełnione). Alternatywnie, można po prostu
disable'ować przycisk, dopóki wymagane pola nie są wypełnione – choć to wymaga
własnej logiki. W każdym razie zapobiegamy wtedy frustracji, że kliknięcie nic nie robi
(albo wyświetla nagle dużo błędów). Z perspektywy UX: albo przycisk jest aktywny i

po kliknięciu wyświetlamy błędy, albo w ogóle nieklikalny i np. wyszarzony dopóki
mamy niepoprawne dane. Obie drogi są stosowane, byle konsekwentnie.

 Reakcja na submit: Po pomyślnym wysłaniu zwykle nawigujemy użytkownika dalej
(np. komunikat sukcesu, przejście do następnego ekranu). Jeśli wysłanie trwa (np.
rejestracja wymaga komunikacji z serwerem), pokażmy jakiś Loader lub przynajmniej
zmieńmy stan przycisku na „Submitting...”. RHF pozwala łatwo kontrolować stan
submitu przez formState.isSubmitting. Możemy np. zmienić tekst przycisku na
„Wysyłanie...” i zablokować go, gdy isSubmitting = true.

Dostosowanie pól do platformy:

 Dla pól hasła korzystajmy z secureTextEntry={true} – powoduje to maskowanie znaków.
 Dla pól email/username wyłączmy autokorektę (autoCorrect={false}), bo

autouzupełnianie słów nie ma tam sensu, a mogłoby wprowadzać błędne poprawki.
 Dla pól liczbowych ustawmy keyboardType="numeric" lub "number-pad", a nawet atrybuty

typu maxLength (RN TextInput obsługuje maxLength – co może uchronić przed
wprowadzeniem więcej znaków niż dopuszczamy, np. 6-cyfrowy kod SMS).

 Skorzystajmy z atrybutów autouzupełniania: np. textContentType="oneTimeCode" dla
pola kodu SMS spowoduje, że na iOS klawiatura podpowie kod z SMS jeśli system
wykrył, że przyszedł. textContentType="username" / "password" pozwoli menedżerom
haseł podpowiedzieć hasło. W iOS jest nawet textContentType="newPassword" do
sugerowania silnego hasła przy rejestracji. W Androidzie analogicznie
autoComplete="password" itp. – to wszystko sprawia, że aplikacja integruje się z
systemowymi mechanizmami autofill, co jest dużym plusem UX. Nie wymaga to wiele
wysiłku, a bywa zapominane przez programistów.

Błędy dostępności (Accessibility):
Tworząc formularz, musimy zadbać, aby był dostępny dla osób z niepełnosprawnościami,
np. używających czytników ekranu (VoiceOver na iOS, TalkBack na Androidzie). Kilka
wskazówek:

 Etykiety pól: Każde pole powinno mieć etykietę, którą czytnik ekranu odczyta. Jeśli
mamy widoczny <Text> z nazwą pola tuż przed nim (np. "Email:"), to zazwyczaj czytnik
powiąże to automatycznie (zwłaszcza gdy używamy komponentów takich jak
<TextInput accessibilityLabel="Email">). Można jawnie ustawić accessibilityLabel na TextInput,
np. "Email, pole tekstowe". Dobrze jest w labelu zawrzeć informację o błędzie, jeśli
występuje – np. dynamicznie: accessibilityLabel={ error ? "Email, błąd: " + error.message :

"Email" }. W ten sposób VoiceOver przeczyta od razu, że jest błąd i jaki. Alternatywnie
można użyć accessibilityHint do przekazania dodatkowej informacji (np. "wymagany
format: @.___").

 Fokus na błędzie: Po walidacji nieudanej, dobrze jest przenieść fokus na pierwsze
pole z błędem lub w jakiś sposób poinformować użytkownika niewidomego, że
wystąpił błąd. Prostym podejściem jest użycie właściwości accessibilityLiveRegion. Jeśli
element z błędem (np. <Text style={errorText} z komunikatem) ma
accessibilityLiveRegion="polite" i pojawi się w wyniku zmian, TalkBack powinien go
automatycznie odczytać. Np. Android potrafi ogłosić błąd TextInputa ustawiony
metodą native (TextView.setError), ale w RN musimy to sami obsłużyć.

 Grupowanie elementów formularza: Czasami łączy się label, pole i komunikat błędu
w jeden element dostępności, aby czytnik czytał to wszystko razem. Można to
uzyskać np. nadając accessible={true} na View obejmujący te elementy i ustawić
accessibilityLabel tej View jako złączenie: "Email, pole edycji. Wartość: ... Błąd: ..." – ale to
bywa skomplikowane i może interferować z fokusem samego pola. Alternatywnie, na
iOS można użyć accessibilityElementsHidden lub accessibilityViewIsModal aby kontrolować, co
jest czytane. Ogólna zasada: dostępność powinna być testowana manualnie (np.
odpalamy TalkBack i przechodzimy przez formularz).

 Zamknięcie klawiatury a czytnik ekranu: Wspomniany mechanizm
TouchableWithoutFeedback onPress={Keyboard.dismiss} – musieliśmy tam dać accessible={false},
żeby wrapper nie przechwytywał fokusu. Inaczej screen reader widziałby całą
zawartość jako jeden wielki przycisk. To pokazuje, że drobne detale mają znaczenie –
zawsze ustawiajmy accessible: false na takich technicznych obiektach dotykowych,
które nie niosą znaczenia dla UX (bo ich jedyną rolą jest obsłużenie tapnięcia poza
pola).

Podsumowując UX: Tworząc formularz myślmy jak użytkownik:

 Czy łatwo wprowadzić dane? (odpowiednia klawiatura, maski, automatyczne
przejścia, autofill)

 Czy wiadomo co wpisać? (podpowiedzi, placeholdery, etykiety)
 Czy wiadomo gdzie jest błąd i jak go naprawić? (jasne komunikaty, przeniesienie

uwagi na błąd)
 Czy na małym ekranie wszystko widać? (unikanie zasłonięcia przez klawiaturę)
 Czy obsługa jest spójna z platformą? (natywne pickery, odczytywanie pól przez

system)
 Czy zapewniamy równy dostęp wszystkim użytkownikom? (dostępność, czytniki

ekranu, kontrast kolorów np. czerwony komunikat na ciemnym tle – czytelność)

Zapewnienie dobrego UX często wymaga dodatkowego nakładu pracy, ale przekłada się na
mniejszą frustrację użytkowników i wyższą konwersję (więcej wypełnionych i wysłanych
formularzy). W aplikacjach, gdzie formularz jest krytyczny (np. rejestracja, zakup).

Przykład: Kompletny formularz rejestracji z walidacją (react-
hook-form + Zod)

Teraz połączymy wszystkie omówione elementy w spójny przykład. Załóżmy, że tworzymy
ekran Rejestracji w aplikacji. Formularz będzie zawierał takie pola jak: imię, email, hasło,
potwierdzenie hasła oraz np. numer telefonu. Zaimplementujemy walidację tych pól przy
użyciu Zod i pokażemy integrację z react-hook-form. Dodatkowo zadbamy o UX: maskę na
numer telefonu, przełączanie focusu, właściwe typy klawiatur, itp.

Krok 1: Definicja schematu walidacji (Zod) – definiujemy nasz schemat rejestracji oraz typ
wyprowadzony dla formularza:

import { z } from 'zod';

const RegisterSchema = z.object({
 name: z.string().min(2, "Imię jest za krótkie").max(50, "Imię jest za długie"),
 email: z.string().email("Nieprawidłowy format email"),
 password: z.string().min(8, "Hasło musi mieć co najmniej 8 znaków"),
 confirmPassword: z.string(),
 phone: z.string().regex(/^\d{9}$/, "Numer telefonu musi mieć 9 cyfr")
}).refine(data => data.password === data.confirmPassword, {
 path: ["confirmPassword"],
 message: "Hasła nie są zgodne"
});

type RegisterData = z.infer<typeof RegisterSchema>;

Objaśnienia:

 Imię (name) – wymagamy min 2 znaki i max 50 (błędy gdy poza zakresem). Nie
użyliśmy .nonempty(), więc puste imię też złapie min(2) jako błąd „za krótkie”.

 Email – metoda .email() sprawdza poprawność formatu oraz implicit wymaga
niepustego. Zod domyślnie komunikat generuje po angielsku, dlatego podaliśmy
własny.

 Hasło – min 8 znaków. (Można by dodać np. wymóg litery i cyfry – wtedy użyjemy
.regex() z odpowiednim patternem i komunikatem).

 ConfirmPassword – tu celowo nie dajemy .min czy czegoś, bo walidacja nastąpi w
.refine. Warto jednak upewnić się, że jest stringiem. Domyślnie jak nie podamy .min, to
puste też przejdzie, ale refine i tak złapie niezgodność jeśli hasło było wprowadzone.
Alternatywnie, można by dać .min(8, "...") żeby od razu krzyczało, że potwierdzenie też
min 8.

 Phone – zakładamy polski numer 9-cyfrowy, bez prefiksu. Używamy regexu ^\d{9}$.
Ten regex dopuszcza tylko dokładnie 9 cyfr (więc jeśli user wpisze inny format, będzie
błąd). Komunikat jest odpowiedni.

 .refine – tutaj sprawdzamy czy password === confirmPassword. Jeśli nie, to przypisujemy
błąd do pola confirmPassword. W ten sposób użytkownik zobaczy komunikat przy polu
potwierdzenia (co jest naturalne, bo zwykle nie wie, które nie pasuje – domyślnie
zakładamy, że to confirm jest wpisane inaczej niż password).

Krok 2: Implementacja komponentu formularza w RN – wykorzystamy RHF z resolverem
Zod. Pokażemy kod TypeScript + JSX z komentarzami:

import React, { useRef } from 'react';
import { View, Text, TextInput, StyleSheet, TouchableOpacity, ScrollView } from 'react-native';
import { useForm, Controller } from 'react-hook-form';
import { zodResolver } from '@hookform/resolvers/zod';
import MaskInput from 'react-native-mask-input'; // biblioteka do maskowania telefonu (należy zainstalować)
import { RegisterSchema, RegisterData } from './validation'; // zakładamy, że schemat wyeksportowaliśmy z
pliku validation.ts

const RegisterScreen: React.FC = () => {
 const { control, handleSubmit, formState: { errors, isValid } } = useForm<RegisterData>({
 resolver: zodResolver(RegisterSchema),
 mode: 'onChange' // walidacja na bieżąco (dla isValid)
 });

 const emailRef = useRef<TextInput>(null);
 const passwordRef = useRef<TextInput>(null);
 const confirmRef = useRef<TextInput>(null);
 const phoneRef = useRef<TextInput>(null);

 const onSubmit = (data: RegisterData) => {
 console.log("Rejestracja - dane:", data);
 // Tu można wysłać na serwer lub nawigować dalej
 };

 return (
 <TouchableOpacity style={{ flex: 1 }} activeOpacity={1} onPress={() => { /* kliknięcie tła - nic nie robi,
klawiatura schowana automatycznie przez KeyboardAvoidingView */ }}>
 <KeyboardAvoidingView style={{ flex: 1 }} behavior="padding" keyboardVerticalOffset={80}>
 <ScrollView contentContainerStyle={styles.container} keyboardShouldPersistTaps="handled">

 <Text style={styles.label}>Imię:</Text>
 <Controller
 control={control}
 name="name"
 render={({ field: { onChange, onBlur, value } }) => (
 <TextInput
 style={[styles.input, errors.name && styles.inputError]}
 placeholder="Twoje imię"
 onBlur={onBlur}
 onChangeText={onChange}
 value={value}
 returnKeyType="next"
 onSubmitEditing={() => emailRef.current?.focus()}
 />
)}
 />
 {errors.name && <Text style={styles.errorText}>{errors.name.message}</Text>}

 <Text style={styles.label}>Email:</Text>
 <Controller
 control={control}
 name="email"
 render={({ field: { onChange, onBlur, value } }) => (
 <TextInput
 ref={emailRef}
 style={[styles.input, errors.email && styles.inputError]}
 placeholder="adres email"
 keyboardType="email-address"
 autoCapitalize="none"
 autoCorrect={false}
 textContentType="emailAddress"
 onBlur={onBlur}
 onChangeText={onChange}
 value={value}
 returnKeyType="next"
 onSubmitEditing={() => passwordRef.current?.focus()}
 />
)}
 />
 {errors.email && <Text style={styles.errorText}>{errors.email.message}</Text>}

 <Text style={styles.label}>Hasło:</Text>
 <Controller
 control={control}
 name="password"
 render={({ field: { onChange, onBlur, value } }) => (
 <TextInput
 ref={passwordRef}
 style={[styles.input, errors.password && styles.inputError]}
 placeholder="Hasło"
 secureTextEntry
 textContentType="newPassword"
 onBlur={onBlur}
 onChangeText={onChange}
 value={value}
 returnKeyType="next"
 onSubmitEditing={() => confirmRef.current?.focus()}
 />
)}
 />
 {errors.password && <Text style={styles.errorText}>{errors.password.message}</Text>}

 <Text style={styles.label}>Powtórz hasło:</Text>
 <Controller
 control={control}
 name="confirmPassword"
 render={({ field: { onChange, onBlur, value } }) => (
 <TextInput
 ref={confirmRef}
 style={[styles.input, errors.confirmPassword && styles.inputError]}
 placeholder="Potwierdź hasło"
 secureTextEntry
 textContentType="password"
 onBlur={onBlur}
 onChangeText={onChange}
 value={value}
 returnKeyType="next"
 onSubmitEditing={() => phoneRef.current?.focus()}
 />
)}
 />
 {errors.confirmPassword && <Text style={styles.errorText}>{errors.confirmPassword.message}</Text>}

 <Text style={styles.label}>Telefon:</Text>
 <Controller
 control={control}
 name="phone"
 render={({ field: { onChange, onBlur, value } }) => (
 <MaskInput
 ref={phoneRef}
 style={[styles.input, errors.phone && styles.inputError]}
 placeholder="Numer telefonu"
 keyboardType="number-pad"
 onBlur={onBlur}
 value={value}
 onChangeText={(formatted, extracted) => {
 // extracted to tylko cyfry
 onChange(extracted);

 }}
 mask={[/\d/, /\d/, /\d/, ' ', /\d/, /\d/, /\d/, ' ', /\d/, /\d/, /\d/]}
 returnKeyType="done"
 onSubmitEditing={handleSubmit(onSubmit)}
 />
)}
 />
 {errors.phone && <Text style={styles.errorText}>{errors.phone.message}</Text>}

 <TouchableOpacity
 style={[styles.submitButton, !isValid && styles.submitButtonDisabled]}
 onPress={handleSubmit(onSubmit)}
 disabled={!isValid}
 >
 <Text style={styles.submitButtonText}>Zarejestruj się</Text>
 </TouchableOpacity>

 </ScrollView>
 </KeyboardAvoidingView>
 </TouchableOpacity>
);
};

const styles = StyleSheet.create({
 container: {
 padding: 20
 },
 label: {
 fontSize: 16,
 marginBottom: 4
 },
 input: {
 borderWidth: 1,
 borderColor: '#ccc',
 padding: 10,
 borderRadius: 4,
 marginBottom: 8
 },
 inputError: {
 borderColor: 'red'
 },
 errorText: {
 color: 'red',
 marginBottom: 8
 },
 submitButton: {
 backgroundColor: '#4caf50',
 padding: 15,
 borderRadius: 4,
 alignItems: 'center',
 marginTop: 10
 },
 submitButtonDisabled: {
 backgroundColor: '#9E9E9E'
 },
 submitButtonText: {
 color: '#fff',

 fontSize: 16
 }
});

To sporo kodu – przeanalizujmy go krok po kroku pod kątem spełnienia założeń:

 Używamy useForm<RegisterData> z resolver: zodResolver(RegisterSchema). Dodaliśmy też
mode: 'onChange' aby mieć dostęp do isValid na bieżąco (przycisk rejestracji jest aktywny
tylko gdy formularz poprawny).

 Zdefiniowaliśmy referencje do kolejnych TextInputów: emailRef, passwordRef, itd. –
służą one do zarządzania fokusem sekwencyjnie.

 W onSubmit na razie tylko logujemy dane – w prawdziwej aplikacji tu wywołalibyśmy
API rejestracji lub dispatch do kontekstu/redux, a następnie np. nawigowali do
ekranu głównego lub logowania.

 Cały formularz jest opakowany w KeyboardAvoidingView (behavior padding, offset 80 –
zakładamy może jakiś header na ~80px). Całość jest wewnątrz ScrollView z
keyboardShouldPersistTaps="handled". Dodatkowo opakowaliśmy wierzch w
TouchableOpacity z activeOpacity={1} i onPress pustym – to trik: kliknięcie na tło ScrollView
i tak obsłuży handled (czyli schowa klawiaturę), a dodatkowy TouchableOpacity z
activeOpacity={1} zabezpiecza, że klik nie zrobi nic więcej (mógłby nie być potrzebny – to
tylko ilustracja, czasem daje się po prostu <View> z style flex:1 i do niego
TouchableWithoutFeedback).

 Każde pole jest zbudowane z Text label, Controller + TextInput/MaskInput, i ewentualnego
Text z błędem.

 Focus chaining: Widzimy np. w polu Imię onSubmitEditing ->
emailRef.current.focus(), w Email -> passwordRef.focus(), Password ->
confirmRef.focus(), Confirm -> phoneRef.focus(), a Phone (ostatnie) ->
handleSubmit(onSubmit). To zapewnia płynną nawigację klawiaturą.

 Właściwości klawiatury: Imię – domyślnie klawiatura tekstowa (można by dodać
autoCapitalize="words" żeby imię z dużej litery – to UX, którego tu nie dodaliśmy, ale
warto!). Email – keyboardType email, autoCapitalize none, autoCorrect false,
textContentType emailAddress (dzięki czemu iOS np. podpowie email z ustawień).
Hasło – secureTextEntry true (maskuje), textContentType newPassword (iOS sugeruje
mocne hasło), confirm – secureTextEntry, textContentType password (może
zaproponować automatycznie hasło z pola powyżej? Czasem iOS tak robi). Telefon –
keyboardType number-pad (tylko cyfry).

 Maska telefonu: Użyliśmy MaskInput (z biblioteki react-native-mask-input) z maską
dzielącą 9 cyfr na grupy 3-3-3. Zwraca nam formatted i extracted – przekazujemy do RHF
tylko extracted (same cyfry), bo taki format oczekuje walidator (9 cyfr). Dzięki temu
użytkownik może wpisywać z odstępami, a my i tak sprawdzamy surowe cyfry.
Gdybyśmy chcieli prefiks kraju, maskę byśmy zrobili np. ['+','4','8',' ', ...] i wtedy
walidator musiałby pozwalać na 11 znaków w sumie (9 cyfr + 2 znaki +48 i spacje), lub
raczej zdjęlibyśmy znaki specjalne zanim sprawdzimy. Tu dla uproszczenia bierzemy
polski numer bez +48.

 Wyświetlanie błędów: Każde pole ma warunkowe <Text style={styles.errorText}> z
komunikatem. Style: czerwony tekst i margines. Dodatkowo obramowanie pola
zmienia na czerwone jeśli jest błąd (styles.inputError).

 Przycisk rejestracji: Jest zablokowany (disabled) i wyszarzony stylem, gdy !isValid. Po
wypełnieniu wszystkich wymaganych w stylu danych i spełnieniu reguł, isValid zmieni
się na true (dzięki mode: 'onChange' walidacja następuje na bieżąco) i wtedy styl
podmieni się na zielony, a disabled na false. Tekst przycisku jest biały na zielonym tle
dla czytelności.

Potencjalne ulepszenia:

 Można by dodać jeszcze checkbox „Akceptuję regulamin” – wtedy Controller z
komponentem Switch lub CheckBox i walidacja boolean (Zod: z.literal(true) lub
z.boolean().refine(val => val === true, "Musisz zaakceptować...")). Pominęliśmy to dla zwięzłości.

 Można dodać komunikaty toast lub dialog na wypadek błędu sieci przy rejestracji
albo na sukces (np. „Konto utworzone pomyślnie!”). Sam RHF tego nie robi – to już
logika wyżej (np. obsługa w onSubmit catch error i ustawienie np. globalnego
errorMessage do pokazania).

 W kwestii dostępności: warto by dodać np. accessible={true} i accessibilityLabel dla
przycisku (domyślnie powinno przeczytać tekst, więc jest OK). Dla komunikatów
błędów można dodać accessibilityLiveRegion="polite". Dla TextInput można by ustawić
accessibilityHint z podpowiedzią. Te rzeczy zależą od wymagań – ale ważne, że mamy
etykiety jako <Text> przed polami, co zwykle screen reader interpretuje jako label.

Uruchomienie i test: Gdybyśmy uruchomili tę aplikację na urządzeniu/emulatorze,
scenariusz byłby taki:

 Użytkownik otwiera ekran rejestracji. Wpisuje imię (mniej niż 2 litery) i przechodzi
dalej – border robi się czerwony, pojawia się błąd „Imię jest za krótkie”.

 Wpisuje poprawne imię, błąd znika.
 Wpisuje niepoprawny email (np. „abc”) i naciśnie dalej – pojawia się błąd pod

emailem.
 Poprawia email, błąd znika.
 Hasło: wpisze np. „123” – za krótkie, ale jeśli jeszcze nie wyszedł z pola (w trybie

onChange i tak pewnie pokaże błąd od razu, bo isValid sprawdza całość – tu można by
rozważyć criteriaMode lub reValidateMode, by nie pokazywać od razu – ale zostawmy).
Po przejściu dalej błąd „min 8 znaków”.

 Confirm: wpisze inne niż hasło – błąd „Hasła nie są zgodne”. Jak poprawi, błąd
zniknie.

 Telefon: jeśli wpisuje litery, maska i tak nie pozwoli (tylko cyfry). Jak wpisze mniej niż
9 cyfr i kliknie Done/Submit – dostanie błąd od walidacji schematu.

 Gdy wszystkie pola spełnią warunki, przycisk „Zarejestruj się” stanie się zielony i
klikalny. Po naciśnięciu konsola pokaże zebrane dane (w realnej apce poszłoby do
serwera).

 Cały czas klawiatura nie przykrywa pól dzięki KeyboardAvoidingView/ScrollView (jeśli
testujemy, warto emulować np. mały ekran). Kliknięcie w scrollowalny obszar poza
polem chowa klawiaturę (dzięki keyboardShouldPersistTaps).

 UX jest na poziomie zbliżonym do natywnych aplikacji: np. na iOS w polu hasło pojawi
się ikonka strzeżonego hasła, autofill podpowie mocne hasło; w emailu może pojawić

się sugestia email; w telefonie w iOS user zobaczy klawiaturę numeryczną i może z
AutoFill z SMS wprowadzić kod.

Dobre praktyki architektoniczne i projektowe

Na koniec zwróćmy uwagę na organizację kodu i utrzymanie czystości przy rozbudowanych
formularzach:

 Separacja logiki od widoku: W powyższym przykładzie cały kod jest w jednym
miejscu. Przy prostym formularzu to akceptowalne, ale w większych projektach warto
wydzielić pewne części. Np. schemat walidacji trzymaliśmy w osobnym module
(validation.ts). Podobnie, można utworzyć własne komponenty dla powtarzających się
elementów formularza: np. komponent <FormTextInput> który wewnątrz używa
Controller i TextInput, przyjmując propsy: name, label, placeholder, secure itp. Wtedy nasz
ekran rejestracji staje się bardziej deklaratywny:

<FormTextInput name="email" label="Email" placeholder="adres email" keyboardType="email-address" />
<FormTextInput name="password" label="Hasło" placeholder="Hasło" secure />

Taki komponent wewnętrznie może korzystać z kontekstu form (np. poprzez
przekazanie control propsem albo nawet użycie useFormContext jeśli korzystamy z RHF
FormProvider do zagnieżdżonych formularzy). To podejście czyni kod bardziej DRY – nie
powtarzamy za każdym razem <Controller render=...> dla każdego pola, tylko
wywołujemy nasz komponent polowy.

 Modularność i reużywalność: Jeżeli pewne grupy pól występują w kilku miejscach
(np. adres składający się z ulicy, kodu, miasta), można zrobić z tego osobny
komponent AddressForm z własnym schematem i własnymi polami, a następnie
włączać go w większe formularze (RHF umożliwia łatwe zagnieżdżanie poprzez
FormProvider i użycie useFormContext w dzieciach).

 Czystość kodu: Stosujmy czytelne nazwy dla pól (np. w schemacie i kodzie
używaliśmy confirmPassword – konsekwentnie). Unikajmy „magicznych” stringów w
wielu miejscach – lepiej zdefiniować raz. Np. komunikaty błędów, jeżeli powtarzają
się lub mogą być wielojęzyczne, warto trzymać w osobnym obiekcie konfiguracyjnym
lub plikach lokalizacyjnych. Wtedy schemat może korzystać z wcześniej
przygotowanych stringów (można je importować).

 Zrozumiałość dla innych deweloperów: Formularze mogą bywać zawiłe. Dobrze jest
komentarzami wyjaśnić nietypowe sztuczki (np. czemu używamy accessible={false}
gdzieś, albo jak działa ta maska). Innym aspektem jest testowanie – warto napisać
testy jednostkowe walidacji (schemat Zod można przetestować z różnymi danymi
wejściowymi) oraz testy integracyjne ekranu (np. za pomocą Jest + React Native
Testing Library symulować wpisywanie i sprawdzać czy błędy się pojawiają). To
pomoże wychwycić regresje, gdy ktoś zmieni reguły.

 Performance w bardzo dużych formularzach: React Hook Form radzi sobie dobrze
nawet z dziesiątkami pól dzięki niekontrolowaniu ich wszystkich na raz. Jednak jeśli
formularz jest naprawdę ogromny, rozważ podzielenie go na kroki (tzw. wizard) –
użytkownik nie powinien być przytłoczony, a i my zaoszczędzimy renderowania tylu

elementów na raz. RHF pozwala zachować stan między krokami lub po prostu można
w każdym ekranie-wizardzie trzymać własny useForm i na końcu scalić dane.

 Aktualność bibliotek: Pamiętajmy, by kontrolować wersje zależności. React Hook
Form stale rozwija się (w grudniu 2025 jest to wciąż wersja 7.x, więc nasz kod tego
używa; upewnijmy się czy np. przy ewentualnym RHF 8 zmieni się API). Zod również
ewoluuje, choć raczej zachowuje kompatybilność. Przy aktualizacjach RN zwracajmy
uwagę na ewentualne nowe API dotyczące klawiatury czy inputów (np. RN 0.70+
wprowadził pewne zmiany w TextInput związane z nową architekturą). Na ten
moment jednak podejścia tu przedstawione są zgodne z nowoczesnymi wersjami RN.

Literatura:

1. https://reactnative.dev/docs/textinput (Data dostępu: 1.10.2025) – Oficjalna
dokumentacja podstawowego komponentu obsługi tekstu w React Native.

2. https://react-hook-form.com/get-started (Data dostępu: 1.10.2025) – Oficjalny
przewodnik po bibliotece React Hook Form, omawiający integrację i zarządzanie
stanem formularza.

3. https://zod.dev/?id=basic-usage (Data dostępu: 1.10.2025) – Dokumentacja
biblioteki Zod, opisująca tworzenie schematów walidacji danych.

4. https://react-hook-form.com/get-started#SchemaValidation (Data dostępu:
1.10.2025) – Przewodnik dotyczący łączenia React Hook Form z zewnętrznymi
walidatorami takimi jak Zod czy Yup.

5. https://reactnative.dev/docs/keyboardavoidingview (Data dostępu: 1.10.2025) –
Dokumentacja komponentu służącego do rozwiązywania problemów z klawiaturą
zasłaniającą pola formularza.

https://reactnative.dev/docs/textinput
https://react-hook-form.com/get-started
https://zod.dev/?id=basic-usage
https://www.google.com/search?q=https://react-hook-form.com/get-started%23SchemaValidation
https://reactnative.dev/docs/keyboardavoidingview

