POLITECHNIKA SWIETOKRZYSKA

Aplikacje mobilne — wyktad
5

Formularze i walidacja w React Native

Mateusz Pawetkiewicz
1.10.2025

Wprowadzenie

Formularze stanowig kluczowy element wiekszosci aplikacji mobilnych — pozwalaja
uzytkownikom wprowadzac¢ dane, logowac sie, rejestrowac konta czy sktadaé zamdwienia.
Implementacja formularzy w React Native wymaga uwzglednienia specyfiki platform
mobilnych, takich jak obstuga klawiatury ekranowej czy zapewnienie odpowiedniej walidacji
wprowadzanych danych. W 2025 roku dysponujemy nowoczesnymi bibliotekami i wzorcami,
ktére upraszczajg tworzenie formularzy i poprawiajg doswiadczenie uzytkownika (UX). W
niniejszym wyktadzie oméwimy szczegétowo:

¢ Podstawowe komponenty formularza w RN, m.in. TextInput, obstuge zdarzen
fokus/blur oraz sposoby unikania zastoniecia pdl przez klawiature (np. za pomoca
KeyboardAvoidingView).

e Wykorzystanie biblioteki react-hook-form do fatwego zarzadzania stanem
formularza, w tym komponent Controller, obstuge btedéw i zdarzenia onSubmit.

e Walidacje schematyczng przy uzyciu bibliotek Zod lub Yup — poréwnamy je,
pokazemy integracje z react-hook-form i sposéb generowania komunikatéw btedéw.

e Najlepsze praktyki UX formularzy mobilnych: uzycie pdél wyboru (pickeréw), date-
pickeréw, masek na pola tekstowe (np. numer telefonu), przetaczanie focusu miedzy
polami, obstuga przycisku submit oraz kwestii dostepnosci (accessibility).

e Kompleksowy przyktad (demo): zaimplementujemy od podstaw formularz
rejestracji/logowania z wykorzystaniem react-hook-form i Zod, z petng walidacjg i
poprawnym UX mobilnym.

Komponenty formularza w React Native

React Native dostarcza podstawowe komponenty do budowy formularzy, z ktérych
najwazniejszym jest Textinput — stuzgcy do wprowadzania tekstu przez uzytkownika. Oprécz
niego czesto wykorzystujemy przetgczniki (Switch), przyciski (Button lub dotykowe
komponenty z rodziny Touchable*), a takze komponenty z bibliotek zewnetrznych (np. pickery
dat czy list rozwijanych). W tej czesci skupimy sie na Textinput oraz powigzanych
zagadnieniach: zdarzeniach focus/blur i obstudze klawiatury ekranowe;j.

TextIlnput — podstawy i zdarzenia focus/blur

TextInput jest bazowym komponentem RN do wpisywania tekstu. Dziata podobnie jak <input>
w React (web), lecz posiada wtasne wtasciwosci i metody. Najwazniejsze cechy:

e Mozemy nastuchiwac zdarzen onChangeText (kazda zmiana tekstu), onFocus (wejscie w
pole) i onBlur (wyjscie z pola). Umozliwia to np. dynamiczne zmiany stylu pola,
walidacje po opuszczeniu, itp.

e Komponent udostepnia metody .focus() i .blur() do programowego ustawiania lub
zabierania fokusu. Dokumentacja RN wskazuje, ze TextInput posiada metody .focus() i
.blur() umozliwiajgce odpowiednio ustawienie fokusu na polu lub jego usuniecie. Dzieki
nim mozemy np. automatycznie przenies¢ fokus na kolejne pole formularza.

e Wiele wtasciwosci pozwala dostosowac klawiature ekranowa: np. keyboardType
(okresla typ klawiatury, np. numeryczna, email), secureTextEntry (tryb hasta),
returnkeyType (tekst przycisku return/enter na klawiaturze — np. ,,Next” lub ,Done”),
czy autoCapitalize (auto-kapitalizacja liter). Odpowiednie ustawienie tych opcji
poprawia UX — np. dla pola email ustawiamy keyboardType="email-address" i
autoCapitalize="none".

o NaiOS mozemy uzyc tez textContentType i autoComplete aby skorzysta¢ z mechanizméw
autofill systemu (np. textContentType="emailAddress" podpowiada zapamietane e-maile
uzytkownika). Warto to wykorzystywac wrazliwie, by utatwi¢ uzytkownikom
wypetnianie formularzy.

Zdarzenia fokus i blur: React Native pozwala reagowaé¢ na moment, gdy pole zostaje
aktywowane (fokus) lub opuszczone (utrata fokusu). Typowe zastosowania:

e Zmiana obramowania lub tta pola, aby wyrdzni¢ aktualnie edytowane pole.

¢ Walidacja po opuszczeniu pola — np. gdy uzytkownik wyjdzie z pola, sprawdzamy czy
wartos¢ jest poprawna i ewentualnie wyswietlamy komunikat btedu.

o Sledzenie ,odwiedzonych” pél (tzw. touched fields) — to wazne przy wyswietlaniu
btedéw dopiero po tym, jak uzytkownik prébowat cos$ wpisaé.

W praktyce do obstugi tych zdarzen przypisujemy funkcje do propséw onFocus i onBlur. Jesli
korzystamy z biblioteki formularzy (jak react-hook-form), to czesto nie musimy recznie
obstugiwaé touched — biblioteka moze oznaczaé pole jako ,touched” automatycznie przy
blur.

Unikanie zastoniecia pdl przez klawiature

Na urzadzeniach mobilnych klawiatura ekranowa potrafi zajgé sporg cze$é ekranu i zastonié
pola tekstowe znajdujace sie nizej. Bez odpowiednich dziatan uzytkownik moze nie widziec,
co wpisuje. Istnieje kilka technik radzenia sobie z tym problemem:

¢ KeyboardAvoidingView: Jest to wbudowany komponent RN, ktdry automatycznie
dostosowuje wysokos¢ lub pozycje widoku rodzica, gdy pojawia sie klawiatura, tak
aby aktywne pole pozostato widoczne. Najczesciej opakowuje sie caty ekran (lub
sekcje z formularzem) w <KeyboardAvoidingView behavior="padding" /> lub "position" — dla
iOS zwykle sprawdza sie behavior="padding", dla Androida czasem lepszy jest "height".
Nalezy takze ustawié keyboardVerticalOffset jesli uzywamy np. headera — pozwala to
skorygowaé pozycje o wysokos$é nagtéwka. KeyboardAvoidingView to proste
rozwigzanie, ale czasem bywa niewystarczajgce (np. przy bardzo dtugich
formularzach).

e ScrollView z opcja przewijania: Opakowanie formularza w Scrollview pozwala
przewijac¢ zawartos¢, dzieki czemu uzytkownik moze recznie przesungc¢ ekran, by
zobaczy¢ pola spod klawiatury. Dobrg praktyka jest ustawienie
keyboardShouldPersistTaps="handled" lub "always" — dzieki temu dotkniecie obszaru
ScrollView poza polem zamknie klawiature (jesli zaden inny element nie obstuzy tego
dotyku). Rozwigzanie to zapobiega sytuacji, gdzie naciskanie na tto tylko chowa
klawiature (zamiast np. otworzy¢ inny przycisk). Wspomniany parametr sprawia, ze

tapniecia sg przekazywane dalej, skutkujgc zamknieciem klawiatury tylko gdy
tapnieto w pusty obszar.

¢ Dismiss na tapniecie w tto: Mozemy recznie obstuzy¢ ukrycie klawiatury, gdy
uzytkownik tapnie poza polem. RN udostepnia modut Keyboard z metodg dismiss(),
ktéra chowa klawiature. Typowy wzorzec to opakowanie catego ekranu w
TouchableWithoutFeedback lub Pressable, ktdrego onPress wywotuje Keyboard.dismiss(). W ten
sposob klikniecie w dowolne miejsce tta zamyka klawiature.

import { Keyboard, TouchableWithoutFeedback } from 'react-native';

const DismissKeyboardView: React.FC = ({ children }) => (

<TouchableWithoutFeedback onPress={Keyboard.dismiss} accessible={false}>
{children}

</TouchableWithoutFeedback>

)I

Nastepnie uzywamy <DismisskeyboardView> jako kontenera najwyzszego poziomu ekranu
formularza. Wazny szczeg6t: ustawienie accessible={false} na tym wrapperze sprawia, ze
element ten bedzie ignorowany przez czytniki ekranu (VoiceOver/TalkBack) i nie zaktdci
dostepu do pdl wejsciowych. Gdybysmy o tym zapomnieli, nasz dotykowy wrapper mogtby
zostaé potraktowany jako element interfejsu przez mechanizmy dostepnosci, utrudniajac
korzystanie z formularza osobom niewidomym.

Podsumowanie: Najlepsze efekty daje kombinacja powyzszych podejs¢: np. caty ekran
objety KeyboardAvoidingView + ScrollView z mozliwoscig tapniecia w tto + mechanizm
automatycznego dismiss. W praktyce mozna utworzyé komponent wyzszego rzedu (HOC) lub
po prostu zagniezdzié te elementy: KeyboardAvoidingView -> ScrollView (z keyboardShouldPersistTaps)
-> nasza zawartosc formularza wewnatrz TouchableWithoutFeedback. Taki uktad gwarantuje, ze
pola nie zostang zastoniete, mozna przewijaé dtugie formularze, a klikniecie obok pola
schowa klawiature.

Przetaczanie fokusu miedzy polami

Na mobilnym UX istotne jest utatwienie uzytkownikowi szybkiego przechodzenia przez
formularz. Gdy uzytkownik wypetni jedno pole i nacisnie przycisk ,, Dalej” (Next) na
klawiaturze, chcemy automatycznie przenies¢ fokus do kolejnego pola. W RN realizujemy to
nastepujgco:

e Kazdy Textinput (poza ostatnim) ustawiamy returnkeyType="next". Ostatniemu polu (np.
hasto przy logowaniu) dajemy returnKeyType="done" lub go — tak by uzytkownik widziat,
ze koniczy wprowadzanie.

¢ Na komponentach TextInput nastuchujemy onSubmitEditing — zdarzenie wywotywane
po nacisnieciu przycisku ,,Enter/Next” na klawiaturze. Dla pierwszego pola
onSubmitEditing powinno wywofa¢ .focus() na refie do drugiego pola, dla drugiego —
fokus na trzecie, itd. W ten sposdb uzytkownik moze przechodzié przez pola bez
dotykania ekranu.

e Implementacja: korzystamy z referencji (useRef) do kolejnych TextInputéw. Przyktad
dla dwdch pal:

const passwordRef = useRef<TextInput>(null);

<Textlnput

placeholder="Email"

returnKeyType="next"

onSubmitEditing={() => passwordRef.current?.focus()}
/>
<Textlnput

ref={passwordRef}

placeholder="Hasto"

returnKeyType="done"

onSubmitEditing={handleSubmit(onSubmit)} // dla ostatniego pola wywotujemy submit
/>

W powyzszym kodzie, gdy uzytkownik wpisujac email nacisnie ,Next”, wywotujemy
passwordRef.current.focus(), przenoszac kursor do pola hasta. Gdy jest w polu hasta i nacisnie
,Done”, wywotujemy handleSubmit(onSubmit) (metoda z react-hook-form) aby wystac
formularz. Taka nawigacja znacznie poprawia ergonomie formularza.

Podsumowanie sekgji

Budujgc formularz w RN musimy zwrdéci¢ uwage nie tylko na same pola, ale takze na
otoczenie: klawiature i nawigacje miedzy polami. Stosujac KeyboardAvoidingView, przewijanie
oraz mechanizm chowania klawiatury na tapniecie zapewnimy, ze uzytkownik zawsze widzi
aktywne pole. Z kolei obstuga przycisku Next/Done na klawiaturze umozliwia szybkie
uzupetnianie formularza bez odrywania rgk od klawiatury. W kolejnych czesciach
przejdziemy do biblioteki utatwiajgcej zarzadzanie stanem formularza i walidacja.

React Hook Form — zarzgdzanie stanem formularzy

React Hook Form (RHF) to obecnie jedna z najpopularniejszych bibliotek do obstugi
formularzy w ekosystemie React (w tym React Native). Jej pojawienie sie zrewolucjonizowato
podejscie do formularzy dzieki skupieniu na wydajnosci i prostocie.

Dlaczego React Hook Form?

Tradycyjne podejscie do formularzy w React (kontrolowanie wartosci inputdw przez state i
obstuga na onChange) bywa nieefektywne — kazda zmiana powoduje render komponentu, co
w przypadku wielu pdl jest kosztowne. React Hook Form zostat zaprojektowany z myslg o
wykorzystaniu niekontrolowanych komponentoéw i referencji, minimalizujac liczbe
renderdw potrzebnych do obstugi formularza. Wedtug dokumentacji: react-hook-form
buduje formularze w oparciu o niekontrolowane inputy, dgzqgc do maksymalnej wydajnosci i
minimalnej liczby ponownych renderowan. Dzieki temu idealnie nadaje sie do React Native,
gdzie nadmierne renderowanie podl (zwtaszcza tych z animacjami lub formatowaniem) moze
powodowac widoczne opdznienia.

Kilka kluczowych zalet RHF:

o Wydajnos$é: RHF nie trzyma wartosci kazdego pola w stanie komponentu React, tylko
polega na natywnych elementach (Textlnput) i referencjach. Aktualizuje stan Reacta
tylko wtedy, gdy jest to konieczne (np. wystgpi btagd walidacji). To oznacza minimalne
ponowne renderowanie i lepszg wydajnos¢ w porownaniu z podejsciem
kontrolowanym.

e Prostota API: Biblioteka udostepnia hook useForm, ktéry dostarcza narzedzia do
obstugi formularza (np. register, handleSubmit, errors). Integruje sie z natywnymi
elementami formularza w React i RN, nie wymuszajgc uzycia specjalnych
komponentéw formularza (jak to czyni Formik).

¢ Integracja z walidatorami: RHF fatwo taczy sie z zewnetrznymi bibliotekami walidacji
schematow (Yup, Zod itp.) poprzez tzw. resolvers. Mozemy wiec definiowad reguty
walidacji w jednym miejscu i mie¢ zaréwno walidacje jak i typowanie danych.

e Mniejsze gabaryty i zaleznosci: RHF jest dos¢ lekka biblioteka, bez duzych zaleznosci,
co ma znaczenie w aplikacjach mobilnych (rozmiar pakietu).

e Spotecznosc i wsparcie: Stata sie standardem de-facto w nowych projektach, stad
duzo materiatow, przyktaddéw i aktywne wsparcie.

Podstawy uzycia react-hook-form w RN

Aby skorzystaé z RHF, nalezy zainstalowac pakiet:
npm install react-hook-form @hookform/resolvers

Uwaga: @hookform/resolvers to dodatkowy pakiet, ktéry zawiera tzw. resolvery do integracji z
bibliotekami walidacji (Yup, Zod itp.). Wrécimy do niego w sekcji o walidacji schematow.

Najwazniejszy hook to useForm — wywotujemy go wewnatrz komponentu, ktéry zawiera
formularz. Przyktad uzycia w komponencie funkcyjnym:

import { useForm } from 'react-hook-form';

type FormData = {
email: string;
password: string;

5

const { control, handleSubmit, formState: { errors } } = useForm<FormData>();

Tutaj wywotaliSmy useForm<FormData>() przekazujgc opcjonalnie generyczny typ formularza
(dzieki temu errors itp. bedg typowane). Otrzymujemy obiekt z kilkoma wtasciwosciami:

¢ control: obiekt kontrolny formularza, potrzebny m.in. do powigzania z komponentem
Controller.

¢ handleSubmit: funkcja stuzgca do obstugi wystania formularza. Uzywamy jej, by
owrapowac naszg funkcje onsubmit — zapewnia walidacje i przekazuje nam zebrane
dane jesli wszystko jest OK.

o formState: { errors }: obiekt zawierajgcy ewentualne btedy walidacji dla pél (wtasciwosci
odpowiadajg nazwom pdl). Jesli dane pole ma btad, errors.fieldName bedzie zawiera¢
np. message z komunikatem.

e (Opcjonalnie register — jednak w kontekscie React Native zwykle zamiast manualnego
rejestrowania inputdéw korzysta sie z Controller, 0 czym dalej).

Standardowo w RN nie mamy elementu <form> jak w web, wiec nie ma zdarzenia onSubmit
formularza — dlatego uzywamy handleSubmit. W praktyce czesto robimy cos takiego przy
przycisku Submit:

<TouchableOpacity onPress={handleSubmit(onSubmit)}>
<Text>Wyslij</Text>
</TouchableOpacity>

Wywotanie handleSubmit(onSubmit) zwraca funkcje, ktdra po kliknieciu: przeprowadzi walidacje
wszystkich pdl, a jesli przejdzie pomysinie, wywota nasz onSubmit(data) z obiektem danych.
Dzieki temu mamy pewnos¢, ze onSubmit dostaje tylko poprawne dane (w przeciwnym razie
onSubmit sie nie wykona, a btedy zostang zapisane w errors).

Uzycie komponentu Controller w React Native

W React Hook Form na web (np. z <input>), czesto stosuje sie atrybut ref lub register
bezposrednio na polu, np. <input {...register('email')}>. Jednak w przypadku React Native i
Textinput nie mamy fatwego sposobu na zarejestrowanie go poprzez ref (komponent nie jest
czysto HTML-owy). Zamiast tego biblioteka RHF dostarcza komponent <Controllers, ktory petni
role ,mostu” miedzy naszg logikg formularza a komponentem interfejsu.

Controller przyjmuje kilka propsow:

e name — nazwa pola (musi odpowiada¢ kluczowi w obiekcie danych formularza).

e control — przekazujemy tutaj obiekt control uzyskany z useForm().

e rules (opcjonalnie) — obiekt z podstawowymi regutami walidacji (jesli nie korzystamy z
resolvera schematéw). Mozemy tu ustawié np. required: true albo bardziej
szczegbtowo: maxLength: { value: 100, message: "Max 100 znakéw" }.

¢ render — funkcja renderujaca, ktéra powinna zwrdécié nasz wtasciwy komponent
inputu. Ta funkcja otrzymuje pewne parametry (rozpakowywane czesto jako {field: {
onChange, onBlur, value }}), ktére musimy przekaza¢ do naszego komponentu
wejsciowego.

Aby lepiej zrozumie¢, spdjrzmy na fragment kodu z uzyciem Controller dla pola tekstowego:

<Controller
control={control}
name="email"
rules={{
required: "Email jest wymagany",
pattern: { value: /\S+@\S+\.\S+/, message: "Nieprawidtowy email" }
1
render={({ field: { onChange, onBlur, value } }) => (
<View style={styles.inputGroup}>

<Textlnput
placeholder="E-mail"
keyboardType="email-address"
autoCapitalize="none"
value={value}
onChangeText={onChange}
onBlur={onBlur}
style={styles.input}

/>

{errors.email && (
<Text style={styles.errorText}>{errors.email.message}</Text>

)}

</View>
)}
/>

Wyjasnienie:

e Przekazujemy control z naszego formularza oraz name="email" — dzieki temu Controller
,wie”, z ktérym polem pracuje.

e W rules zdefiniowalismy, ze email jest wymagany (komunikat btedu, jesli pusty) i
powinien pasowac do prostego regexu adresu email (inaczej pokaze komunikat
nieprawidtowego formatu). Uwaga: Powyzsze podejscie z rules pokazuje wbudowang
walidacje RHF. W dalszej czesci zobaczymy, jak mozna uzy¢ zamiast tego walidacji
schematem (Yup/Zod).

e Prop render to funkcja, ktdra dostaje obiekt zawierajgcy m.in. field: { onChange, onBlur,
value, name }. Destrukturyzujemy to i uzywamy:

o onChange przypisujemy do onChangeText TextInputa — dzieki temu kazda zmiana
tekstu uaktualni wartos¢ w stanie formularza. Wazne: nie wywoftujemy tu
setState wfasnego — RHF sam zarzqdza wartosciq.

o onBlur przypisujemy do onBlur Textlnputa — w momencie opuszczenia pola RHF
oznaczy to pole jako ,dotkniete” i ewentualnie uruchomi walidacje (np.
pokaze btad "required" jesli puste).

o value przypisujemy do value komponentu — wartos$¢ kontrolowana jest przez
RHF.

¢ Nastepnie w JSX obok pola warunkowo renderujemy komunikat btedu jesli errors.email
istnieje. errors.email.message bedzie zawierato tekst btedu przekazany w rules (lub z
resolvera schematu).

Dzieki Controllerowi mozemy korzystaé z niekontrolowanych komponentéw RN, a
jednoczesnie podpigc je pod kontrole biblioteki formularza.

Kilka uwag praktycznych:

¢ Nie musimy uzywac Controller dla kazdego elementu. Jesli np. mamy prosty
przetacznik switch lub suwak, mozemy czesto zarejestrowac go inaczej. Jednak w
wiekszosci przypadkéw w RN jest to najwygodniejsza metoda.

e Istnieje réwniez hook useController dajacy podobny efekt w komponencie bez JSX, ale
zazwyczaj prostszy jest komponent <Controller> w JSX.

e rules obstuguje podstawowe walidacje — jednak przy bardziej ztozonych warunkach
lub wielu polach zaleznych od siebie, lepiej uzy¢ walidatora schematéw.

e Gdy uzywamy walidacji schematem (resolver), nie trzeba duplikowaé regut w rules —
mozemy je wtedy pomingc lub uzy¢ do drobnych dodatkowych spraw (np. rules={{
required: true }} tylko do oznaczenia obowigzkowosci — choé i to moze byé w
schemacie).

Obstuga btedow i komunikatéw

RHF udostepnia w formstate.errors informacje o btedach. Kazdy wpis errorsinamePola] zawiera
m.in. message (jesli zdefiniowalismy komunikat w rules lub dostarcza go walidator schematu),
type (typ btedu, np. "required", "maxLength" itp.), a takze inne informacje (np. actual i required
przy walidacji dtugosci).

Najprostsze podejscie to wyswietlaé btgd pod polem, co zostato pokazane wyzej. Kilka
dobrych praktyk:

e Komunikaty btedéw powinny by¢ krétkie, zrozumiate i pomagaé poprawi¢ dane (np.
»,Hasto musi mie¢ co najmniej 8 znakow”).

e Warto stylowac btedy wyrézniajgcym kolorem (czerwony) i np. mniejszg czcionka.

e Mozna tez oznaczac pola z btedem wizualnie (np. czerwonym obramowaniem). W
tym celu mozemy doda¢ do stylu Textlnputa warunek: style={[styles.input, errors.password
&& styles.inputError]} — wczesniej definiujgc w styles.inputError np. borderColor: 'red'.

Jesli chodzi o UX wyswietlania btedow — czesto lepiej pokazywac btedy dopiero gdy
uzytkownik zakonczyt interakcje z polem (onBlur) lub prébowat wystaé formularz. RHF
wspiera to — domyslnie handleSubmit 0znacza wszystkie pola jako touched przy prébie wystania,
wiec btedy sie pokazg. Mozemy tez zmieni¢ domysine ustawienia, np. useForm({ mode: 'onBlur'})
spowoduje, ze walidacja bedzie wykonywana po opuszczeniu pola, a mode: 'onChange' — na
biezgco w trakcie pisania (co czasem bywa zbyt agresywne). DomysIne mode to 'onSubmit'
(walidacja gtédwnie przy submit, ale btedy i tak mozemy wyswietlaé¢ wczesniej jesli pole jest
touched).

Podsumowujgc prace z RHF: Nasz komponent formularza w RN bedzie zawierat:

e Inicjalizacje useForm z odpowiednim resolver (jesli uzywamy Yup/Zod) lub z defaultvalues
(jesli potrzebujemy).

o Kilka <Controller> odpowiadajgcych polom, wewnatrz ktérych znajduja sie konkretne
<TextInput> lub inne elementy (Picker, Switch etc.) powigzane przez onChange/value.

¢ Elementy tekstowe wyswietlajgce btedy pod polami.

e Przycisk Submit (TouchableOpacity/Button) wywotujgcy handleSubmit(onSubmit).

¢ Ewentualnie dodatkowe przyciski, np. ,Reset” (ktéry moze uzy¢ reset() z RHF) lub
nawigacja (np. link ,,Masz juz konto? Zaloguj” — cho¢ to poza samym formularzem).

Przejdzmy teraz do kluczowej kwestii walidacji — zwtaszcza z uzyciem zewnetrznych bibliotek
do definiowania regut.

Schematyczna walidacja formularzy (Zod vs Yup)

Walidacja schematyczna polega na zdefiniowaniu struktury danych (schematu) i regut dla
poszczegdlnych pdl, a nastepnie wykorzystaniu tego schematu do zweryfikowania
poprawnosci danych. Podejscie to ma kilka zalet:

Centralizacja regut: Wszystkie zasady walidacji zebrane sg w jednym miejscu
(schemacie), a nie porozrzucane po komponentach.

Mozliwos¢ ponownego uzycia: Ten sam schemat mozna zastosowacé po stronie
frontendu (dla wstepnej walidacji) i backendu (dla ostatecznej walidacji danych np.
przed zapisaniem do bazy), co redukuje duplikacje.

Lepsza integracja z TypeScript: Biblioteki takie jak Zod pozwalajg automatycznie
wyprowadzic typ TypeScript na podstawie schematu walidacji. Dzieki temu nasze
dane formularza mogg miec¢ typy Scisle zgodne z regutami walidacji — co zwieksza
bezpieczenstwo i wygode pracy.

W ekosystemie React dominujg dwie biblioteki do walidacji schematéw: Yup (dtugo
popularna, dobrze zintegrowana z Formikiem) i Zod (stosunkowo nowsza, zyskujgca na
popularnosci ze wzgledu na scista integracje z TypeScript). Przyjrzyjmy sie krétko obu:

Yup: Walidator wzorowany na bibliotece Joi (znanej z Node.js). Pozwala
deklaratywnie tworzyé schematy za pomocg taricuchowania metod (np.
yup.string().email().required() dla pola email). Ma wbudowane walidacje typdw prostych,
stringdw, liczb, tablic itp., obstuguje zaleznosci miedzy polami (ref do innego pola,
metoda when do warunkowej walidacji).

Zod: Biblioteka od podstaw zaprojektowana pod TypeScript. Tworzenie schematu
polega na wywotywaniu funkcji (np. z.string().email()), bardzo podobnie do Yup, ale
kazdy schemat Zod jest jednoczesnie typem TypeScript — mozemy uzy¢ z.infer<typeof
schema> by uzyskad typ. Zod wymusza parsing danych (metoda .parse() albo bezpieczna
.safeParse()), integruje walidacje i parse w jedno (co zmniejsza ryzyko niespéjnosci
typow).

Poréwnanie: Obie biblioteki osiggajg podobne cele, sktadnia jest zblizona. W praktyce:

Yup jest ,starszy”, wiec wiele przyktaddéw i projektéw (zwtaszcza z Formikiem) go
uzywa. Ma dojrzate API, ale integracja z TS jest nieco sztukowana (Yup potrafi
generowac typy, ale bywa to zawodne przy bardziej ztozonych schematach).

Zod jest ,,nowszy” i TS-first — kazdy schemat to zrddto prawdy dla walidacji i typdow.
Zod nie pozwoli np. uzy¢ wartosci spoza zdefiniowanego enumu bez zgtoszenia btedu
typdw (przy uzyciu infer). Posiada tez lepsze mechanizmy walidacji ztozonej
(refinements) i tatwiej nim walidowaé zagniezdzone struktury oraz pola zalezne
logicznie.

Integracja schematow z react-hook-form (resolvers)

React Hook Form udostepnia wspomniany pakiet @hookform/resolvers, ktdry zawiera gotowe
integracje z réznymi bibliotekami walidacji (Yup, Zod, Joi, AV itp.). Dzieki temu mozemy
dodac do useForm opcje resolver, @ RHF zajmie sie resztg — tj. przy wywotaniu handleSubmit
automatycznie zweryfikuje dane schematem i wypetni obiekt errors ewentualnymi btedami.

Przyktad z Zod: Zatézmy, ze mamy schemat Zod:
import { z } from 'zod’;

const LoginSchema = z.object({
email: z.string().email("Nieprawidtowy format email").nonempty("Email jest wymagany"),
password: z.string().min(6, "Hasto musi mie¢ min. 6 znakéw").nonempty("Hasto jest wymagane"),

N;

Tutaj zdefiniowalismy, ze email musi by¢ niepusty i w formacie email, a hasto niepuste i min.
6 znakéw. Mozemy teraz zrobic:

import { useForm } from 'react-hook-form';
import { zodResolver } from '@hookform/resolvers/zod';

type LoginData = z.infer<typeof LoginSchema>; // automatyczny typ danych na podstawie schematu

const { control, handleSubmit, formState: { errors } } = useForm<LoginData>({
resolver: zodResolver(LoginSchema)

N;

To jedno przypisanie resolver: zodResolver(LoginSchema) sprawia, ze gdy uzytkownik bedzie
wysytat formularz, RHF:

e pobierze aktualne wartosci wszystkich pdl,

o przekaze je do walidatora Zod,

e otrzyma wynik walidacji — jezeli sg btedy, automatycznie wypetni errors i NIE wywota
onSubmit; jezeli brak btedéw, pozwoli wywota¢ onSubmit z danymi.

Warto wspomnieé, ze resolvery moga takze wykonywac pewne transformacje — np. Zod
moze sparsowac dane (np. zamienié string na number jesli tak zdefiniujemy). RHF domysinie
uzywa mode: 'onSubmit' przy uzyciu resolvera, ale mozna to zmienic¢ (np. mode: 'onBlur' aby
walidowa¢ kazde pole po wyjsciu).

Komunikaty btedéw: W schemacie powyzej zauwazmy, ze przy kazdym ograniczeniu
przekazaliSmy komunikat (np. "Nieprawidtowy format email"). Zod pozwala w metodach jak
.email() czy .min() od razu poda¢ wiadomos¢ btedu, ktora bedzie zwrdcona. Yup ma podobny
mechanizm — np. .min(6, "Hasto za krétkie"). Dobrg praktyka jest zdefiniowanie wszystkich
tekstow btedéw w jednym miejscu (schemacie), co utatwia ewentualne ttumaczenia lub
modyfikacje. RHF poprzez resolver automatycznie ustawi te komunikaty w
errors[field].message, wiec w komponencie mozemy je wyswietla¢ tak jak wczesniej.

Walidacja miedzy polami: Czesto potrzebujemy sprawdzi¢ zaleznosci, np. potwierdzenie
hasta musi sie zgadzac z hastem. Jak to zrobi¢? Mozna wykorzysta¢ mechanizmy schematu:

e W Yup mozna uzy¢ .oneOf([yup.ref('password')], "Hasta musza by¢ takie same") dla pola
confirmPassword, albo uzy¢ .test() z dostepem do catego obiektu (this.parent).
e W Zod mozemy uzyc .superRefine() lub .refine() na obiekcie. Przyktad:

const RegisterSchema = z.object({
password: z.string().min(6, "Min 6 znakow"),
confirm: z.string()
}).refine(data => data.confirm === data.password, {
path: ['confirm'], // wskazujemy, ze btad dotyczy pola confirm
message: "Hasta nie sg zgodne"

N;

Powyzsze wywotanie .refine doda wtasng regute walidacyjng na poziomie catego obiektu:
jezeli warunek (confirm === password) nie bedzie spetniony, to wygeneruje btad przypisany
do pola confirm z podanym komunikatem. Zod pozwala tez w superRefine mieé dostep do
kontekstu walidacji, w ktérym mozna doda¢ wiele btedéw dla réznych pél naraz (np.
sprawdzanie spdjnosci daty ,,0od” i ,do” itp.).

Wynik walidacji a TypeScript: W przypadku Zod, uzycie z.infer<typeof schema> zapewnia, ze
obiekt danych LoginData doktadnie odpowiada schematowi (np. email jest stringiem, hasto
stringiem, itp.). W Yup, mozemy uzy¢ InferType<typeof schema> z pakietu yup (Yup ma
yup.InferType), ale jest pewne ryzyko, ze definicja typédw nie odda wszystkich ztozonych
zaleznosci. Zod gwarantuje, ze jesli walidacja przejdzie, dane wyjsciowe spetniajg podany typ,
bo samo walidowanie odbywa sie metodg .parse ktéra rzuci wyjatek przy niezgodnosci typow.
W Yup walidacja jest oddzielona od mechanizmu typowania (bardziej opiera sie na zaufaniu
programisty, ze dane pasujg do zadanego interfejsu). Jak wskazuje analiza, Zod eliminuje
ryzyko niespdjnosci miedzy typami a walidacjg — schemat jest jedynym zrédtem prawdy dla
obu.

Ktora biblioteke wybrac?

W 2025 roku wybor czesto pada na Zod w nowych projektach TS, natomiast Yup w
istniejgcych projektach moze pozosta¢ z uwagi na dojrzatos¢ i przyzwyczajenie. Obie spetnig
swoje zadanie. Z perspektywy React Native i wydajnosci nie ma duzej réznicy — walidacja i
tak odbywa sie w JavaScripcie (cho¢ mozna tu dodaé, ze Zod bywa minimalnie szybszy przy
prostszych schematach, a Yup nieco szybszy przy bardzo ztozonych — ale nie jest to
zauwazalna réznica).

Jesli zalezy nam na petnym wykorzystaniu TypeScript — Zod daje przewage. Jesli mamy
gotowe schematy w Yup (np. z wczesdniejszego projektu) i dziatajg — nie ma koniecznosci
przepisywania na Zod na site.

Integracja z RHF jest Swietna dla obu: wystarczy wybra¢ odpowiedni resolver (yupResolver lub
zodResolver). Przyktad integracji z Yup z kodu : uzyto resolver: yupResolver(loginSchema) przy
inicjacji useForm, co analogicznie jak w naszym przyktadzie z Zod wtgcza walidacje schematu
przy submit.

Na zakonczenie tej sekcji warto podkresli¢: Niezaleznie czy uzyjemy Yup czy Zod, centralne
definiowanie walidacji bardzo utatwia rozwdj i utrzymanie formularzy. Dzieki temu unikamy
rozproszenia logiki po wielu miejscach i mozemy tatwo modyfikowa¢ reguty (np. zmiana
minimalnej dtugosci hasta w jednym miejscu).

UX formularzy mobilnych — dobre praktyki

Oprécz poprawnej funkcjonalnosci i walidacji formularza, musimy zadbac o doswiadczenie
uzytkownika (UX). Uzytkownicy mobilni oczekujg, ze formularz bedzie wygodny, intuicyjny
oraz dostosowany do urzgdzenia (np. uzyje odpowiedniej klawiatury dla pola numeru
telefonu). Omoéwmy kluczowe aspekty UX formularzy na platformach mobilnych:

Przyjazne komponenty wejsciowe

Select / Picker (listy wyboru): Czasem pola formularza powinny pozwoli¢ uzytkownikowi
wybrad jedng z predefiniowanych opcji (np. kraj, pte¢, przedziat wiekowy). Na web
zrobilibySmy <select>, a w RN? RN do wers;ji 0.65 posiadat wbudowany Picker, obecnie jest on
dostepny jako osobny pakiet @react-native-picker/picker. Picker w iOS prezentuje sie jako
klasyczny obracany wybierak na dole ekranu, a na Androidzie jako rozwijana lista lub modal.
Dobre praktyki:

e Dla matych list (kilka opcji) mozna ewentualnie uzyé ActionSheet (iOS) lub Modal z
wtasna listg opcji — ale najlepiej uzy¢ natywnego pickera dla spdjnosci doswiadczenia
uzytkownika.

¢ Integracja pickera z RHF: mozna opakowac go Controllerem podobnie jak TextInput.
Poniewaz picker nie ma onChangeText, ale np. onValueChange, musimy odpowiednio
przekazaé: onChange -> onValueChange, value -> selectedValue.

e Upewnij sig, ze dla pickera ustawiona jest warto$¢ domysina lub placeholder typu
,Wybierz opcje...”, aby uzytkownik wiedziat, ze trzeba cos wybraé. W walidacji
mozemy traktowaé brak wyboru jako btgd wymagany.

DatePicker (wybdr daty/czasu): Wiele formularzy wymaga dat (np. data urodzenia, termin
rezerwacji). W mobilnym UX nie zmuszamy uzytkownika do wpisywania daty recznie —
zamiast tego uzywamy natywnych kontrolek wyboru daty/czasu. W RN standardem jest
biblioteka @react-native-community/datetimepicker, ktéra udostepnia natywne okna
wyboru daty i czasu (iOS: rolki lub kalendarz, Android: dialog). Jak to wtgczy¢:

¢ Mozna uzyé trybu inline (embedding) na iOS, jednak czesciej pojawia sie jako
modal/dialog po interakcji. Zazwyczaj robimy tak: w miejscu gdzie data ma by¢
wybrana dajemy tekstowe pole (np. Textlnput lub po prostu TouchableOpacity
wyswietlajgce biezgcy wybdr), i po kliknieciu ustawiamy stan showDatePicker = true,
ktéry powoduje wyswietlenie komponentu DateTimePicker. Po wyborze daty wywofa
on onChange — tam wytgczamy widocznosc i ustawiamy wybrang date w stanie
formularza.

e Integracja z RHF: mozemy traktowac pole daty jako zwykta wartos¢. Najprosciej —
przechowywac date w stanie komponentu (useState) i w onChange pickera wywotywaé
setValue('birthDate', selectedDate) z RHF (dostajemy setValue z useForm()). Alternatywnie,

mozna zrobi¢ wiasny kontrolowany komponent DatePicker i uzyé Controller (gdzie w
render bedzie nasz mechanizm wyswietlania i modalu).

o Walidacja daty: Zod ma typ z.date() do walidacji obiektu daty, Yup ma date().
Pamietajmy, ze date-picker zwraca obiekt typu Date (nie string), wiec nasz schemat i
typ formularza tez powinien to przewidywac.

Masked Input (maski formatowania): Wprowadzanie danych takich jak numer telefonu,
PESEL, karta kredytowa, kod pocztowy itp. bywa obarczone specyficznym formatem. Maski
wejsciowe to rozwigzanie, ktére dynamicznie formatuje wpisywany tekst zgodnie z
okreslonym wzorcem, utatwiajgc uzytkownikowi zadanie i zapobiegajac btedom
formatowania. Przyktadowo: numer telefonu moze automatycznie pojawiac sie jako 123-456-
789 w trakcie wpisywania, a kod kredytowy w grupach po 4 cyfry.

W RN istnieje kilka bibliotek do masek, m.in.:

¢ react-native-text-input-mask — popularna biblioteka napisana czesciowo w
natywnym kodzie (i0OS/Android), oferujgca wydajne maskowanie bez opdznien.

e react-native-mask-input — biblioteka czysto JS, tatwa w uzyciu, korzystajaca z
wyrazen regularnych do definicji maski. Pozwala np. maske numeru telefonu
zdefiniowac jako mask={['+, /\d/, /\d/, "', /\d/, /\d/, /\d/, ...]}. Jest nieco mniej wydajna niz
natywne rozwigzania i moze powodowac krétkie migniecie niepoprawnego znaku
przed usunieciem (bo maskowanie odbywa sie po stronie JS).

e Inne: react-native-masked-text (starsza), react-input-mask (webowe podejscie, raczej nie
RN), lub wtasne rozwigzanie (np. poprzez onChangeText i formatowanie tekstu
manualnie).

Czy warto uzywac maski? Tak, jesli format jest Scisle okreslony i powszechnie uzywany
(telefony, daty, karty). Zwieksza to walidacje prewencyjng — uzytkownik nie wpisze ztego
znaku, bo maska na to nie pozwoli. Ponadto poprawia czytelno$é (np. fatwiej odczytaé
numer karty w grupach cyfr). Nalezy jednak:

o Woybraé biblioteke maskujacg rozwaznie — np. react-native-text-input-mask zapewni
ptynne dziatanie (wazne przy dtugich maskach), podczas gdy czysto JS-owe mogg
sporadycznie powodowa¢ efekt ,jumpowania” kursora (zwtaszcza w nowych
architekturach RN). Wspomniana analiza pokazuje, ze biblioteki dziatajgce w JS moga
chwilowo pokaza¢ niedozwolony znak zanim go usung, bo maskowanie nastepuje
asynchronicznie po wpisaniu. Wrazenia te minimalizuje natywna implementacja.

o Pamietac o integracji z RHF — maskowany input w gruncie rzeczy wcigz jest
Textlnputem. Najprosciej uzy¢ Controller i wewngtrz w render uzyé komponentu
maskujgcego (np. <Masklnput value={value} onChangeText={onChange} mask={...} />). W razie
problemdéw z wydajnoscig, mozna rozwazy¢ nie kontrolowaé go przez RHF na kazde
wpisanie, tylko uzyé maski zewnetrznie i przekazywaé gotowq wartosé np. dopiero
przy onBlur. To zaawansowany temat, ale wspominam, bo np. przy bardzo dfugich
formularzach z wieloma maskami, kontrolowanie ich wszystkich moze jednak
generowac pewne overheady.

o W walidacji i tak warto sprawdzi¢ dane — np. zdjg¢ maske i policzy¢ cyfry. Maski
pomagajg, ale nie zastepujg walidacji biznesowej (np. czy numer karty jest poprawny,

czy numer telefonu ma 9 cyfr — bo kto$ moze wklei¢ tekst zamiast wpisywac
manualnie itp.).

Przyktad uzycia maski (fragment):

<Controller

control={control}

name="phone"

render={({ field: { onChange, value } }) => (

<MaskInput
value={value}
onChangeText={(formatted, raw) => {
onChange(raw); // zapisujemy tylko cyfry (surowe)

1
mask={['+','4",'8"," ", /\d/, \d/, \d/,"", \d/, \d/, \d/, "', \d/, \d/, /\d/1}

placeholder="+48 "

keyboardType="number-pad"
/>
)}
/>

Tutaj maska wymusza format polskiego numeru kierunkowego +48 i 9 cyfr z odstepami co 3.
Uzywamy funkcji onChangeText komponentu maski, ktora dostarcza formatted (sformatowany
tekst do wyswietlenia) oraz raw (sam cigg cyfr) — zapisujemy w stanie formularza tylko raw
(np. do walidacji). Jednoczesnie uzytkownik widzi formatowany numer podczas wpisywania.

Nawigacja i interakcja

Kolejnos¢ focus (tab order): Juz wczesniej omowiliSmy mechanizm przetaczania fokusu
poprzez onSubmitEditing. Wazne jest, by ustawic te kolejnosé logicznie odpowiadajgcg utozeniu
pdl na ekranie. Np. jesli layout ma dwa pola w wierszu (co na mobilnych rzadziej, ale
mozliwe), zastandwmy sie czy focus ma i$¢ wierszami czy kolumnami — zwykle naturalnie
wierszami. W RN kolejnos¢ fokuséw to kolejnos¢ w strukturze komponentéw, a
onSubmitEditing daje petng kontrole — co oznacza, ze musimy to jawnie obstuzy¢. Testujmy na
urzadzeniu: wpisywanie i naciskanie Next powinno intuicyjnie przej$¢ do nastepnego pola, a
Done wystac¢ formularz.

Przycisk Submit: Powinien by¢ wyraznie widoczny po wypetnieniu formularza. Czesto styluje
sie go wyrdzniajgcym kolorem i umieszcza na dole ekranu (ale tak, by przy wysunietej
klawiaturze tez byt dostepny — np. wewnatrz ScrollView, ktéry mozna przewingg).

o Dezaktywacja przycisku: Dobrym zwyczajem jest dezaktywowanie przycisku , Wyslij”
dopadki formularz ma niepoprawne lub brakujgce dane. Np. jesli korzystamy z RHF,
mozna wykorzystac formState.isValid (dostepne, gdy podamy mode: 'onChange' lub
uzyjemy useForm({ mode: 'onChange', reValidateMode: 'onChange' }) — wtedy isvalid bedzie
true tylko gdy wszystkie reguty spetnione). Alternatywnie, mozna po prostu
disable'owac przycisk, dopoki wymagane pola nie sg wypetnione — cho¢ to wymaga
wtasnej logiki. W kazdym razie zapobiegamy wtedy frustracji, ze klikniecie nic nie robi
(albo wyswietla nagle duzo btedéw). Z perspektywy UX: albo przycisk jest aktywny i

po kliknieciu wyswietlamy btedy, albo w ogéle nieklikalny i np. wyszarzony dopdki
mamy niepoprawne dane. Obie drogi sg stosowane, byle konsekwentnie.

e Reakcja na submit: Po pomysinym wystaniu zwykle nawigujemy uzytkownika dalej
(np. komunikat sukcesu, przejscie do nastepnego ekranu). Jesli wystanie trwa (np.
rejestracja wymaga komunikacji z serwerem), pokazmy jakis Loader lub przynajmniej
zmieAmy stan przycisku na ,Submitting...”. RHF pozwala fatwo kontrolowad stan
submitu przez formState.isSubmitting. Mozemy np. zmienié tekst przycisku na
»Wysytanie...” i zablokowad go, gdy isSubmitting = true.

Dostosowanie pol do platformy:

e Dla pdl hasta korzystajmy z secureTextEntry={true} — powoduje to maskowanie znakéw.

e Dla pdl email/username wytgczmy autokorekte (autoCorrect={false}), bo
autouzupetnianie stéw nie ma tam sensu, a mogtoby wprowadzaé btedne poprawki.

o Dla pél liczbowych ustawmy keyboardType="numeric" lub "number-pad", a nawet atrybuty
typu maxLength (RN TextInput obstuguje maxLength — co moze uchroni¢ przed
wprowadzeniem wiecej znakéw niz dopuszczamy, np. 6-cyfrowy kod SMS).

e Skorzystajmy z atrybutow autouzupetniania: np. textContentType="oneTimeCode" dla
pola kodu SMS spowoduje, ze na iOS klawiatura podpowie kod z SMS jesli system
wykryt, ze przyszedt. textContentType="username" / "password" pozwoli menedzerom
haset podpowiedzie¢ hasto. W iOS jest nawet textContentType="newPassword" do
sugerowania silnego hastfa przy rejestracji. W Androidzie analogicznie
autoComplete="password" itp. — to wszystko sprawia, ze aplikacja integruje sie z
systemowymi mechanizmami autofill, co jest duzym plusem UX. Nie wymaga to wiele
wysitku, a bywa zapominane przez programistow.

Btedy dostepnosci (Accessibility):

Tworzgc formularz, musimy zadbaé, aby byt dostepny dla oséb z niepetnosprawnosciami,
np. uzywajacych czytnikéw ekranu (VoiceOver na iOS, TalkBack na Androidzie). Kilka
wskazowek:

o Etykiety pdl: Kazde pole powinno miec etykiete, ktdrg czytnik ekranu odczyta. Jesli
mamy widoczny <Text> z nazwa pola tuz przed nim (np. "Email:"), to zazwyczaj czytnik
powigze to automatycznie (zwtaszcza gdy uzywamy komponentow takich jak
<Textlnput accessibilityLabel="Email">). Mozna jawnie ustawic accessibilityLabel na TextInput,
np. "Email, pole tekstowe". Dobrze jest w labelu zawrze¢ informacje o btedzie, jesli
wystepuje — np. dynamicznie: accessibilityLabel={ error ? "Email, btad: " + error.message :
"Email" }. W ten sposob VoiceOver przeczyta od razu, ze jest btad i jaki. Alternatywnie
mozna uzy¢ accessibilityHint do przekazania dodatkowej informacji (np. "wymagany
format: @.___").

e Fokus na btedzie: Po walidacji nieudanej, dobrze jest przenies¢ fokus na pierwsze
pole z btedem lub w jaki$ sposdb poinformowaé uzytkownika niewidomego, ze
wystgpit btad. Prostym podejsciem jest uzycie wtasciwosci accessibilityLiveRegion. Jesli
element z btedem (np. <Text style={errorText} z komunikatem) ma
accessibilityLiveRegion="polite" i pojawi sie w wyniku zmian, TalkBack powinien go
automatycznie odczytac. Np. Android potrafi ogtosi¢ btgd TextInputa ustawiony
metoda native (TextView.setError), ale w RN musimy to sami obstuzy¢.

e Grupowanie elementéw formularza: Czasami faczy sie label, pole i komunikat btedu
w jeden element dostepnosci, aby czytnik czytat to wszystko razem. Mozna to
uzyskaé np. nadajac accessible={true} na View obejmujacy te elementy i ustawic
accessibilityLabel tej View jako ztgczenie: "Email, pole edycji. Wartoéé: ... Bfad: ..." — ale to
bywa skomplikowane i moze interferowac z fokusem samego pola. Alternatywnie, na
iOS mozna uzy¢ accessibilityElementsHidden lub accessibilityViewlsModal aby kontrolowaé, co
jest czytane. Ogodlna zasada: dostepnos¢ powinna by¢ testowana manualnie (np.
odpalamy TalkBack i przechodzimy przez formularz).

e Zamkniecie klawiatury a czytnik ekranu: Wspomniany mechanizm
TouchableWithoutFeedback onPress={Keyboard.dismiss} — musieliSmy tam dac accessible={false},
zeby wrapper nie przechwytywat fokusu. Inaczej screen reader widziatby catg
zawarto$¢ jako jeden wielki przycisk. To pokazuje, ze drobne detale majg znaczenie —
zawsze ustawiajmy accessible: false na takich technicznych obiektach dotykowych,
ktdre nie niosg znaczenia dla UX (bo ich jedyng rolg jest obstuzenie tapniecia poza
pola).

Podsumowujgc UX: Tworzac formularz mysimy jak uzytkownik:

e Czy fatwo wprowadzi¢ dane? (odpowiednia klawiatura, maski, automatyczne
przejscia, autofill)

e Czy wiadomo co wpisaé? (podpowiedzi, placeholdery, etykiety)

e Czy wiadomo gdzie jest btad i jak go naprawic? (jasne komunikaty, przeniesienie
uwagi na btad)

e Czy na matym ekranie wszystko widac? (unikanie zastoniecia przez klawiature)

e Czy obstuga jest spdjna z platforma? (natywne pickery, odczytywanie pél przez
system)

e Czy zapewniamy réwny dostep wszystkim uzytkownikom? (dostepnos¢, czytniki
ekranu, kontrast koloréw np. czerwony komunikat na ciemnym tle — czytelnos¢)

Zapewnienie dobrego UX czesto wymaga dodatkowego naktadu pracy, ale przektada sie na
mniejszg frustracje uzytkownikéw i wyiszg konwersje (wiecej wypetnionych i wystanych
formularzy). W aplikacjach, gdzie formularz jest krytyczny (np. rejestracja, zakup).

Przyktad: Kompletny formularz rejestracji z walidacja (react-
hook-form + Zod)

Teraz pofgczymy wszystkie oméwione elementy w spdjny przyktad. Zatézmy, ze tworzymy
ekran Rejestracji w aplikacji. Formularz bedzie zawierat takie pola jak: imie, email, hasto,
potwierdzenie hasta oraz np. numer telefonu. Zaimplementujemy walidacje tych pdl przy
uzyciu Zod i pokazemy integracje z react-hook-form. Dodatkowo zadbamy o UX: maske na
numer telefonu, przetgczanie focusu, wtasciwe typy klawiatur, itp.

Krok 1: Definicja schematu walidacji (Zod) — definiujemy nasz schemat rejestracji oraz typ
wyprowadzony dla formularza:

import { z } from 'zod’;

const RegisterSchema = z.object({
name: z.string().min(2, "Imie jest za krétkie").max(50, "Imie jest za dtugie"),
email: z.string().email("Nieprawidtowy format email"),
password: z.string().min(8, "Hasto musi mie¢ co najmniej 8 znakow"),
confirmPassword: z.string(),
phone: z.string().regex(/~\d{9}$/, "Numer telefonu musi mie¢ 9 cyfr")
}).refine(data => data.password === data.confirmPassword, {
path: ["confirmPassword"],
message: "Hasta nie sg zgodne"

N;

type RegisterData = z.infer<typeof RegisterSchema>;
Objasnienia:

e Imie (name) — wymagamy min 2 znaki i max 50 (btedy gdy poza zakresem). Nie
uzyliSmy .nonempty(), wiec puste imie tez ztapie min(2) jako btad ,,za krotkie”.

e Email — metoda .email() sprawdza poprawnos¢ formatu oraz implicit wymaga
niepustego. Zod domysinie komunikat generuje po angielsku, dlatego podalismy
wtasny.

e Hasto —min 8 znakdéw. (Mozna by dodaé np. wymag litery i cyfry — wtedy uzyjemy
regex() z odpowiednim patternem i komunikatem).

e ConfirmPassword — tu celowo nie dajemy .min czy czegos, bo walidacja nastgpi w
refine. Warto jednak upewnic sie, ze jest stringiem. Domyslnie jak nie podamy .min, to
puste tez przejdzie, ale refine i tak ztapie niezgodnos¢ jesli hasto byto wprowadzone.
Alternatywnie, mozna by daé .min(8, "...") zeby od razu krzyczato, ze potwierdzenie tez
min 8.

¢ Phone — zaktadamy polski numer 9-cyfrowy, bez prefiksu. Uzywamy regexu "\d{9}s.
Ten regex dopuszcza tylko doktadnie 9 cyfr (wiec jesli user wpisze inny format, bedzie
btad). Komunikat jest odpowiedni.

e .refine — tutaj sprawdzamy czy password === confirmPassword. Jesli nie, to przypisujemy
btad do pola confirmPassword. W ten sposdb uzytkownik zobaczy komunikat przy polu
potwierdzenia (co jest naturalne, bo zwykle nie wie, ktére nie pasuje — domysinie
zaktadamy, ze to confirm jest wpisane inaczej niz password).

Krok 2: Implementacja komponentu formularza w RN — wykorzystamy RHF z resolverem
Zod. Pokazemy kod TypeScript + JSX z komentarzami:

import React, { useRef } from 'react’;

import { View, Text, TextInput, StyleSheet, TouchableOpacity, ScrollView } from 'react-native';

import { useForm, Controller } from 'react-hook-form’;

import { zodResolver } from '@hookform/resolvers/zod';

import Masklnput from 'react-native-mask-input'; // biblioteka do maskowania telefonu (nalezy zainstalowac)
import { RegisterSchema, RegisterData } from './validation'; // zaktadamy, ze schemat wyeksportowalismy z
pliku validation.ts

const RegisterScreen: React.FC = () => {
const { control, handleSubmit, formState: { errors, isValid } } = useForm<RegisterData>({
resolver: zodResolver(RegisterSchema),
mode: 'onChange' // walidacja na biezaco (dla isValid)

N;

const emailRef = useRef<TextInput>(null);
const passwordRef = useRef<TextInput>(null);
const confirmRef = useRef<TextInput>(null);
const phoneRef = useRef<TextInput>(null);

const onSubmit = (data: RegisterData) => {
console.log("Rejestracja - dane:", data);
// Tu mozna wystaé na serwer lub nawigowac dalej

7

return (
<TouchableOpacity style={{ flex: 1 }} activeOpacity={1} onPress={() => { /* klikniecie tta - nic nie robi,
klawiatura schowana automatycznie przez KeyboardAvoidingView */ }}>
<KeyboardAvoidingView style={{ flex: 1 }} behavior="padding" keyboardVerticalOffset={80}>
<ScrollView contentContainerStyle={styles.container} keyboardShouldPersistTaps="handled">

<Text style={styles.label}>Imie:</Text>
<Controller
control={control}
name="name"
render={({ field: { onChange, onBlur, value } }) => (
<Textlnput
style={[styles.input, errors.name && styles.inputError]}
placeholder="Twoje imie"
onBlur={onBlur}
onChangeText={onChange}
value={value}
returnKeyType="next"
onSubmitEditing={() => emailRef.current?.focus()}
/>
)}
/>

{errors.name && <Text style={styles.errorText}>{errors.name.message}</Text>}

<Text style={styles.label}>Email:</Text>
<Controller
control={control}
name="email"
render={({ field: { onChange, onBlur, value } }) => (
<Textlnput
ref={emailRef}
style={[styles.input, errors.email && styles.inputError]}
placeholder="adres email"
keyboardType="email-address"
autoCapitalize="none"
autoCorrect={false}
textContentType="emailAddress"
onBlur={onBlur}
onChangeText={onChange}
value={value}
returnKeyType="next"
onSubmitEditing={() => passwordRef.current?.focus()}
/>
)}
/>

{errors.email && <Text style={styles.errorText}>{errors.email.message}</Text>}

<Text style={styles.label}>Hasto:</Text>
<Controller
control={control}
name="password"
render={({ field: { onChange, onBlur, value } }) => (
<Textlnput
ref={passwordRef}
style={[styles.input, errors.password && styles.inputError]}
placeholder="Hasto"
secureTextEntry
textContentType="newPassword"
onBlur={onBlur}
onChangeText={onChange}
value={value}
returnKeyType="next"
onSubmitEditing={() => confirmRef.current?.focus()}
/>
)}
/>

{errors.password && <Text style={styles.errorText}>{errors.password.message}</Text>}

<Text style={styles.label}>Powtdrz hasto:</Text>
<Controller
control={control}
name="confirmPassword"
render={({ field: { onChange, onBlur, value } }) => (
<Textlnput
ref={confirmRef}
style={[styles.input, errors.confirmPassword && styles.inputError]}
placeholder="Potwierdz hasto"
secureTextEntry
textContentType="password"
onBlur={onBlur}
onChangeText={onChange}
value={value}
returnKeyType="next"
onSubmitEditing={() => phoneRef.current?.focus()}
/>
)}
/>

{errors.confirmPassword && <Text style={styles.errorText}>{errors.confirmPassword.message}</Text>}

<Text style={styles.label}>Telefon:</Text>
<Controller
control={control}
name="phone"
render={({ field: { onChange, onBlur, value } }) => (
<Masklnput
ref={phoneRef}
style={[styles.input, errors.phone && styles.inputError]}
placeholder="Numer telefonu"
keyboardType="number-pad"
onBlur={onBlur}
value={value}
onChangeText={(formatted, extracted) => {
// extracted to tylko cyfry
onChange(extracted);

1
mask={[/\d/, \d/, \d/, "', \d/, \d/, \d/, "', \d/, \d/, \d/]}
returnKeyType="done"
onSubmitEditing={handleSubmit(onSubmit)}
/>
)}
/>

{errors.phone && <Text style={styles.errorText}>{errors.phone.message}</Text>}

<TouchableOpacity
style={[styles.submitButton, lisValid && styles.submitButtonDisabled]}
onPress={handleSubmit(onSubmit)}
disabled={lisValid}
>
<Text style={styles.submitButtonText}>Zarejestruj sie</Text>
</TouchableOpacity>

</ScrollView>
</KeyboardAvoidingView>
</TouchableOpacity>
);
2

const styles = StyleSheet.create({

container: {
padding: 20

b

label: {
fontSize: 16,
marginBottom: 4

b

input: {
borderWidth: 1,
borderColor: '#ccc',
padding: 10,
borderRadius: 4,
marginBottom: 8

b

inputError: {
borderColor: 'red'

2

errorText: {
color: 'red',
marginBottom: 8

b

submitButton: {
backgroundColor: '#4caf50',
padding: 15,
borderRadius: 4,
alignltems: 'center’,
marginTop: 10

b

submitButtonDisabled: {
backgroundColor: 'H9E9E9E'

5

submitButtonText: {
color: '#fff',

fontSize: 16
}
N;

To sporo kodu — przeanalizujmy go krok po kroku pod katem spetnienia zatozen:

e Uzywamy useForm<RegisterData> Z resolver: zodResolver(RegisterSchema). Dodalismy tez
mode: 'onChange' aby mie¢ dostep do isvalid na biezgco (przycisk rejestracji jest aktywny
tylko gdy formularz poprawny).

o Zdefiniowalismy referencje do kolejnych Textinputéw: emailRef, passwordRef, itd. —
stuzg one do zarzadzania fokusem sekwencyjnie.

e W onSubmit na razie tylko logujemy dane — w prawdziwej aplikacji tu wywotalibysmy
API rejestracji lub dispatch do kontekstu/redux, a nastepnie np. nawigowali do
ekranu gtéwnego lub logowania.

e Caty formularz jest opakowany w KeyboardAvoidingView (behavior padding, offset 80 —
zaktadamy moze jaki$ header na ~80px). Catos¢ jest wewnatrz ScrollView z
keyboardShouldPersistTaps="handled". Dodatkowo opakowalismy wierzch w
TouchableOpacity z activeOpacity={1} i onPress pustym — to trik: klikniecie na tto ScrollView
i tak obstuzy handled (czyli schowa klawiature), a dodatkowy TouchableOpacity z
activeOpacity={1} zabezpiecza, ze klik nie zrobi nic wiecej (mdgtby nie by¢ potrzebny —to
tylko ilustracja, czasem daje sie po prostu <View> z style flex:1 i do niego
TouchableWithoutFeedback).

o Kazde pole jest zbudowane z Text label, Controller + Textlnput/MaskInput, i ewentualnego
Text z btedem.

e Focus chaining: Widzimy np. w polu Imie onSubmitEditing ->
emailRef.current.focus(), w Email -> passwordRef.focus(), Password ->
confirmRef.focus(), Confirm -> phoneRef.focus(), a Phone (ostatnie) ->
handleSubmit(onSubmit). To zapewnia ptynng nawigacje klawiatura.

o Wiasciwosci klawiatury: Imie — domysinie klawiatura tekstowa (mozna by dodac¢
autoCapitalize="words" zeby imie z duzej litery — to UX, ktérego tu nie dodalismy, ale
warto!). Email — keyboardType email, autoCapitalize none, autoCorrect false,
textContentType emailAddress (dzieki czemu iOS np. podpowie email z ustawien).
Hasto — secureTextEntry true (maskuje), textContentType newPassword (iOS sugeruje
mocne hasto), confirm — secureTextEntry, textContentType password (moze
zaproponowac automatycznie hasto z pola powyzej? Czasem iOS tak robi). Telefon —
keyboardType number-pad (tylko cyfry).

¢ Maska telefonu: UzyliSmy Maskinput (z biblioteki react-native-mask-input) z maska
dzielacg 9 cyfr na grupy 3-3-3. Zwraca nam formatted i extracted — przekazujemy do RHF
tylko extracted (same cyfry), bo taki format oczekuje walidator (9 cyfr). Dzieki temu
uzytkownik moze wpisywac z odstepami, a my i tak sprawdzamy surowe cyfry.
Gdybysmy chcieli prefiks kraju, maske bysmy zrobili np. ['+,'4','8","", ...] i wtedy
walidator musiatby pozwalaé na 11 znakéw w sumie (9 cyfr + 2 znaki +48 i spacje), lub
raczej zdjeliby$Smy znaki specjalne zanim sprawdzimy. Tu dla uproszczenia bierzemy
polski numer bez +48.

o Wyswietlanie btedow: Kazde pole ma warunkowe <Text style={styles.errorText}> z
komunikatem. Style: czerwony tekst i margines. Dodatkowo obramowanie pola
zmienia na czerwone jesli jest btad (styles.inputError).

e Przycisk rejestracji: Jest zablokowany (disabled) i wyszarzony stylem, gdy lisvalid. Po
wypetnieniu wszystkich wymaganych w stylu danych i spetnieniu regut, isvalid zmieni
sie na true (dzieki mode: 'onChange' walidacja nastepuje na biezgco) i wtedy styl
podmieni sie na zielony, a disabled na false. Tekst przycisku jest biaty na zielonym tle
dla czytelnosci.

Potencjalne ulepszenia:

e Mozna by dodac¢ jeszcze checkbox ,, Akceptuje regulamin” — wtedy Controller z
komponentem Switch lub CheckBox i walidacja boolean (Zod: zliteral(true) lub
z.boolean().refine(val => val === true, "Musisz zaakceptowac¢...")). Pomineli$my to dla zwieztosci.

e Mozna doda¢ komunikaty toast lub dialog na wypadek btedu sieci przy rejestracji
albo na sukces (np. , Konto utworzone pomysinie!”). Sam RHF tego nie robi — to juz
logika wyzej (np. obstuga w onSubmit catch error i ustawienie np. globalnego
errorMessage do pokazania).

e W kwestii dostepnosci: warto by dodac np. accessible={true} i accessibilityLabel dla
przycisku (domyslnie powinno przeczytac tekst, wiec jest OK). Dla komunikatéw
bteddw mozna dodac accessibilityLiveRegion="polite". Dla TextInput mozna by ustawic
accessibilityHint z podpowiedzia. Te rzeczy zalezg od wymagan — ale wazne, ze mamy
etykiety jako <Text> przed polami, co zwykle screen reader interpretuje jako label.

Uruchomienie i test: Gdybysmy uruchomili te aplikacje na urzadzeniu/emulatorze,
scenariusz bytby taki:

e Uzytkownik otwiera ekran rejestracji. Wpisuje imie (mniej niz 2 litery) i przechodzi
dalej — border robi sie czerwony, pojawia sie btad , Imie jest za krotkie”.

e Whpisuje poprawne imie, btad znika.

e Wopisuje niepoprawny email (np. ,,abc”) i nacisnie dalej — pojawia sie btad pod
emailem.

e Poprawia email, bfad znika.

¢ Hasto: wpisze np. ,123” — za krétkie, ale jedli jeszcze nie wyszedt z pola (w trybie
onChange i tak pewnie pokaze btad od razu, bo isValid sprawdza cato$¢ — tu mozna by
rozwazyc criteriaMode lub reValidateMode, by nie pokazywa¢ od razu — ale zostawmy).
Po przejsciu dalej btad ,min 8 znakow”.

e Confirm: wpisze inne niz hasto — btagd ,, Hasta nie sg zgodne”. Jak poprawi, btgd
zniknie.

o Telefon: jesli wpisuje litery, maska i tak nie pozwoli (tylko cyfry). Jak wpisze mniej niz
9 cyfr i kliknie Done/Submit — dostanie btgd od walidacji schematu.

e Gdy wszystkie pola spetnig warunki, przycisk ,, Zarejestruj sie” stanie sie zielony i
klikalny. Po nacisnieciu konsola pokaze zebrane dane (w realnej apce posztoby do
serwera).

e Caty czas klawiatura nie przykrywa pdl dzieki KeyboardAvoidingView/ScrollView (jesli
testujemy, warto emulowacé np. maty ekran). Klikniecie w scrollowalny obszar poza
polem chowa klawiature (dzieki keyboardShouldPersistTaps).

e UXjest na poziomie zblizonym do natywnych aplikacji: np. na iOS w polu hasto pojawi
sie ikonka strzezonego hasta, autofill podpowie mocne hasto; w emailu moze pojawié

sie sugestia email; w telefonie w iOS user zobaczy klawiature numeryczng i moze z
AutoFill z SMS wprowadzi¢ kod.

Dobre praktyki architektoniczne i projektowe

Na koniec zwréémy uwage na organizacje kodu i utrzymanie czystosci przy rozbudowanych
formularzach:

o Separacja logiki od widoku: W powyzszym przyktadzie caty kod jest w jednym
miejscu. Przy prostym formularzu to akceptowalne, ale w wiekszych projektach warto
wydzieli¢ pewne czesci. Np. schemat walidacji trzymalismy w osobnym module
(validation.ts). Podobnie, mozna utworzy¢ wtasne komponenty dla powtarzajgcych sie
elementéw formularza: np. komponent <FormTextInput> ktéry wewnatrz uzywa
Controller i Textlnput, przyjmujac propsy: name, label, placeholder, secure itp. Wtedy nasz
ekran rejestracji staje sie bardziej deklaratywny:

<FormTextInput name="email" label="Email" placeholder="adres email" keyboardType="email-address" />
<FormTextInput name="password" label="Hasto" placeholder="Hasto" secure />

Taki komponent wewnetrznie moze korzystac z kontekstu form (np. poprzez
przekazanie control propsem albo nawet uzycie useFormContext jesli korzystamy z RHF
FormProvider do zagniezdzonych formularzy). To podejscie czyni kod bardziej DRY — nie
powtarzamy za kazdym razem <Controller render=...> dla kazdego pola, tylko
wywotujemy nasz komponent polowy.

e Modularnosc i reuzywalnosc: Jezeli pewne grupy pdl wystepujg w kilku miejscach
(np. adres sktadajgcy sie z ulicy, kodu, miasta), mozna zrobié¢ z tego osobny
komponent AddressForm z wtasnym schematem i wtasnymi polami, a nastepnie
wigczac go w wieksze formularze (RHF umozliwia tatwe zagniezdzanie poprzez
FormProvider i Uzycie useFormContext W dzieciach).

e Czystosc kodu: Stosujmy czytelne nazwy dla pél (np. w schemacie i kodzie
uzywalismy confirmPassword — konsekwentnie). Unikajmy ,, magicznych” stringédw w
wielu miejscach — lepiej zdefiniowac raz. Np. komunikaty bteddw, jezeli powtarzajg
sie lub mogg by¢ wielojezyczne, warto trzymac¢ w osobnym obiekcie konfiguracyjnym
lub plikach lokalizacyjnych. Wtedy schemat moze korzystac z wczesniej
przygotowanych stringéw (mozna je importowac).

e Zrozumiatosé dla innych deweloperéw: Formularze mogg bywac zawite. Dobrze jest
komentarzami wyjasnic¢ nietypowe sztuczki (np. czemu uzywamy accessible={false}
gdzies, albo jak dziata ta maska). Innym aspektem jest testowanie — warto napisaé
testy jednostkowe walidacji (schemat Zod mozna przetestowac z réznymi danymi
wejsciowymi) oraz testy integracyjne ekranu (np. za pomocg Jest + React Native
Testing Library symulowac wpisywanie i sprawdzac czy btedy sie pojawiajg). To
pomoze wychwyci¢ regresje, gdy ktos zmieni reguty.

¢ Performance w bardzo duzych formularzach: React Hook Form radzi sobie dobrze
nawet z dziesigtkami pol dzieki niekontrolowaniu ich wszystkich na raz. Jednak jesli
formularz jest naprawde ogromny, rozwaz podzielenie go na kroki (tzw. wizard) —
uzytkownik nie powinien by¢ przyttoczony, a i my zaoszczedzimy renderowania tylu

elementdéw na raz. RHF pozwala zachowac stan miedzy krokami lub po prostu mozna
w kazdym ekranie-wizardzie trzymac wtasny useForm i na korcu scali¢ dane.
Aktualnos¢ bibliotek: Pamietajmy, by kontrolowac wersje zaleznosci. React Hook
Form stale rozwija sie (w grudniu 2025 jest to wcigz wersja 7.x, wiec nasz kod tego
uzywa; upewnijmy sie czy np. przy ewentualnym RHF 8 zmieni sie API). Zod réwniez
ewoluuje, choé raczej zachowuje kompatybilnos¢. Przy aktualizacjach RN zwracajmy
uwage na ewentualne nowe API dotyczace klawiatury czy inputéw (np. RN 0.70+
wprowadzit pewne zmiany w TextInput zwigzane z nowg architekturg). Na ten
moment jednak podejscia tu przedstawione sg zgodne z nowoczesnymi wersjami RN.

Literatura:

1. https://reactnative.dev/docs/textinput (Data dostepu: 1.10.2025) — Oficjalna
dokumentacja podstawowego komponentu obstugi tekstu w React Native.

2. https://react-hook-form.com/get-started (Data dostepu: 1.10.2025) — Oficjalny
przewodnik po bibliotece React Hook Form, omawiajgcy integracje i zarzgdzanie
stanem formularza.

3. https://zod.dev/?id=basic-usage (Data dostepu: 1.10.2025) — Dokumentacja
biblioteki Zod, opisujgca tworzenie schematéw walidacji danych.

4. https://react-hook-form.com/get-started#SchemaValidation (Data dostepu:
1.10.2025) — Przewodnik dotyczacy tgczenia React Hook Form z zewnetrznymi
walidatorami takimi jak Zod czy Yup.

5. https://reactnative.dev/docs/keyboardavoidingview (Data dostepu: 1.10.2025) —
Dokumentacja komponentu stuzgcego do rozwigzywania problemodw z klawiaturg
zastaniajgcq pola formularza.

https://reactnative.dev/docs/textinput
https://react-hook-form.com/get-started
https://zod.dev/?id=basic-usage
https://www.google.com/search?q=https://react-hook-form.com/get-started%23SchemaValidation
https://reactnative.dev/docs/keyboardavoidingview

