
POLITECHNIKA ŚWIĘTOKRZYSKA

Aplikacje mobilne – wykład
4

Stan aplikacji (stan lokalny) i kontekst

Mateusz Pawełkiewicz

1.10.2025

W React mamy kilka sposobów przechowywania i zarządzania stanem komponentów. Dobór
właściwego mechanizmu zależy od złożoności stanu oraz tego, czy musimy go udostępniać
wielu komponentom. Hook useState najlepiej sprawdza się do prostego stanu lokalnego w
pojedynczym komponencie – np. pojedyncze wartości lub nieskomplikowane aktualizacje
stanu. Z kolei useReducer jest zalecany, gdy logika stanu staje się bardziej złożona, obejmuje
wiele powiązanych wartości lub operacje zależne od poprzedniego stanu. Dokumentacja
Reacta wskazuje, że useReducer warto użyć, gdy stan zawiera liczne pod-pola lub wymagane są
złożone tranzycje (np. wiele typów akcji) zamiast prostych ustawień wartości.

Natomiast useContext nie służy do definiowania logiki stanu, ale do udostępniania danych w
głąb drzewa komponentów bez przekazywania ich przez kolejne propsy. Jest to tzw. “savior”
problemu prop drilling – pozwala wyeliminować ręczne przekazywanie tej samej informacji
przez każdy poziom komponentów. Context dobrze się sprawdza dla wartości globalnych lub
pół-globalnych (np. motyw aplikacji, zalogowany użytkownik, ustawienia aplikacji), czyli
danych, z których korzysta wiele niezależnych części interfejsu. Należy jednak pamiętać, że
częste zmiany wartości kontekstu mogą spowodować przeładowanie wielu komponentów
jednocześnie, co potencjalnie wpływa negatywnie na wydajność – każdy konsument
kontekstu zareaguje na zmianę poprzez ponowny render. Dlatego Context API nadaje się
głównie do stosunkowo rzadko zmieniających się, globalnych informacji, a nie szybkiej,
często mutowanej logiki stanu.

Kiedy czego użyć? Przy projektowaniu warto kierować się kilkoma zasadami:

 Zacznij od useState – dla większości lokalnych stanów pojedynczego komponentu jest
on najprostszy w użyciu. Zapewnia bezpośrednią aktualizację stanu za pomocą
funkcji setter i jest łatwy do zrozumienia. Gdy komponent potrzebuje np. przechować
wartość inputu, zaznaczenie checkboxa czy stan modala, useState w zupełności
wystarczy.

 Przejdź na useReducer w razie potrzeby – jeśli logika stanu zaczyna się rozrastać (np.
stan jest obiektem z wieloma polami, aktualizacje muszą być wykonywane
warunkowo lub w odpowiedzi na różne typy akcji), lepiej zorganizować kod za
pomocą reducera. useReducer umożliwia skupienie logiki aktualizacji stanu w jednej
funkcji redukującej, co poprawia czytelność przy bardziej skomplikowanych
sekwencjach zmian. Jest to także przydatne, gdy kolejne wartości stanu zależą od
poprzednich – unika się wtedy problemów z nieaktualnym stanem poprzednim, bo
reducer przetwarza akcje sekwencyjnie.

 Dodaj useContext do udostępniania stanu – gdy pojawia się potrzeba przekazania
danych do odległych komponentów (głębiej w hierarchii), rozważ użycie kontekstu
zamiast przekazywania wielu propsów po drodze. Często łączy się useReducer z
useContext w celu zbudowania własnego lekkiego systemu globalnego stanu: reducer
zarządza logiką i aktualizacją, a kontekst zapewnia dostęp do tego stanu oraz funkcji
dispatch w dowolnym miejscu aplikacji. Dzięki temu można uniknąć prop drillingu i
łatwo udostępnić np. wynik reducer’a (stan globalny) oraz metodę do zmiany stanu,
do której odwołają się komponenty potomne.

Podsumowując, useState utrzymuje prostotę i nadaje się do lokalnych, izolowanych stanów;
useReducer radzi sobie z większą złożonością stanu i sekwencjami akcji; natomiast useContext

pozwala dzielić się stanem (lub funkcjami) między komponentami bez przekazywania go
przez propsy. Często wszystkie te mechanizmy współpracują – np. używamy useReducer do
zarządzania stanem na wysokim poziomie, a następnie useContext do dostarczenia tego stanu
i dispatcherów niżej, podczas gdy poszczególne drobne komponenty mogą mieć własne
useState do prywatnych drobnych stanów.

Architektura stanu: stan UI vs stan serwera; unikanie prop
drilling

Rozważając architekturę aplikacji, warto oddzielić stan UI od stanu danych z serwera. Nie
cały stan w aplikacji jest jednakowy – ma różne źródła i charakterystyki. Stan UI (User
Interface state) to wszystkie dane, które są nietrwałe i trzymane tylko po stronie klienta.
Innymi słowy, jest to stan lokalny, który zwykle resetuje się przy odświeżeniu aplikacji i nie
jest przechowywany w bazie danych ani na serwerze. Cechuje go zazwyczaj synchronizacja i
natychmiastowość – zmiana następuje od razu w interfejsie i nie wiąże się z opóźnieniami
sieciowymi czy oczekiwaniem na odpowiedź. Przykłady stanu UI to np. aktualny motyw
kolorystyczny (dark/light mode), zaznaczone filtry na liście, otwarcie/zamknięcie modala czy
wewnętrzny stan walidacji formularza. Zmiany tego typu stanu są zwykle wyzwalane
bezpośrednio przez akcje użytkownika (kliknięcia, focus, wpisywanie tekstu itp.) i od razu
odzwierciedlane w widoku.

Stan serwerowy (Server State) natomiast obejmuje dane, które pochodzą z zewnętrznego
źródła – najczęściej z serwera via API – i są tam trwale przechowywane. Aplikacja kliencka
musi takie dane pobrać asynchronicznie (np. fetch do API) i ewentualnie wysłać z powrotem
zmiany do serwera, aby je zaktualizować. To oznacza, że stan serwerowy wiąże się z
opóźnieniami (czas odpowiedzi, oczekiwanie na sieć) oraz niepewnością – nie wiemy z góry,
kiedy dane przyjdą, czy operacja się powiedzie ani jaka będzie dokładnie wartość (może się
zmienić w międzyczasie). Co więcej, dane na serwerze mają współdzieloną naturę – mogą
zostać zmodyfikowane przez inne osoby lub procesy niezależnie od naszej aplikacji. Dlatego
przy pracy ze stanem z serwera trzeba brać pod uwagę kwestie takie jak odświeżanie danych
(re-fetch), obsługa błędów sieci, spójność danych lokalnych z zewnętrznym źródłem itd. – to
zupełnie inne wyzwania niż przy stanie czysto UI.

Kluczowe jest, aby nie traktować stanu serwerowego tak samo jak lokalnego – mieszanie
tych pojęć może prowadzić do błędów. Tradycyjne biblioteki do zarządzania stanem (jak
Redux, MobX czy nawet kontekst) zostały zaprojektowane głównie z myślą o stanie UI (są
świetne w synchronizowaniu wielu komponentów z daną wartością), ale nie rozwiązują
automatycznie problemów stanu serwerowego, takich jak cache’owanie danych, strategie
ponawiania zapytań czy utrata połączenia. Dlatego obecnie popularnym podejściem jest
korzystanie ze specjalizowanych narzędzi do zarządzania stanem danych z serwera.
Przykładem są biblioteki takie jak React Query (TanStack Query), SWR czy RTK Query, które
zostały stworzone, aby ułatwić obsługę asynchronicznych danych z API (REST lub GraphQL).
Takie narzędzia automatyzują wiele zadań: śledzenie stanu “loading/error/success”,
odświeżanie i inwalidację cache, pobieranie tylko unikalnych zapytań (deduplication),
optymistyczne aktualizacje itp. – rzeczy, które w czystym React musielibyśmy
implementować ręcznie. Według ekspertów, React Query urosło do rangi jednego z

najpopularniejszych i najpotężniejszych narzędzi do zarządzania stanem serwerowym w
aplikacjach React. W skrócie: stan serwerowy warto wydzielić i zarządzać nim innymi
technikami niż stanem UI – można myśleć o nim bardziej jak o danych niż stanie aplikacji w
klasycznym sensie.

Drugim zagadnieniem architektonicznym jest unikanie tzw. prop drillingu, czyli
przekopywania się z danymi przez kolejne warstwy komponentów. Prop drilling ma miejsce,
gdy musimy przekazać dane z komponentu A do daleko zagnieżdżonego komponentu Z, a
po drodze komponenty B, C, D... które tych danych bezpośrednio nie potrzebują, muszą
przekazywać je dalej przez swoje propsy. Prowadzi to do wzrostu ilości kodu, rozluźnienia
enkapsulacji (komponenty muszą wiedzieć o propsach dla prawnuków) i utrudnia
refaktoryzację struktury komponentów. Idealnie, każdy komponent powinien wiedzieć tylko
to, co jest mu potrzebne.

Jak unikać prop drillingu? Jeśli dane muszą być dostępne głęboko w drzewie komponentów,
najlepszym wbudowanym rozwiązaniem jest właśnie Context API. Kontekst pozwala
zdefiniować wartość globalną (np. aktualny użytkownik, ustawienia aplikacji, motyw) i
udostępnić ją wszystkim potomkom danego Providera, bez potrzeby przekazywania ręcznie
przez kolejne propsy. Komponenty mogą pobrać taką wartość w dowolnym miejscu za
pomocą useContext(...). Przykładowo, kontekst motywu aplikacji może dostarczać wszystkim
przyciskom informację, czy mają renderować się w stylu dark czy light, niezależnie od tego
jak głęboko w hierarchii drzewa te przyciski się znajdują. Innym rozwiązaniem (jeśli nie
chcemy używać kontekstu) bywa lifting state up do wspólnego przodka komponentów
potrzebujących danych – jednak to rozwiązuje problem tylko częściowo i na niewielkiej
głębokości. Gdy potrzebujemy dzielić stan globalnie lub na dużej głębokości, lepiej sięgnąć
po kontekst lub dedykowany store.

Context API vs dedykowany store: W małych aplikacjach kontekst często wystarcza jako
prosta forma globalnego store’u. W połączeniu z useReducer możemy nim zastąpić nawet
Redux (przy mniejszej skali). Trzeba jednak pamiętać, że kontekst nie posiada
zaawansowanych narzędzi takich jak middleware, narzędzia deweloperskie (devtools) czy
time-travel debugging. Przy bardzo rozbudowanym stanie globalnym lub wielu rodzajach
danych globalnych warto rozważyć wprowadzenie biblioteki do zarządzania stanem (o czym
w następnym punkcie). Natomiast prop drilling jako problem powinien być sygnałem: jeśli
łapiemy się na przekazywaniu tych samych propsów przez więcej niż 2–3 poziomy, warto
przełączyć się na kontekst dla tych danych.

Lekki store (np. Zustand) – porównanie z Redux Toolkit

Tradycyjnie do globalnego stanu w React używano Reduxa, który jednak wymagał sporo
implementacji na początek (akcje, reducery, store, itp.). Redux Toolkit (RTK) to
nowocześniejszy, oficjalnie zalecany sposób korzystania z Redux – upraszcza jego
konfigurację, dodaje domyślne ustawienia i integruje narzędzia (np. Immer, RTK Query)
ułatwiając zarządzanie stanem globalnym. Mimo to, Redux (nawet w formie RTK) bywa dla
prostszych aplikacji rozwiązaniem zbyt ciężkim. W ostatnich latach zyskały popularność
“lekkie” biblioteki stanowe o dużo mniejszym narzucie kodowym. Jedną z nich jest Zustand
– bardzo lekki store oparty na hookach, oferujący globalny stan bez potrzeby deklaracji

reducerów czy akcj. Przyjrzyjmy się ogólnie, jak wypada Zustand vs Redux Toolkit pod
kilkoma względami:

 API i prostota: Zustand oferuje minimalistyczne API – definicja stanu sprowadza się
do wywołania funkcji create() z obiektem zawierającym pola stanu oraz funkcje do ich
modyfikacji. Nie ma tu konceptu akcji, typów akcji ani reducerów – aktualizujemy
stan bezpośrednio poprzez funkcje setterów. To oznacza bardzo mało boilerplate i
szybkie wdrożenie nawet w małym projekcie. Dla porównania Redux Toolkit nadal
wymaga pewnej struktury: definiujemy slice (np. za pomocą createSlice), akcje i
reducer są generowane wewnątrz, a potem konfigurujemy store przy użyciu
configureStore. RTK znacząco zmniejsza ilość kodu w porównaniu do “czystego” Reduxa,
ale wciąż jest bardziej rozbudowany niż Zustand. Początkujący mogą uznać, że ma on
większą krzywą uczenia się i narzuca pewien wzorzec organizacji kodu (co bywa
plusem w dużych projektach, ale minusem w mikro-aplikacjach).

 Struktura i skalowanie: Redux Toolkit wygrywa, jeśli chodzi o ustrukturyzowanie
dużej aplikacji. Gdy mamy rozbudowany zespół, wiele modułów stanu, potrzebę
utrzymania konwencji – RTK narzuca spójne podejście (slices, duże wsparcie
community, kompatybilność z middleware jak Redux Saga/Thunk). Dodatkowo Redux
DevTools pozwalają debugować każdy krok zmian stanu, co jest cenne w złożonych
przypadkach. Zustand z kolei daje większą elastyczność, ale mniej struktury –
deweloper sam decyduje jak podzielić store (np. można tworzyć wiele małych
store’ów zustandowych dla różnych niezależnych funkcji aplikacji) lub trzymać
wszystko w jednym. Przy większej skali może to prowadzić do pewnej niespójności,
jeśli nie narzucimy sobie konwencji. Jednak do ~średniej wielkości projektów
Zustand jest często wystarczający i ceniony za szybkość implementacji.

 Wydajność: Obie biblioteki są wydajne, ale charakterystyka jest nieco inna. Zustand
jest bardzo lekki i szybki – ma minimalny narzut i ogranicza się do subskrybowania
wybranych fragmentów stanu poprzez hooki. Aktualizacje w Zustand powodują prze-
render tylko komponentów korzystających z danego kawałka stanu, co przy
odpowiednim użyciu zapewnia świetną wydajność. W praktyce Zustand często
okazuje się szybszy w prostych scenariuszach ze względu na brak dodatkowej
warstwy (typu kontekst/connector). Redux Toolkit natomiast ma więcej
„mechanizmów pod maską” – choć jest zoptymalizowany, to posiada nieco większy
narzut przez obsługę middleware, immutability checków (w trybie dev) itp.. Mimo to,
w dużych aplikacjach różnice wydajnościowe są zwykle pomijalne – ważniejsza staje
się organizacja kodu. W Redux można też precyzyjnie zapobiegać nadmiarowym
renderom poprzez selektory i React.memo, natomiast Zustand daje to niejako
domyślnie, bo każdy hook useStore może pobierać tylko potrzebny fragment stanu.

 Ekosystem i możliwości: Redux Toolkit korzysta z całego ekosystemu Redux. To
znaczy, mamy dostęp do bogatej gamy middleware, integracji z innymi narzędziami, a
także wbudowane rozwiązanie do pobierania danych z serwera – RTK Query, które
znacząco ułatwia pracę z API w stylu REST/GraphQL. Redux jest też dobrze znany –
łatwiej znaleźć developerów z doświadczeniem Redux, więcej tutoriali, wsparcia
społeczności. Zustand jest nowszy i ma mniejszą społeczność, ale zdobywa
popularność. Posiada kilka rozszerzeń (np. middleware do persystencji stanu w
localStorage, devtools plugin, czy integrację z Immer), jednak skala ekosystemu jest

mniejsza. W praktyce do mniejszych projektów nie potrzebujemy rozbudowanych
middleware – prostszy kod Zustand w zupełności wystarcza.

Podsumowanie wyboru: Nie ma jednoznacznego zwycięzcy – wszystko zależy od kontekstu
projektu. Jeżeli tworzysz niewielką lub średnią aplikację (kilkadziesiąt komponentów,
nieskomplikowana logika globalna) albo prototyp, Zustand dostarczy szybkie i przyjemne
rozwiązanie z minimalnym nakładem pracy. Natomiast w dużych, enterprise’owych
aplikacjach z rozbudowanym stanem, podziałem na moduły i dużym zespołem, Redux
Toolkit może okazać się lepszym wyborem dzięki swojej strukturze, narzędziom i
przewidywalności. Często przyjmuje się podejście: zacznij od prostego rozwiązania, i dopiero
gdy okaże się niewystarczające – przejdź na cięższe. Jak ujął to jeden z autorów: Zustand
pokrywa ~80% przypadków aplikacji (“prosty, szybki, przyjemny”), a Redux Toolkit jest
najlepszy tam, gdzie aplikacja jest naprawdę złożona i wymaga rozbudowanego zestawu
narzędzi. Warto więc dobierać narzędzie do skali problemu, a nie z przyzwyczajenia – obie
opcje są dojrzałe i mają swoje miejsce w 2025 roku.

Wydajność i optymalizacje: memo, useCallback, useMemo, batchowanie

Wraz ze wzrostem skomplikowania interfejsu musimy dbać o wydajność – React na szczęście
oferuje kilka mechanizmów, które pomagają minimalizować niepotrzebne renderowanie
komponentów i kosztowne obliczenia. Zanim je omówimy, warto podkreślić: React już od
dawna wykonuje wiele optymalizacji pod maską, a od wersji 18 zyskał kolejną –
automatyczne batchowanie aktualizacji stanu.

Batchowanie (grupowanie) aktualizacji: W starszych wersjach React każda zmiana stanu
wywołana poza wbudowanym event handlerem powodowała osobny render. Od React 18
aktualizacje stanu są automatycznie grupowane w jedną transakcję niezależnie od źródła
(promisy, setTimeouty, wydarzenia niestandardowe itd.). Oznacza to, że jeśli w krótkim
czasie wywołamy kilka razy setState, React poczeka i zrenderuje komponenty tylko raz, z
uwzględnieniem wszystkich zmian naraz, zamiast renderować po każdej zmianie osobno.
Przykładowo, dawniej wywołanie dwóch setState w callbacku asynchronicznym skutkowało
dwoma renderami, a w React 18 skutkuje jednym. To usprawnienie znacząco redukuje liczbę
renderów, co przekłada się na płynniejsze działanie interfejsu (mniej pracy dla wątku
głównego przeglądarki). Oczywiście React dba przy tym, by nie zgrupować niepowiązanych
zdarzeń użytkownika – np. dwa osobne kliknięcia przycisku nadal będą obsłużone osobno,
aby nie zmieniać logiki aplikacji. W większości przypadków batchowanie dzieje się
automatycznie i nie wpływa na kod aplikacji poza tym, że działa szybciej. Jako deweloperzy
możemy go niemal nie zauważać, choć warto wiedzieć, że istnieje. Tylko w rzadkich
sytuacjach zaawansowanych potrzebujemy go kontrolować – np. React udostępnia flushSync()
do ręcznego wymuszenia synchronizacji (gdy chcemy, by dana zmiana stanu natychmiast
była widoczna w DOM, np. przed pomiarem wysokości elementu), lub startTransition() do
oznaczenia mniej istotnych aktualizacji, które mogą poczekać (np. aktualizacja listy wyników
wyszukiwania). Podsumowując: React 18 sam dba o grupowanie aktualizacji stanu, dzięki
czemu aplikacje odczuwalnie zyskują na wydajności bez dodatkowego wysiłku.

Unikanie zbędnych renderów – memoizacja komponentów: Domyślnie React renderuje
komponent ponownie za każdym razem, gdy jego rodzic się zrenderuje (chyba że komponent

nie zależy od żadnych propsów ani stanu, wtedy może zostać pominięty). W dużych listach
lub złożonych drzewach UI może to oznaczać wiele niepotrzebnych obliczeń, jeśli dane nie
uległy zmianie. Tutaj z pomocą przychodzi React.memo() – wyższy komponent (HOC) lub
mechanizm dla komponentów funkcyjnych, który zapamiętuje wynik renderu danego
komponentu i pomija ponowny render jeśli jego propsy się nie zmieniły. Działa to przez
płytkie porównanie (shallow compare) poprzednich i nowych propsów. React.memo warto
stosować wokół komponentów, które: (a) są kosztowne w renderowaniu (np. zawierają
skomplikowane listy, tabele, wykresy) lub (b) bardzo często się renderują, mimo że ich dane
rzadko się zmieniają. Przykładowo, karta z wykresem lub złożoną logiką wyświetlania danych
powinna renderować się ponownie tylko, gdy dane faktycznie się zmienią – opakowanie jej w
React.memo to zapewni. Nie ma natomiast sensu memoizować prostych, tanich komponentów
(jak pojedynczy przycisk czy ikonka), bo koszt porównania propsów może przewyższyć zysk
z pominięcia renderu. Należy traktować memoizację komponentów jak precyzyjne narzędzie
(skalpel), a nie młotek do wszystkiego. Innymi słowy – optymalizujemy te miejsca, które są
wąskimi gardłami.

W kontekście memoizacji komponentów trzeba wspomnieć o stabilności referencji propsów.
React.memo porównuje nowe i stare props referencyjnie, co oznacza, że np. dwie różne
funkcje choćby z tą samą implementacją będą traktowane jako różne (bo mają inny adres w
pamięci). Dlatego, jeśli nasz komponent w propsach dostaje funkcje lub obiekty, które
zmieniają się przy każdym renderze rodzica, to React.memo i tak nie pomoże – bo props za
każdym razem będzie „nowy”. Aby temu zaradzić, stosujemy useCallback i useMemo dla
stabilizacji tych wartości.

 useCallback(fn, deps) zwraca referencję do tej samej funkcji fn między renderami, o ile
nie zmieniły się deklarowane zależności. Innymi słowy, zapamiętuje funkcję – dzięki
temu np. możemy przekazywać dziecku callback (onClick, onChange etc.) który nie
będzie się zmieniać przy każdym renderze rodzica, co zapobiegnie niepotrzebnemu
re-renderowaniu dziecka (jeśli dziecko jest memo). Przykładowo, przy liście
elementów gdzie każdy element ma przycisk „usuń” wywołujący onRemove(id): bez
useCallback funkcja onRemove tworzona w rodzicu jest za każdym razem nowym
obiektem-funkcją, przez co memoizowane dziecko i tak by się odświeżało; z useCallback
rodzic podaje wciąż tę samą referencję funkcji między renderami (dopóki np. lista się
nie zmieni), więc dziecko pozostaje skutecznie czyste i nie renderuje się ponownie.

 useMemo(calcFn, deps) z kolei zapamiętuje wynik wywołania funkcji calcFn dopóki
zależności się nie zmienią. Używamy go, aby unikać kosztownych obliczeń przy
każdym renderze. Jeśli np. musimy przefiltrować dużą tablicę danych albo wykonać
skomplikowane przeliczenie na podstawie propsów, możemy opakować to w
useMemo – wtedy wynik poprzedniego obliczenia zostanie zwrócony z cache tak
długo, jak długo istotne dane wejściowe są identyczne, a funkcja calcFn nie będzie
wywoływana ponownie bez potrzeby. To potrafi drastycznie poprawić wydajność w
scenariuszach typu generowanie tabeli, filtrowanie, sortowanie, formatowanie
dużych datasetów itp., zwłaszcza gdy komponent często się renderuje ale dane
zmieniają rzadko.

Ogólnie rzecz biorąc, useMemo i useCallback to narzędzia pomagające optymalizować
ponowne renderowanie. Można je podsumować tak: służą do zmniejszenia pracy

wykonywanej podczas renderu oraz zmniejszenia liczby samych renderów komponentów.
Dzięki nim unikamy sytuacji, gdzie przy każdym odświeżeniu UI na nowo liczymy te same
wartości lub tworzymy te same funkcje. Należy jednak stosować je z rozwagą – pamiętajmy,
że samo użycie hooka memoizującego też ma pewien koszt (trzeba wykonać porównanie
zależności, przechować wartość itp.). Dlatego nie ma sensu prewencyjnie memoizować
wszystkiego; najlepiej namierzyć wąskie gardła (np. poprzez Profile w React DevTools, który
pokaże które komponenty często się renderują i ile to trwa) i tam założyć optymalizacje.

Najlepsze praktyki wydajności w React: Podsumujmy kilka wskazówek:

 Batch aktualizacji – React 18 zrobi to za Nas automatycznie w większości
przypadków. Jeśli mamy wiele powiązanych zmian stanu w jednym zdarzeniu,
wykonuj je razem (np. wywołaj setState kilka razy w jednym handlerze zamiast w
osobnych, a React zgrupuje je w jeden render). Unikaj jednak wymuszania
synchronicznych renderów bez potrzeby (sporadycznie flushSync może się przydać, ale
nadużywanie go neguje zyski z batchingu).

 Minimalizuj głębokość zależności renderów – jeśli jakiś komponent wysyła do
dziecka funkcję lub obiekt, który zmienia się co render, rozważ useCallback/useMemo,
aby dziecko nie widziało ciągle zmieniającego się propsa. Im mniej “propów
dynamicznych” tym lepiej dla możliwości memoizacji.

 Stosuj React.memo do ciężkich komponentów – komponenty prezentacyjne
wyświetlające duże zbiory danych, listy, tabele, wykresy, itp. warto opakować w
React.memo, aby nie przerysowywać ich jeśli nie zmieniły się propsy. Pamiętaj jednak o
stabilności propsów (jw.).

 Unikaj kosztownych obliczeń w trakcie renderu – jeżeli w funkcji komponentu
widzisz drogie operacje (pętle po dużych tablicach, sortowania, parsowanie danych),
rozważ przeniesienie ich do useMemo. Dzięki temu ta praca wykona się tylko wtedy,
gdy dane źródłowe faktycznie się zmienią, a nie przy każdym renderze z osobna.

 Używaj jednego stanu dla grup zależnych – jeśli masz kilka zmiennych stanu, które
zawsze zmieniają się razem, rozważ przechowywanie ich w jednym obiekcie stanu lub
użycie reducer, żeby uniknąć lawiny wielu setState (choć w React 18 i tak by się
zbatchowały, ale logicznie bywa to prostsze).

 Testuj i profiluj – narzędzia takie jak React DevTools Profiler pomogą zrozumieć,
gdzie faktycznie aplikacja spędza czas. Czasem optymalizacje w złym miejscu mogą
wręcz pogorszyć wydajność (np. niepotrzebne użycie useMemo, które samo w sobie
ma koszt, może wydłużyć czas renderu jeśli obliczenie było trywialne).

Na koniec warto wspomnieć o najnowszych trendach: zespół React pracuje nad
automatyzacją wielu z tych optymalizacji. Pojawił się tzw. React Compiler (w fazie beta dla
React 19), który potrafi automatycznie przekształcać kod w czasie kompilacji tak, aby
dołączał React.memo, useMemo i useCallback tam, gdzie to bezpieczne. W praktyce oznacza to, że
w przyszłości możemy pisać kod bez ręcznego owijania wszystkiego w memo, a kompilator
zrobi optymalizację za nas. Już teraz w środowisku produkcyjnym Meta (np. Instagram)
testuje się to rozwiązanie i wygląda obiecująco – developerzy odnotowali wzrost
produktywności (mniej czasu na myślenie o optymalizacji) oraz mniej błędów związanych z
zależnościami, przy jednoczesnym zysku wydajnościowym, bo kompilator może memoizować
cały kod domyślnie. Na ten moment (2025) jednak, większość projektów nadal korzysta z

manualnych technik optymalizacji, więc warto dobrze rozumieć memo, useMemo, useCallback.
Pisząc nowy kod pamiętajmy: czytelność przede wszystkim – nie “premature optimize”,
chyba że wiemy (lub przeczuwamy) iż dana część UI będzie wrażliwa wydajnościowo.

Demo: globalny AuthContext + przełącznik motywu
(light/dark)

Na koniec zobaczmy praktyczny przykład wykorzystania kontekstu do zarządzania stanem
globalnym. Wiele aplikacji potrzebuje np. przechowywać informację o aktualnie
zalogowanym użytkowniku (auth) oraz umożliwiać globalną zmianę motywu (jasny/ciemny
tryb). Obie te rzeczy są dobrymi kandydatami na kontekst: powinny być dostępne w wielu
miejscach aplikacji (np. stan zalogowania wpływa na wyświetlanie całego menu, a motyw
wpływa na styl wszystkich komponentów), a jednocześnie zmieniają się stosunkowo rzadko
(logowanie/wylogowanie to rzadkie zdarzenie, zmiana motywu też). Stworzymy dwa
konteksty: AuthContext i ThemeContext, wraz z odpowiadającymi im dostawcami
(Providerami). AuthContext będzie przechowywał np. obiekt użytkownika lub informację czy
user jest zalogowany, oraz metody login i logout do zmiany tego stanu. ThemeContext będzie
przechowywał aktualny motyw ('light' lub 'dark') oraz funkcję toggleTheme do jego przełączania.
Następnie pokażemy, jak użyć tych kontekstów w komponentach, np. w nawigacji.

Kroki implementacji:

1. Utworzenie kontekstów i providerów: Za pomocą createContext tworzymy obiekty
kontekstu. Definiujemy komponenty Provider, które będą opakowywać całą
aplikację. W nich używamy useState (lub useReducer przy bardziej rozbudowanej logice)
do zarządzania stanem i przekazujemy w value kontekstu zarówno aktualny stan, jak i
funkcje do jego zmiany.

2. Opakowanie aplikacji w Provider’y: W pliku głównym (np. App.js lub index.js) otaczamy
główny komponent aplikacji naszymi providerami: <AuthProvider> i <ThemeProvider>.
Dzięki temu dowolny komponent wewnątrz będzie miał dostęp do wartości
kontekstu poprzez hook useContext.

3. Korzystanie z kontekstu w komponentach: Wewnątrz dowolnego komponentu,
który potrzebuje np. informacji o zalogowanym użytkowniku lub motywie,
wywołujemy const { user, logout } = useContext(AuthContext) lub const { theme, toggleTheme } =

useContext(ThemeContext) by wydobyć potrzebne wartości/funkcje. Możemy następnie
użyć tych danych – np. wyświetlić powitanie z nazwą użytkownika, warunkowo
renderować przycisk "Zaloguj/Wyloguj", a także zmieniać klasę CSS czy style w
zależności od motywu.

4. Przykładowy komponent (Navbar): Załóżmy, że mamy komponent nawigacji, który
chce pokazać inne opcje w menu w zależności od tego czy użytkownik jest
zalogowany, i umieścić przycisk do zmiany motywu. Korzysta on z obu kontekstów
równocześnie.

Poniżej znajduje się przykładowa implementacja w kodzie JSX ilustrująca powyższe kroki (dla
prostoty pomijamy szczegóły typu faktyczne logowanie – zakładamy, że login ustawia fikcyjny
obiekt użytkownika):

import React, { createContext, useState, useContext } from 'react';

// 1. Tworzymy konteksty
const AuthContext = createContext(null);
const ThemeContext = createContext('light');

// 1. Definiujemy Provider dla Auth
function AuthProvider({ children }) {
 const [user, setUser] = useState(null);
 const login = (userData) => setUser(userData);
 const logout = () => setUser(null);
 const authValue = { user, login, logout };
 return (
 <AuthContext.Provider value={authValue}>
 {children}
 </AuthContext.Provider>
);
}

// 1. Definiujemy Provider dla Theme
function ThemeProvider({ children }) {
 const [theme, setTheme] = useState('light');
 const toggleTheme = () =>
 setTheme((prev) => (prev === 'light' ? 'dark' : 'light'));
 const themeValue = { theme, toggleTheme };
 return (
 <ThemeContext.Provider value={themeValue}>
 {children}
 </ThemeContext.Provider>
);
}

// 2. Opakowujemy aplikację w providery
function App() {
 return (
 <AuthProvider>
 <ThemeProvider>
 <MainApplicationContent /> {/* reszta aplikacji */}
 </ThemeProvider>
 </AuthProvider>
);
}

// 3. Przykład konsumpcji kontekstu w komponencie
function Navbar() {
 const { user, logout } = useContext(AuthContext);
 const { theme, toggleTheme } = useContext(ThemeContext);
 return (
 <header className={`header-${theme}`}>
 <nav>
 {user ? (
 <>
 Witaj, {user.name}!
 <button onClick={logout}>Wyloguj</button>
 </>
) : (
 <button onClick={() => alert('Przejdź do logowania...')}>Zaloguj</button>

)}
 </nav>
 <button onClick={toggleTheme}>
 {theme === 'light' ? 'Dark mode' : 'Light mode'}
 </button>
 </header>
);
}

W powyższym kodzie komponent <AuthProvider> zarządza stanem user (przechowuje np.
obiekt z danymi zalogowanego użytkownika lub null, gdy niezalogowany) i udostępnia go
wraz z funkcjami login/logout poprzez kontekst. <ThemeProvider> udostępnia aktualny motyw i
funkcję do jego zmiany. Cała aplikacja jest opakowana w te providery, więc np. nasz <Navbar>
czy inny komponent nie musi otrzymywać tych danych przez propsy – korzysta
bezpośrednio z useContext.

Takie podejście eliminuje prop drilling – np. nie musimy przekazywać informacji o
użytkowniku do każdego komponentu w drzewie; wystarczy raz pobrać z kontekstu tam,
gdzie potrzebujemy (np. Navbar, Panel użytkownika, itp.). Podobnie z motywem – dowolny
komponent (przycisk, tło strony) może sprawdzić aktualny motyw przez
useContext(ThemeContext) i dostosować styl. Co ważne, zmiana kontekstu (np. wywołanie
toggleTheme zmieniające theme na 'dark') automatycznie re-renderuje wszystkie komponenty
korzystające z ThemeContext – w naszym przypadku natychmiast cała aplikacja przełączy się
na nowy motyw bez ręcznego przekazywania tej zmiany.

Jednocześnie, oddzielenie na dwa osobne konteksty Auth i Theme to świadomy zabieg
architektoniczny: zmiana motywu nie powoduje np. ponownego renderu komponentów
korzystających tylko z AuthContext i vice versa. Gdybyśmy wrzucili wszystko do jednego
kontekstu globalnego, nawet niepowiązane zmiany mogłyby odświeżać niepotrzebnie wiele
części UI. Dlatego warto tworzyć odrębne konteksty dla niezależnych domen stanu. React
pozwala bez problemu zagnieżdżać wielu providerów, co widzimy na przykładzie – kolejność
zagnieżdżania nie ma większego znaczenia, ważne by objąć tymi providerami odpowiedni
zakres komponentów (tu: całą aplikację).

Na koniec dodajmy, że Context API jest świetne do tego typu globalnych ustawień i prostego
stanu aplikacji. Gdy aplikacja rośnie, możemy na bazie podobnego wzorca rozbudować go
np. używając useReducer w AuthProvider (by obsłużyć więcej akcji, np. odświeżenie tokenu,
update profilu, itp.) lub sięgnąć po omówione wcześniej rozwiązania jak Redux/Zustand
gdyby stan globalny stał się bardzo rozbudowany. Niemniej, dla potrzeb tego dema widać, że
z użyciem najnowszych React API możemy zaimplementować globalny stan autoryzacji oraz
motyw aplikacji w prosty i czytelny sposób, zgodny z dzisiejszymi najlepszymi praktykami.

Literatura:

1. https://react.dev/learn/managing-state (Data dostępu: 1.10.2025) – Oficjalny
przewodnik React dotyczący zarządzania stanem, wyjaśniający podstawy
strukturyzacji danych w aplikacji.

2. https://react.dev/reference/react/useContext (Data dostępu: 1.10.2025) –
Dokumentacja techniczna hooka useContext, opisująca udostępnianie danych bez
"prop drillingu".

3. https://react.dev/reference/react/useReducer (Data dostępu: 1.10.2025) –
Dokumentacja hooka useReducer, zalecanego do obsługi złożonej logiki stanu i wielu
powiązanych wartości.

4. https://tanstack.com/query/latest/docs/framework/react/overview (Data dostępu:
1.10.2025) – Oficjalna dokumentacja React Query, kluczowego narzędzia do
zarządzania stanem serwerowym i asynchronicznymi danymi.

5. https://zustand-demo.pmnd.rs/ (Data dostępu: 1.10.2025) – Dokumentacja i demo
biblioteki Zustand, przedstawiające nowoczesne i lekkie podejście do globalnego
stanu aplikacji.

https://react.dev/learn/managing-state
https://react.dev/reference/react/useContext
https://react.dev/reference/react/useReducer
https://tanstack.com/query/latest/docs/framework/react/overview
https://zustand-demo.pmnd.rs/

