POLITECHNIKA SWIETOKRZYSKA

Aplikacje mobilne — wyktad
4

Stan aplikacji (stan lokalny) i kontekst

Mateusz Pawetkiewicz
1.10.2025



W React mamy kilka sposobdéw przechowywania i zarzgdzania stanem komponentéw. Dobér
wtasciwego mechanizmu zalezy od ztozonosci stanu oraz tego, czy musimy go udostepniaé
wielu komponentom. Hook useState najlepiej sprawdza sie do prostego stanu lokalnego w
pojedynczym komponencie — np. pojedyncze wartosci lub nieskomplikowane aktualizacje
stanu. Z kolei useReducer jest zalecany, gdy logika stanu staje sie bardziej ztozona, obejmuje
wiele powigzanych wartosci lub operacje zalezne od poprzedniego stanu. Dokumentacja
Reacta wskazuje, ze useReducer warto uzy¢, gdy stan zawiera liczne pod-pola lub wymagane sg
ztozone tranzycje (np. wiele typow akcji) zamiast prostych ustawien wartosci.

Natomiast useContext nie stuzy do definiowania logiki stanu, ale do udostepniania danych w
gtab drzewa komponentéw bez przekazywania ich przez kolejne propsy. Jest to tzw. “savior”
problemu prop drilling — pozwala wyeliminowac reczne przekazywanie tej samej informacji
przez kazdy poziom komponentéw. Context dobrze sie sprawdza dla wartosci globalnych lub
pot-globalnych (np. motyw aplikacji, zalogowany uzytkownik, ustawienia aplikacji), czyli
danych, z ktérych korzysta wiele niezaleznych czesci interfejsu. Nalezy jednak pamietaé, ze
czeste zmiany wartosci kontekstu mogg spowodowac przetadowanie wielu komponentéw
jednoczesnie, co potencjalnie wptywa negatywnie na wydajnos$¢ — kazdy konsument
kontekstu zareaguje na zmiane poprzez ponowny render. Dlatego Context API nadaje sie
gtéwnie do stosunkowo rzadko zmieniajgcych sie, globalnych informacji, a nie szybkiej,
czesto mutowane;j logiki stanu.

Kiedy czego uzy¢? Przy projektowaniu warto kierowad sie kilkoma zasadami:

e Zacznij od useState — dla wiekszosci lokalnych standw pojedynczego komponentu jest
on najprostszy w uzyciu. Zapewnia bezposrednig aktualizacje stanu za pomocg
funkcji setter i jest tatwy do zrozumienia. Gdy komponent potrzebuje np. przechowac
wartos$é inputu, zaznaczenie checkboxa czy stan modala, useState w zupetnosci
wystarczy.

e Przejdz na useReducer w razie potrzeby — jesli logika stanu zaczyna sie rozrastac (np.
stan jest obiektem z wieloma polami, aktualizacje muszg by¢ wykonywane
warunkowo lub w odpowiedzi na rézne typy akcji), lepiej zorganizowac kod za
pomocy reducera. useReducer umozliwia skupienie logiki aktualizacji stanu w jednej
funkcji redukujacej, co poprawia czytelno$é przy bardziej skomplikowanych
sekwencjach zmian. Jest to takze przydatne, gdy kolejne wartosci stanu zalezg od
poprzednich — unika sie wtedy probleméw z nieaktualnym stanem poprzednim, bo
reducer przetwarza akcje sekwencyjnie.

¢ Dodaj useContext do udostepniania stanu — gdy pojawia sie potrzeba przekazania
danych do odlegtych komponentéw (gtebiej w hierarchii), rozwaz uzycie kontekstu
zamiast przekazywania wielu propséw po drodze. Czesto fgczy sie useReducer z
useContext W celu zbudowania wtasnego lekkiego systemu globalnego stanu: reducer
zarzadza logika i aktualizacjg, a kontekst zapewnia dostep do tego stanu oraz funkcji
dispatch w dowolnym miejscu aplikacji. Dzieki temu mozna unikng¢ prop drillingu i
tatwo udostepnic¢ np. wynik reducer’a (stan globalny) oraz metode do zmiany stanu,
do ktérej odwotajg sie komponenty potomne.

Podsumowujac, useState utrzymuje prostote i nadaje sie do lokalnych, izolowanych stanow;
useReducer radzi sobie z wiekszg ztozonoscig stanu i sekwencjami akcji; natomiast useContext



pozwala dzieli¢ sie stanem (lub funkcjami) miedzy komponentami bez przekazywania go
przez propsy. Czesto wszystkie te mechanizmy wspdtpracujg — np. uzywamy useReducer do
zarzadzania stanem na wysokim poziomie, a nastepnie useContext do dostarczenia tego stanu
i dispatcherdw nizej, podczas gdy poszczegdlne drobne komponenty mogg mie¢ wtasne
useState do prywatnych drobnych stanéw.

Architektura stanu: stan Ul vs stan serwera; unikanie prop
drilling

Rozwazajac architekture aplikacji, warto oddzieli¢ stan Ul od stanu danych z serwera. Nie
caty stan w aplikacji jest jednakowy — ma rézne Zrédta i charakterystyki. Stan Ul (User
Interface state) to wszystkie dane, ktére sg nietrwate i trzymane tylko po stronie klienta.
Innymi stowy, jest to stan lokalny, ktéry zwykle resetuje sie przy od$wiezeniu aplikacji i nie
jest przechowywany w bazie danych ani na serwerze. Cechuje go zazwyczaj synchronizacja i
natychmiastowo$¢ — zmiana nastepuje od razu w interfejsie i nie wigze sie z opdznieniami
sieciowymi czy oczekiwaniem na odpowiedz. Przyktady stanu Ul to np. aktualny motyw
kolorystyczny (dark/light mode), zaznaczone filtry na licie, otwarcie/zamkniecie modala czy
wewnetrzny stan walidacji formularza. Zmiany tego typu stanu sg zwykle wyzwalane
bezposrednio przez akcje uzytkownika (klikniecia, focus, wpisywanie tekstu itp.) i od razu
odzwierciedlane w widoku.

Stan serwerowy (Server State) natomiast obejmuje dane, ktére pochodza z zewnetrznego
zrodta — najczesciej z serwera via APl — i sg tam trwale przechowywane. Aplikacja kliencka
musi takie dane pobrac¢ asynchronicznie (np. fetch do API) i ewentualnie wysta¢ z powrotem
zmiany do serwera, aby je zaktualizowaé. To oznacza, ze stan serwerowy wigze sie z
opd6znieniami (czas odpowiedzi, oczekiwanie na sie¢) oraz niepewnoscig — nie wiemy z goéry,
kiedy dane przyjdg, czy operacja sie powiedzie ani jaka bedzie doktadnie wartos¢ (moze sie
zmieni¢ w miedzyczasie). Co wiecej, dane na serwerze majg wspotdzielong nature — moga
zosta¢ zmodyfikowane przez inne osoby lub procesy niezaleznie od naszej aplikacji. Dlatego
przy pracy ze stanem z serwera trzeba braé pod uwage kwestie takie jak od$wiezanie danych
(re-fetch), obstuga bteddéw sieci, spdjnosé danych lokalnych z zewnetrznym zréodtem itd. — to
zupetnie inne wyzwania niz przy stanie czysto Ul.

Kluczowe jest, aby nie traktowac stanu serwerowego tak samo jak lokalnego — mieszanie
tych poje¢ moze prowadzi¢ do btedow. Tradycyjne biblioteki do zarzadzania stanem (jak
Redux, MobX czy nawet kontekst) zostaty zaprojektowane gtdwnie z myslg o stanie Ul (sg
Swietne w synchronizowaniu wielu komponentéw z dang wartoscig), ale nie rozwigzuja
automatycznie problemoéw stanu serwerowego, takich jak cache’owanie danych, strategie
ponawiania zapytan czy utrata potgczenia. Dlatego obecnie popularnym podejsciem jest
korzystanie ze specjalizowanych narzedzi do zarzadzania stanem danych z serwera.
Przyktadem sg biblioteki takie jak React Query (TanStack Query), SWR czy RTK Query, ktére
zostaty stworzone, aby utatwié obstuge asynchronicznych danych z API (REST lub GraphQLl).
Takie narzedzia automatyzujg wiele zadan: sledzenie stanu “loading/error/success”,
odswiezanie i inwalidacje cache, pobieranie tylko unikalnych zapytan (deduplication),
optymistyczne aktualizacje itp. — rzeczy, ktére w czystym React musielibysmy
implementowac recznie. Wedtug ekspertow, React Query urosto do rangi jednego z



najpopularniejszych i najpotezniejszych narzedzi do zarzgdzania stanem serwerowym w
aplikacjach React. W skrdcie: stan serwerowy warto wydzieli€ i zarzadza¢ nim innymi
technikami niz stanem Ul — mozna mysle¢ o nim bardziej jak o danych niz stanie aplikacji w
klasycznym sensie.

Drugim zagadnieniem architektonicznym jest unikanie tzw. prop drillingu, czyli
przekopywania sie z danymi przez kolejne warstwy komponentéw. Prop drilling ma miejsce,
gdy musimy przekazaé dane z komponentu A do daleko zagniezdzonego komponentu Z, a
po drodze komponenty B, C, D... ktére tych danych bezposrednio nie potrzebujg, musza
przekazywac je dalej przez swoje propsy. Prowadzi to do wzrostu ilosci kodu, rozluznienia
enkapsulacji (komponenty muszg wiedzie¢ o propsach dla prawnukéw) i utrudnia
refaktoryzacje struktury komponentéw. Idealnie, kazdy komponent powinien wiedzie¢ tylko
to, co jest mu potrzebne.

Jak unika¢ prop drillingu? Jesli dane muszg by¢ dostepne gteboko w drzewie komponentdéw,
najlepszym wbudowanym rozwigzaniem jest wtasnie Context API. Kontekst pozwala
zdefiniowac wartosc globalng (np. aktualny uzytkownik, ustawienia aplikacji, motyw) i
udostepnic¢ jg wszystkim potomkom danego Providera, bez potrzeby przekazywania recznie
przez kolejne propsy. Komponenty moga pobrac takg wartos¢ w dowolnym miejscu za
pomoca useContext(...). Przyktadowo, kontekst motywu aplikacji moze dostarcza¢ wszystkim
przyciskom informacje, czy maja renderowac sie w stylu dark czy light, niezaleznie od tego
jak gteboko w hierarchii drzewa te przyciski sie znajduja. Innym rozwigzaniem (jesli nie
chcemy uzywac kontekstu) bywa lifting state up do wspdélnego przodka komponentow
potrzebujgcych danych — jednak to rozwigzuje problem tylko czesciowo i na niewielkiej
gtebokosci. Gdy potrzebujemy dzieli¢ stan globalnie lub na duzej gtebokosci, lepiej siegngc
po kontekst lub dedykowany store.

Context API vs dedykowany store: W matych aplikacjach kontekst czesto wystarcza jako
prosta forma globalnego store’u. W potgczeniu z useReducer mozemy nim zastgpié¢ nawet
Redux (przy mniejszej skali). Trzeba jednak pamieta¢, ze kontekst nie posiada
zaawansowanych narzedzi takich jak middleware, narzedzia deweloperskie (devtools) czy
time-travel debugging. Przy bardzo rozbudowanym stanie globalnym lub wielu rodzajach
danych globalnych warto rozwazy¢ wprowadzenie biblioteki do zarzgdzania stanem (o czym
w nastepnym punkcie). Natomiast prop drilling jako problem powinien by¢ sygnatem: jesli
tapiemy sie na przekazywaniu tych samych propsow przez wiecej niz 2—-3 poziomy, warto
przetaczyc sie na kontekst dla tych danych.

Lekki store (np. Zustand) — poréwnanie z Redux Toolkit

Tradycyjnie do globalnego stanu w React uzywano Reduxa, ktory jednak wymagat sporo
implementacji na poczatek (akcje, reducery, store, itp.). Redux Toolkit (RTK) to
nowoczesniejszy, oficjalnie zalecany sposdb korzystania z Redux — upraszcza jego
konfiguracje, dodaje domysine ustawienia i integruje narzedzia (np. Immer, RTK Query)
utatwiajgc zarzadzanie stanem globalnym. Mimo to, Redux (nawet w formie RTK) bywa dla
prostszych aplikacji rozwigzaniem zbyt ciezkim. W ostatnich latach zyskaty popularnos¢
“lekkie” biblioteki stanowe o duzo mniejszym narzucie kodowym. Jedng z nich jest Zustand
— bardzo lekki store oparty na hookach, oferujgcy globalny stan bez potrzeby deklaracji



reducerdw czy akcj. Przyjrzyjmy sie ogdlnie, jak wypada Zustand vs Redux Toolkit pod
kilkoma wzgledami:

e APl prostota: Zustand oferuje minimalistyczne API — definicja stanu sprowadza sie
do wywotania funkcji create() z obiektem zawierajgcym pola stanu oraz funkcje do ich
modyfikacji. Nie ma tu konceptu akgcji, typdw akcji ani reduceréw — aktualizujemy
stan bezposrednio poprzez funkcje setterdw. To oznacza bardzo mato boilerplate i
szybkie wdrozenie nawet w matym projekcie. Dla poréwnania Redux Toolkit nadal
wymaga pewne;j struktury: definiujemy slice (np. za pomocg createSlice), akcje i
reducer s3 generowane wewnatrz, a potem konfigurujemy store przy uzyciu
configureStore. RTK znaczgco zmniejsza ilos¢ kodu w poréwnaniu do “czystego” Reduxa,
ale wciaz jest bardziej rozbudowany niz Zustand. Poczatkujacy moga uznaé, ze ma on
wiekszg krzywa uczenia sie i narzuca pewien wzorzec organizacji kodu (co bywa
plusem w duzych projektach, ale minusem w mikro-aplikacjach).

e Struktura i skalowanie: Redux Toolkit wygrywa, jesli chodzi o ustrukturyzowanie
duzej aplikacji. Gdy mamy rozbudowany zespoét, wiele modutéw stanu, potrzebe
utrzymania konwencji — RTK narzuca spdjne podejscie (slices, duze wsparcie
community, kompatybilno$¢ z middleware jak Redux Saga/Thunk). Dodatkowo Redux
DevTools pozwalajg debugowac kazdy krok zmian stanu, co jest cenne w ztozonych
przypadkach. Zustand z kolei daje wiekszg elastycznosé¢, ale mniej struktury —
deweloper sam decyduje jak podzieli¢ store (np. mozna tworzy¢ wiele matych
store’éw zustandowych dla réznych niezaleznych funkcji aplikacji) lub trzymac
wszystko w jednym. Przy wiekszej skali moze to prowadzi¢ do pewnej niespéjnosci,
jesli nie narzucimy sobie konwencji. Jednak do ~$redniej wielkosci projektow
Zustand jest czesto wystarczajacy i ceniony za szybkos$¢ implementac;ji.

¢ Wydajnos¢: Obie biblioteki sg wydajne, ale charakterystyka jest nieco inna. Zustand
jest bardzo lekki i szybki — ma minimalny narzut i ogranicza sie do subskrybowania
wybranych fragmentdéw stanu poprzez hooki. Aktualizacje w Zustand powodujg prze-
render tylko komponentéw korzystajacych z danego kawatka stanu, co przy
odpowiednim uzyciu zapewnia swietng wydajnos¢. W praktyce Zustand czesto
okazuje sie szybszy w prostych scenariuszach ze wzgledu na brak dodatkowej
warstwy (typu kontekst/connector). Redux Toolkit natomiast ma wiecej
,mechanizmdéw pod maska” — cho¢ jest zoptymalizowany, to posiada nieco wiekszy
narzut przez obstuge middleware, immutability checkdw (w trybie dev) itp.. Mimo to,
w duzych aplikacjach réznice wydajnosciowe sg zwykle pomijalne — wazniejsza staje
sie organizacja kodu. W Redux mozna tez precyzyjnie zapobiega¢ nadmiarowym
renderom poprzez selektory i React.memo, natomiast Zustand daje to niejako
domyslnie, bo kazdy hook useStore moze pobierac tylko potrzebny fragment stanu.

e Ekosystem i mozliwosci: Redux Toolkit korzysta z catego ekosystemu Redux. To
znaczy, mamy dostep do bogatej gamy middleware, integracji z innymi narzedziami, a
takze wbudowane rozwigzanie do pobierania danych z serwera — RTK Query, ktére
znaczgco utatwia prace z APl w stylu REST/GraphQL. Redux jest tez dobrze znany —
tatwiej znalez¢ developeréw z doswiadczeniem Redux, wiecej tutoriali, wsparcia
spotecznosci. Zustand jest nowszy i ma mniejszg spotecznos¢, ale zdobywa
popularnosé¢. Posiada kilka rozszerzen (np. middleware do persystencji stanu w
localStorage, devtools plugin, czy integracje z Immer), jednak skala ekosystemu jest



mniejsza. W praktyce do mniejszych projektow nie potrzebujemy rozbudowanych
middleware — prostszy kod Zustand w zupetnosci wystarcza.

Podsumowanie wyboru: Nie ma jednoznacznego zwyciezcy — wszystko zalezy od kontekstu
projektu. Jezeli tworzysz niewielka lub srednig aplikacje (kilkadziesigt komponentdw,
nieskomplikowana logika globalna) albo prototyp, Zustand dostarczy szybkie i przyjemne
rozwigzanie z minimalnym naktadem pracy. Natomiast w duzych, enterprise’owych
aplikacjach z rozbudowanym stanem, podziatem na moduty i duzym zespotem, Redux
Toolkit moze okazac sie lepszym wyborem dzieki swojej strukturze, narzedziom i
przewidywalnosci. Czesto przyjmuje sie podejscie: zacznij od prostego rozwigzania, i dopiero
gdy okaze sie niewystarczajace — przejdz na ciezsze. Jak ujat to jeden z autoréw: Zustand
pokrywa ~80% przypadkow aplikacji (“prosty, szybki, przyjemny”), a Redux Toolkit jest
najlepszy tam, gdzie aplikacja jest naprawde ztozona i wymaga rozbudowanego zestawu
narzedzi. Warto wiec dobierac narzedzie do skali problemu, a nie z przyzwyczajenia — obie
opcje sg dojrzate i majg swoje miejsce w 2025 roku.

Wydajnosc i optymalizacje: memo, usecaliback, usememo, batchowanie

Wraz ze wzrostem skomplikowania interfejsu musimy dbac o wydajnos¢ — React na szczescie
oferuje kilka mechanizméw, ktére pomagaja minimalizowacé niepotrzebne renderowanie
komponentéw i kosztowne obliczenia. Zanim je oméwimy, warto podkresli¢: React juz od
dawna wykonuje wiele optymalizacji pod maska, a od wersji 18 zyskat kolejng —
automatyczne batchowanie aktualizacji stanu.

Batchowanie (grupowanie) aktualizacji: W starszych wersjach React kazda zmiana stanu
wywotana poza wbudowanym event handlerem powodowata osobny render. Od React 18
aktualizacje stanu sg automatycznie grupowane w jedng transakcje niezaleznie od zrédta
(promisy, setTimeouty, wydarzenia niestandardowe itd.). Oznacza to, ze jesli w krotkim
czasie wywotamy kilka razy setState, React poczeka i zrenderuje komponenty tylko raz, z
uwzglednieniem wszystkich zmian naraz, zamiast renderowaé po kazdej zmianie osobno.
Przyktadowo, dawniej wywotanie dwdch setState w callbacku asynchronicznym skutkowato
dwoma renderami, a w React 18 skutkuje jednym. To usprawnienie znaczgco redukuje liczbe
renderéw, co przektada sie na ptynniejsze dziatanie interfejsu (mniej pracy dla watku
gtéwnego przegladarki). Oczywiscie React dba przy tym, by nie zgrupowac niepowigzanych
zdarzen uzytkownika — np. dwa osobne klikniecia przycisku nadal bedg obstuzone osobno,
aby nie zmieniac logiki aplikacji. W wiekszosci przypadkéw batchowanie dzieje sie
automatycznie i nie wptywa na kod aplikacji poza tym, ze dziata szybciej. Jako deweloperzy
mozemy go niemal nie zauwazac, cho¢ warto wiedzie¢, ze istnieje. Tylko w rzadkich
sytuacjach zaawansowanych potrzebujemy go kontrolowa¢ — np. React udostepnia flushSync()
do recznego wymuszenia synchronizacji (gdy chcemy, by dana zmiana stanu natychmiast
byta widoczna w DOM, np. przed pomiarem wysokosci elementu), lub startTransition() do
oznaczenia mniej istotnych aktualizacji, ktére mogg poczekaé (np. aktualizacja listy wynikéw
wyszukiwania). Podsumowujac: React 18 sam dba o grupowanie aktualizacji stanu, dzieki
czemu aplikacje odczuwalnie zyskujg na wydajnosci bez dodatkowego wysitku.

Unikanie zbednych renderéw — memoizacja komponentéw: Domyslnie React renderuje
komponent ponownie za kazdym razem, gdy jego rodzic sie zrenderuje (chyba ze komponent



nie zalezy od zadnych propséw ani stanu, wtedy moze zosta¢ pominiety). W duzych listach
lub ztozonych drzewach Ul moze to oznaczaé wiele niepotrzebnych obliczen, jesli dane nie
ulegty zmianie. Tutaj z pomoca przychodzi React.memo() — wyzszy komponent (HOC) lub
mechanizm dla komponentdw funkcyjnych, ktéry zapamietuje wynik renderu danego
komponentu i pomija ponowny render jesli jego propsy sie nie zmienity. Dziata to przez
ptytkie poréwnanie (shallow compare) poprzednich i nowych propséw. React.memo warto
stosowac wokot komponentdw, ktore: (a) sg kosztowne w renderowaniu (np. zawierajg
skomplikowane listy, tabele, wykresy) lub (b) bardzo czesto sie renderujg, mimo ze ich dane
rzadko sie zmieniaja. Przyktadowo, karta z wykresem lub ztozong logikg wyswietlania danych
powinna renderowac sie ponownie tylko, gdy dane faktycznie sie zmienig — opakowanie jej w
React.memo to zapewni. Nie ma natomiast sensu memoizowac prostych, tanich komponentdéw
(jak pojedynczy przycisk czy ikonka), bo koszt poréwnania propséw moze przewyiszy¢ zysk
z pominiecia renderu. Nalezy traktowaé memoizacje komponentdéw jak precyzyjne narzedzie
(skalpel), a nie mtotek do wszystkiego. Innymi stowy — optymalizujemy te miejsca, ktore sg
waskimi gardtami.

W kontekscie memoizacji komponentow trzeba wspomniec o stabilnosci referencji propséw.
React.memo porownuje nowe i stare props referencyjnie, co oznacza, ze np. dwie rézne
funkcje chocby z tg samg implementacjg bedg traktowane jako rézne (bo majg inny adres w
pamieci). Dlatego, jesli nasz komponent w propsach dostaje funkcje lub obiekty, ktére
zmieniajg sie przy kazdym renderze rodzica, to React. memo i tak nie pomoze — bo props za
kazdym razem bedzie ,,nowy”. Aby temu zaradzi¢, stosujemy useCallback i useMemo dla
stabilizacji tych wartosci.

e useCallback(fn, deps) zwraca referencje do tej samej funkcji fn miedzy renderami, o ile
nie zmienity sie deklarowane zaleznosci. Innymi stowy, zapamietuje funkcje — dzieki
temu np. mozemy przekazywadé dziecku callback (onClick, onChange etc.) ktéry nie
bedzie sie zmienia¢ przy kazdym renderze rodzica, co zapobiegnie niepotrzebnemu
re-renderowaniu dziecka (jesli dziecko jest memo). Przyktadowo, przy liscie
elementdw gdzie kazdy element ma przycisk ,,usun” wywotujgcy onRemove(id): bez
useCallback funkcja onRemove tworzona w rodzicu jest za kazdym razem nowym
obiektem-funkcja, przez co memoizowane dziecko i tak by sie odswiezato; z useCallback
rodzic podaje wcigz te samg referencje funkcji miedzy renderami (dopdki np. lista sie
nie zmieni), wiec dziecko pozostaje skutecznie czyste i nie renderuje sie ponownie.

e useMemo(calcFn, deps) z kolei zapamietuje wynik wywotania funkcji calcFn dopoki
zaleznosci sie nie zmienig. Uzywamy go, aby unika¢ kosztownych obliczen przy
kazdym renderze. Jesli np. musimy przefiltrowaé duzg tablice danych albo wykonaé
skomplikowane przeliczenie na podstawie propséw, mozemy opakowac to w
useMemo — wtedy wynik poprzedniego obliczenia zostanie zwrécony z cache tak
dtugo, jak dtugo istotne dane wejsciowe sg identyczne, a funkcja calcFn nie bedzie
wywotywana ponownie bez potrzeby. To potrafi drastycznie poprawi¢ wydajnos¢ w
scenariuszach typu generowanie tabeli, filtrowanie, sortowanie, formatowanie
duzych datasetow itp., zwtaszcza gdy komponent czesto sie renderuje ale dane
zmieniajg rzadko.

Ogdlnie rzecz biorgc, useMemo i useCallback to narzedzia pomagajace optymalizowacd
ponowne renderowanie. Mozna je podsumowac tak: stuzg do zmniejszenia pracy



wykonywanej podczas renderu oraz zmniejszenia liczby samych renderéw komponentéw.
Dzieki nim unikamy sytuacji, gdzie przy kazdym odswiezeniu Ul na nowo liczymy te same
wartosci lub tworzymy te same funkcje. Nalezy jednak stosowac je z rozwagg — pamietajmy,
ze samo uzycie hooka memoizujgcego tez ma pewien koszt (trzeba wykonaé poréwnanie
zaleznosci, przechowac wartosé itp.). Dlatego nie ma sensu prewencyjnie memoizowac
wszystkiego; najlepiej namierzy¢ waskie gardta (np. poprzez Profile w React DevTools, ktéry
pokaze ktére komponenty czesto sie renderujg i ile to trwa) i tam zatozy¢ optymalizacje.

Najlepsze praktyki wydajnosci w React: Podsumujmy kilka wskazdéwek:

o Batch aktualizacji — React 18 zrobi to za Nas automatycznie w wiekszosci
przypadkéw. Jesli mamy wiele powigzanych zmian stanu w jednym zdarzeniu,
wykonuj je razem (np. wywotaj setState kilka razy w jednym handlerze zamiast w
osobnych, a React zgrupuje je w jeden render). Unikaj jednak wymuszania
synchronicznych renderdw bez potrzeby (sporadycznie flushSync moze sie przydaé, ale
naduzywanie go neguje zyski z batchingu).

¢ Minimalizuj gtebokos¢ zaleznosci renderéw — jesli jakis komponent wysyta do
dziecka funkcje lub obiekt, ktéry zmienia sie co render, rozwaz useCallback/useMemo,
aby dziecko nie widziato ciggle zmieniajgcego sie propsa. Im mniej “propdw
dynamicznych” tym lepiej dla mozliwosci memoizacji.

e Stosuj React.memo do ciezkich komponentéw — komponenty prezentacyjne
wyswietlajgce duze zbiory danych, listy, tabele, wykresy, itp. warto opakowac w
React.memo, aby nie przerysowywac ich jesli nie zmienity sie propsy. Pamietaj jednak o
stabilnosci propséw (jw.).

¢ Unikaj kosztownych obliczen w trakcie renderu — jezeli w funkcji komponentu
widzisz drogie operacje (petle po duzych tablicach, sortowania, parsowanie danych),
rozwaz przeniesienie ich do useMemo. Dzieki temu ta praca wykona sie tylko wtedy,
gdy dane Zrédtowe faktycznie sie zmienig, a nie przy kazdym renderze z osobna.

o Uzywaj jednego stanu dla grup zaleznych — jesli masz kilka zmiennych stanu, ktére
zawsze zmieniajg sie razem, rozwaz przechowywanie ich w jednym obiekcie stanu lub
uzycie reducer, zeby unikng¢ lawiny wielu setState (cho¢ w React 18 i tak by sie
zbatchowaty, ale logicznie bywa to prostsze).

o Testuj i profiluj — narzedzia takie jak React DevTools Profiler pomogg zrozumieg,
gdzie faktycznie aplikacja spedza czas. Czasem optymalizacje w ztym miejscu moga
wrecz pogorszy¢ wydajnos¢ (np. niepotrzebne uzycie useMemo, ktére samo w sobie
ma koszt, moze wydtuzyé czas renderu jesli obliczenie byto trywialne).

Na koniec warto wspomnie¢ o najnowszych trendach: zespot React pracuje nad
automatyzacjg wielu z tych optymalizacji. Pojawit sie tzw. React Compiler (w fazie beta dla
React 19), ktéry potrafi automatycznie przeksztatcaé kod w czasie kompilacji tak, aby
dofaczat React.memo, useMemo i useCallback tam, gdzie to bezpieczne. W praktyce oznacza to, ze
w przysztosci mozemy pisa¢ kod bez recznego owijania wszystkiego w memo, a kompilator
zrobi optymalizacje za nas. Juz teraz w srodowisku produkcyjnym Meta (np. Instagram)
testuje sie to rozwigzanie i wyglgda obiecujgco — developerzy odnotowali wzrost
produktywnosci (mniej czasu na myslenie o optymalizacji) oraz mniej btedéw zwigzanych z
zaleznosciami, przy jednoczesnym zysku wydajnosciowym, bo kompilator moze memoizowa¢é
caty kod domysinie. Na ten moment (2025) jednak, wiekszo$¢ projektéw nadal korzysta z



manualnych technik optymalizacji, wiec warto dobrze rozumie¢ memo, useMemo, useCallback.
Piszac nowy kod pamietajmy: czytelnos¢ przede wszystkim — nie “premature optimize”,
chyba ze wiemy (lub przeczuwamy) iz dana cze$¢ Ul bedzie wrazliwa wydajnosciowo.

Demo: globalny AuthContext + przetgcznik motywu
(light/dark)

Na koniec zobaczmy praktyczny przyktad wykorzystania kontekstu do zarzadzania stanem
globalnym. Wiele aplikacji potrzebuje np. przechowywac informacje o aktualnie
zalogowanym uzytkowniku (auth) oraz umozliwia¢ globalng zmiane motywu (jasny/ciemny
tryb). Obie te rzeczy sg dobrymi kandydatami na kontekst: powinny by¢ dostepne w wielu
miejscach aplikacji (np. stan zalogowania wptywa na wyswietlanie catego menu, a motyw
wptywa na styl wszystkich komponentéw), a jednoczesnie zmieniajg sie stosunkowo rzadko
(logowanie/wylogowanie to rzadkie zdarzenie, zmiana motywu tez). Stworzymy dwa
konteksty: AuthContext i ThemeContext, wraz z odpowiadajgcymi im dostawcami
(Providerami). AuthContext bedzie przechowywat np. obiekt uzytkownika lub informacje czy
user jest zalogowany, oraz metody login i logout do zmiany tego stanu. ThemeContext bedzie
przechowywat aktualny motyw ('light' lub 'dark') oraz funkcje toggleTheme do jego przetaczania.
Nastepnie pokazemy, jak uzyc¢ tych kontekstéw w komponentach, np. w nawigacji.

Kroki implementacji:

1. Utworzenie kontekstow i providerow: Za pomocg createContext tworzymy obiekty
kontekstu. Definiujemy komponenty Provider, ktére bedg opakowywac catg
aplikacje. W nich uzywamy useState (lub useReducer przy bardziej rozbudowanej logice)
do zarzadzania stanem i przekazujemy w value kontekstu zaréwno aktualny stan, jak i
funkcje do jego zmiany.

2. Opakowanie aplikacji w Provider’y: W pliku gtdwnym (np. App.js lub index.js) otaczamy
gtéwny komponent aplikacji naszymi providerami: <AuthProvider> i <ThemeProvider>.
Dzieki temu dowolny komponent wewnatrz bedzie miat dostep do wartosci
kontekstu poprzez hook useContext.

3. Korzystanie z kontekstu w komponentach: Wewnatrz dowolnego komponentu,
ktory potrzebuje np. informacji o zalogowanym uzytkowniku lub motywie,
wywotujemy const { user, logout } = useContext(AuthContext) lub const { theme, toggleTheme } =
useContext(ThemeContext) by wydoby¢ potrzebne wartosci/funkcje. Mozemy nastepnie
uzy¢ tych danych — np. wyswietli¢ powitanie z nazwg uzytkownika, warunkowo
renderowac przycisk "Zaloguj/Wyloguj", a takze zmienia¢ klase CSS czy style w
zaleznosci od motywu.

4. Przyktadowy komponent (Navbar): Zatézmy, ze mamy komponent nawigacji, ktéry
chce pokazaé inne opcje w menu w zaleznosci od tego czy uzytkownik jest
zalogowany, i umiescic przycisk do zmiany motywu. Korzysta on z obu kontekstow
réwnoczesnie.

Ponizej znajduje sie przyktadowa implementacja w kodzie JSX ilustrujgca powyzsze kroki (dla
prostoty pomijamy szczegodty typu faktyczne logowanie — zaktadamy, ze login ustawia fikcyjny
obiekt uzytkownika):



import React, { createContext, useState, useContext } from 'react’;

// 1. Tworzymy konteksty
const AuthContext = createContext(null);
const ThemeContext = createContext('light');

// 1. Definiujemy Provider dla Auth
function AuthProvider({ children }) {
const [user, setUser] = useState(null);
const login = (userData) => setUser(userData);
const logout = () => setUser(null);
const authValue = { user, login, logout };
return (
<AuthContext.Provider value={authValue}>
{children}
</AuthContext.Provider>
);
}

// 1. Definiujemy Provider dla Theme
function ThemeProvider({ children }) {
const [theme, setTheme] = useState('light');
const toggleTheme = () =>

setTheme((prev) => (prev === "light' ? 'dark’ : 'light'));
const themeValue = { theme, toggleTheme };
return (
<ThemeContext.Provider value={themeValue}>
{children}

</ThemeContext.Provider>
);
}

// 2. Opakowujemy aplikacje w providery
function App() {
return (
<AuthProvider>
<ThemeProvider>
<MainApplicationContent /> {/* reszta aplikacji */}
</ThemeProvider>
</AuthProvider>
);
}

// 3. Przyktad konsumpcji kontekstu w komponencie
function Navbar() {
const { user, logout } = useContext(AuthContext);
const { theme, toggleTheme } = useContext(ThemeContext);
return (
<header className={"header-${theme}'}>
<nav>
{user ? (
<>
<span>Witaj, {user.name}!</span>
<button onClick={logout}>Wyloguj</button>
</>
M

<button onClick={() => alert('Przejdz do logowania...')}>Zaloguj</button>



)}

</nav>

<button onClick={toggleTheme}>
{theme ==="light' ? 'Dark mode' : 'Light mode'}

</button>

</header>
);
}

W powyzszym kodzie komponent <AuthProvider> zarzgdza stanem user (przechowuje np.
obiekt z danymi zalogowanego uzytkownika lub null, gdy niezalogowany) i udostepnia go
wraz z funkcjami login/logout poprzez kontekst. <ThemeProvider> udostepnia aktualny motyw i
funkcje do jego zmiany. Cata aplikacja jest opakowana w te providery, wiec np. nasz <Navbar>
czy inny komponent nie musi otrzymywaé tych danych przez propsy — korzysta
bezposrednio z useContext.

Takie podejscie eliminuje prop drilling — np. nie musimy przekazywac informacji o
uzytkowniku do kazdego komponentu w drzewie; wystarczy raz pobrac z kontekstu tam,
gdzie potrzebujemy (np. Navbar, Panel uzytkownika, itp.). Podobnie z motywem — dowolny
komponent (przycisk, tto strony) moze sprawdzi¢ aktualny motyw przez
useContext(ThemeContext) i dostosowac styl. Co wazne, zmiana kontekstu (np. wywotanie
toggleTheme zmieniajgce theme na 'dark') automatycznie re-renderuje wszystkie komponenty
korzystajace z ThemeContext — w naszym przypadku natychmiast cata aplikacja przetaczy sie
na nowy motyw bez recznego przekazywania tej zmiany.

Jednoczesnie, oddzielenie na dwa osobne konteksty Auth i Theme to swiadomy zabieg
architektoniczny: zmiana motywu nie powoduje np. ponownego renderu komponentéw
korzystajacych tylko z AuthContext i vice versa. Gdybysmy wrzucili wszystko do jednego
kontekstu globalnego, nawet niepowigzane zmiany mogtyby odswiezaé niepotrzebnie wiele
czesci Ul. Dlatego warto tworzy¢ odrebne konteksty dla niezaleznych domen stanu. React
pozwala bez problemu zagniezdzaé wielu providerdow, co widzimy na przyktadzie — kolejno$é
zagniezdzania nie ma wiekszego znaczenia, wazne by objg¢ tymi providerami odpowiedni
zakres komponentéw (tu: catg aplikacje).

Na koniec dodajmy, ze Context API jest swietne do tego typu globalnych ustawien i prostego
stanu aplikacji. Gdy aplikacja ro$nie, mozemy na bazie podobnego wzorca rozbudowac go
np. uzywajgc useReducer w AuthProvider (by obstuzy¢ wiecej akcji, np. od$wiezenie tokenu,
update profilu, itp.) lub siegngé po omdéwione wczesniej rozwigzania jak Redux/Zustand
gdyby stan globalny stat sie bardzo rozbudowany. Niemniej, dla potrzeb tego dema widag, ze
z uzyciem najnowszych React APl mozemy zaimplementowac globalny stan autoryzacji oraz
motyw aplikacji w prosty i czytelny sposéb, zgodny z dzisiejszymi najlepszymi praktykami.



Literatura:

1. https://react.dev/learn/managing-state (Data dostepu: 1.10.2025) — Oficjalny
przewodnik React dotyczacy zarzadzania stanem, wyjasniajacy podstawy
strukturyzacji danych w aplikacji.

2. https://react.dev/reference/react/useContext (Data dostepu: 1.10.2025) —
Dokumentacja techniczna hooka useContext, opisujgca udostepnianie danych bez
"prop drillingu".

3. https://react.dev/reference/react/useReducer (Data dostepu: 1.10.2025) —
Dokumentacja hooka useReducer, zalecanego do obstugi ztozonej logiki stanu i wielu
powigzanych wartosci.

4. https://tanstack.com/query/latest/docs/framework/react/overview (Data dostepu:
1.10.2025) — Oficjalna dokumentacja React Query, kluczowego narzedzia do
zarzgdzania stanem serwerowym i asynchronicznymi danymi.

5. https://zustand-demo.pmnd.rs/ (Data dostepu: 1.10.2025) — Dokumentacja i demo
biblioteki Zustand, przedstawiajgce nowoczesne i lekkie podejscie do globalnego
stanu aplikacji.



https://react.dev/learn/managing-state
https://react.dev/reference/react/useContext
https://react.dev/reference/react/useReducer
https://tanstack.com/query/latest/docs/framework/react/overview
https://zustand-demo.pmnd.rs/

