POLITECHNIKA SWIETOKRZYSKA

Aplikacje mobilne -
wyktad 3

Nawigacja i przeptyw uzytkownika - React
Navigation w React Native

Mateusz Pawetkiewicz
1.10.2025

Wprowadzenie: W aplikacjach mobilnych React Native nawigacja miedzy ekranami odgrywa
kluczowa role w tzw. user flow (przeptywie uzytkownika). Bibliotekg de facto standardowg
do nawigacji jest React Navigation, oferujgca wygodne API do tras (routingu) na iOS,
Androidzie, a nawet na web. W tym wyktadzie oméwimy typy nawigatoréw (stos, zaktadki,
szuflada), ich zagniezdzanie, przekazywanie parametrow miedzy ekranami, a takze bardziej
zaawansowane zagadnienia: hooki nawigacyjne, integracje z TypeScript, mechanizmy deep
linkdw, ochrone tras (protected routes) w kontekscie uwierzytelniania oraz kompletny
przeptyw logowania.

React Navigation — typy nawigacji

React Navigation to biblioteka umozliwiajgca definiowanie réznych rodzajéw nawigacji w
aplikacji React Native. Podstawowe typy nawigatoréw to: Stack Navigator (stos ekranéw),
Bottom Tab Navigator (nawigacja z zaktadkami) oraz Drawer Navigator (nawigacja
szufladkowa). Kazdy z nich odpowiada innemu wzorcowi poruszania sie po aplikacji:

o Stack Navigator (stos): Umozliwia przechodzenie do kolejnych ekranéw uktadajac je
na stosie — nowy ekran jest naktadany na poprzedni, a powrét cofa do wczesniejszych
ekrandw. Jest to analogia do nawigacji w iOS/Android: ekrany wchodzg z prawej
strony lub w domysIinym stylu systemowym. DomysInie React Navigation zapewnia
animacje przejscia zgodne z platforma (przesuniecie w poziomie na iOS, standardowy
fade/slide na Androidzie). Implementacja stosu wystepuje w dwdch odmianach:
@react-navigation/stack (W JavaScript) oraz @react-navigation/native-stack (wykorzystujgca
natywne API nawigacji). Wersja JavaScript jest bardziej konfigurowalna, ale moze by¢
nieco mniej wydajna, dlatego w przypadku ztozonych animacji warto rozwazy¢
wariant natywny dla lepszej ptynnosci. Stack Navigator sprawdza sie w
sekwencyjnych przeptywach ekrandw — np. lista artykutéw = ekran szczegétéw
artykutu.

o Bottom Tab Navigator (zaktadki): Zapewnia nawigacje za pomocg paska kart (tabs)
najczesciej umieszczonego na dole ekranu. Uzytkownik moze przetaczac sie miedzy
zaktadkami reprezentujgcymi niezalezne sekcje aplikacji (np. Home, Wyszukaj, Profil).
Kazda zaktadka ma przypisany wtasny ekran (lub zagniezdzony stos ekranéw). Taby
s inicjalizowane leniwie (ekran zaktadki faduje sie dopiero przy pierwszym przejsciu)
i utrzymywane w pamieci, co umozliwia szybki powrét bez utraty stanu. Mozemy
dostosowac ikonki i etykiety zaktadek, a takze styl paska. Ten nawigator jest idealny,
gdy aplikacja ma kilka gtéwnych modutéw dostepnych rdwnolegle (np. strona gtéwna
i ekran ustawien jako osobne zaktadki).

o Drawer Navigator (szuflada): Oferuje nawigacje z menu wysuwanym z boku ekranu
(tzw. hamburger menu). Zazwyczaj na Androidzie otwierane gestem przesuniecia od
krawedzi, a na iOS dodatkowo czesto ikong hamburgera w nagtéwku. Drawer
Navigator jest uzyteczny do pomieszczenia wielu opcji nawigacyjnych lub nawigacji
globalnej, np. panel boczny aplikacji z linkami do réznych ekrandéw (profil, ustawienia,
FAQ itp.). W React Navigation implementacja szuflady opiera sie pod spodem na
komponencie react-native-drawer-layout, a do poprawnego dziatania wymaga
zainstalowania zaleznosci jak react-native-gesture-handler i react-native-reanimated (Expo
instaluje je automatycznie). Konfigurujgc Drawer Navigator definiujemy ekrany
dostepne w menu; mozemy takze dostosowac pozycje szuflady (lewa/prawa) czy

zawartosé nagtéwka. Drawer sprawdza sie, gdy chcemy ukryé nawigacje pod gestem,
zostawiajgc wiecej miejsca na ekranie gtéwnym.

Zagniezdzanie nawigatorow (nesting): Czesto w realnej aplikacji uzywamy kilku typow
nawigacji jednoczesnie, zagniezdzajgc je w sobie. Przyktadowo, mozemy mie¢ gtowny
Drawer Navigator, a w nim kazda opcja otwiera osobny Stack lub Tab navigator. Albo
popularny przypadek: Tab Navigator jako gtdwna nawigacja aplikacji, gdzie poszczegdlne
zaktadki majg wewnetrzne Stack Navigatory (np. zaktadka Home ma stos z ekranem gtéwnym
i ekranem szczegotow). React Navigation pozwala traktowac navigator jak ekran — np.
mozemy zdefiniowaé w Stack Navigatorze ekran, ktérego komponentem jest MyTabs (nasz
Tab Navigator). W ten sposéb nawigatory sg hierarchiczne. Nalezy pamietaé, ze kazdy
nawigator ma wtasng przestrzen nazw dla routéw — tzn. ekrany w zagniezdzonym
navigatorze majg swoje nazwy niezalezne od nazw ekrandw w rodzicu. Aby nawigowac
pomiedzy zagniezdzonymi navigatorami, zazwyczaj wywotujemy nawigacje wzgledem
wspdlnego NavigationContainer lub uzywamy petnych sciezek (np.
navigation.navigate('NazwaNavigatora', { screen: 'NazwaEkranu', params: {...} })). Zagniezdzanie
nawigatorow pozwala tgczy¢ rézne wzorce nawigacji — np. zaktadki dolne plus opcje w
szufladzie, albo stos logowania oddzielony od gtéwnego stosu aplikacji.

Przekazywanie parametrow miedzy ekranami: Czesto przy przechodzeniu na kolejny ekran
chcemy przekaza¢ mu dane (np. ID obiektu, ktéry ma wyswietli¢ szczegdty). React Navigation
umozliwia to poprzez drugi argument funkcji nawigujacej. Przyktadowo, majgc nawigacje
stosu, mozemy przejs¢ do ekranu "Details" z parametrami:

navigation.navigate('Details’, {
itemld: 86,
otherParam: 'dowolna wartos¢'

N;

W powyzszym wywotaniu przekazalismy obiekt parametréw do routa "Details". Na ekranie
docelowym dostep do tych danych uzyskamy przez wtasciwos¢ route.params. Dla przyktadu, w
komponencie DetailsScreen mozemy pobraé parametry:

function DetailsScreen({ route }) {
const { itemld, otherParam } = route.params;
// uzycie itemld i otherParam...

}

Pobralismy itemld i otherParam z obiektu parametréw przekazanych nawigacjg. Warto
zauwazyc, ze parametry najlepiej przekazywac w formie prostego JSON (typy proste, obiekty,
tablice) — dzieki temu sg serializowalne, co utatwia np. zapisywanie stanu nawigacji czy
obstuge deep linkow.

Mozemy takze definiowac parametry poczatkowe ekranu niezaleznie od nawigacji. Jesli np.
chcemy, by ekran Details domysInie miat itemlid: 42, mozemy ustawic initialParams przy definicji
ekranu:

<Stack.Screen
name="Details"

component={DetailsScreen}
initialParams={{ itemld: 42 }}
/>

Parametry przekazane podczas navigate nadpiszg wartosci poczgtkowe, a jesli nie przekazemy
zadnych — ekran uzyje initialParams. Ekran moze rowniez aktualizowa¢ parametry wtasnej
routy w trakcie dziatania, wywotujgc navigation.setParams({ ... }) — np. aby zmieni¢ parametry
wptywajace na Ul nagtéwka itp. (przydatne przy dynamicznych tytutach).

Kilka dobrych praktyk przy przekazywaniu parametréw:

e Przekazuj tylko niezbedne dane (np. ID, klucz), a wieksze obiekty pobieraj ponownie
na ekranie docelowym lub uzyj globalnego stanu. Unikniesz w ten sposéb problemoéw
z serializacja i wydzielisz odpowiedzialnosci.

e Upewnij sie, ze ekran odbierajgcy parametry obstuzy przypadek braku parametru (np.
gdyby nawigacja nastgpita bez niego). Mozesz zdefiniowac wartosci domysine:
route.params?.userName ?? 'Anonim' itp.

e W TypeScript warto uscisli¢ typy parametrow dla kazdej trasy — dzieki temu edytor
wychwyci brak wymaganych parametréw juz na etapie kompilacji. Typowanie
nawigacji oméwimy w dalszej czesci.

Uwaga: W Stack Navigatorze navigation.navigate('RouteName', params) zachowuje sie nieco inaczej
NiZ navigation.push('RouteName', params). navigate sprobuje znaleZ¢ istniejgcy ekran o danej
nazwie w stosie i odswiezy¢ jego parametry (lub przejs¢ do niego, jesli jest nizej na stosie).
Jesli taki ekran nie istnieje, dopiero wtedy wstawi nowy na goére stosu. Natomiast push
zawsze dodaje nowy ekran na wierzch, nawet jesli juz taki znajduje sie na stosie. Dlatego
gdy chcemy wejsé na ten sam ekran wielokrotnie (np. ogladaé rézne szczegdty w petli),
uzywamy push. Gdy chcemy przej$¢ do ekranu bez duplikowania (np. z menu do istniejgcego
juz stosu), lepsze jest navigate. Istnieje tez navigation.replace('RouteName', params) — zastepuje
biezgcy ekran nowym, co bywa uzyteczne np. po zakoriczeniu onboardingu (usuwamy ekran
powitalny ze stosu i wstawiamy gtéwny ekran aplikacji).

Hooki nawigacyjne i nawigacja w praktyce

React Navigation dostarcza specjalne hooki, ktore utatwiajg korzystanie z nawigacji w
komponentach funkcyjnych. Gtéwne to useNavigation oraz useRoute. Omodwimy ich dziatanie, a
takze pokazemy, jak uzywac ich z TypeScriptem dla petnego bezpieczeristwa typow.
Przyjrzymy sie tez metodom nawigacji wstecz i resetowania stosu — niezbednym w
zarzadzaniu historig ekranow.

useNavigation — dostep do obiektu nawigacji

useNavigation() zwraca obiekt nawigacji (navigation prop) dla ekranu, w kontekscie ktorego
hook zostat wywotany. Dzieki temu mozemy wotac navigation.navigate, navigation.goBack() i inne
metody bez przekazywania obiektu nawigacji przez propsy. Jest to przydatne np. w
komponentach zagniezdzonych, ktdre nie sg ekranami, ale chcg nawigowac (np. przycisk w
customowym headerze).

Przyktad: Zatézmy, ze chcemy stworzy¢ komponent przycisku “Wstecz” dziatajgcy w
dowolnym miejscu aplikacji:

import { useNavigation } from '@react-navigation/native';

function MyBackButton() {
const navigation = useNavigation();

return (
<Button title="Powrét" onPress={() => navigation.goBack()} />

);
}

Tutaj hook useNavigation() dostarcza nam aktualny obiekt nawigacji, a my wywotujemy
navigation.goBack() po kliknieciu. Nacisniecie przycisku spowoduje cofniecie do poprzedniego
ekranu na stosie (tozsame z uzyciem gestu/cofniecia systemowego).

Uzycie z klasami: Jesli musimy skorzystac z useNavigation w komponencie klasowym (ktéry nie
obstuguje hookdéw), mozna owingé komponent klasowy w funkcje korzystajacg z hooka i
przekaza¢ navigation jako prop:

class MyLegacyComponent extends React.Component {
render() {
const { navigation } = this.props;
/...
}
}

// eksport zastepujemy wersja z przekazanym navigation:
export default function(props) {
const navigation = useNavigation();
return <MyLegacyComponent {...props} navigation={navigation} />;

}

Generalnie jednak w nowych aplikacjach trzymamy sie komponentdéw funkcyjnych i hookdw.

Typowanie useNavigation: Domyslinie, bez dodatkowej konfiguracji, obiekt zwracany przez
useNavigation ma 0golny typ (nie zawiera informacji o dostepnych routach i parametrach). Aby
miec lepsze podpowiedzi i kontrole, mozemy skorzystac z typu generycznego. Przyktadowo,
jesli mamy zdefiniowany typ parametrow nawigatora gtéwnego RootStackParamList (0
definiowaniu typow za chwile), mozemy zrobic:

type NavProp = NativeStackNavigationProp<RootStackParamlList, 'Profile'>;
const navigation = useNavigation<NavProp>();

Wtedy np. navigation.navigate('"Home', ...) bedzie sprawdzac zgodno$¢é nazwy routy i typow
parametréw z RootStackParamList. Innym podejsciem (w React Navigation 6+) jest
zadeklarowanie globalnego typu param list — wtedy useNavigation() automatycznie uzyje go
bez koniecznosci przekazywania generyka. Szczegdty tego podejscia omdwimy w sekcji o
TypeScript.

Uwaga: useNavigation musi by¢ wywotywany w kontekscie ekranu podpietego do nawigatora
(tj. wewnatrz drzewa NavigationContainer). Jesli uzyjemy go poza nawigatorem, otrzymamy
btad o braku kontekstu. W praktyce oznacza to, ze np. nie mozemy wywotac useNavigation W
kodzie, ktéry renderuje NavigationContainer — tylko wewnatrz komponentdw bedacych
ekranami lub ich dzieémi. Jesli potrzebujemy nawigowac globalnie spoza komponentdéw (np.
z poziomu modutu, serwisu) — React Navigation oferuje obiekt navigation ref
(React.createRef()), ktéory mozemy recznie wykorzystywaé do nawigacji imperatywnej, ale to
zaawansowany przypadek.

useRoute — informacje o biezacej trasie

useRoute() pozwala nam uzyskac obiekt aktualnej trasy (route) w danym ekranie.
Standardowo komponent-ekran otrzymuje route w propsach ({ route, navigation }), ale jesli
zagniezdzamy logike gtebiej lub chcemy skorzystaé z hooka zamiast props, useRoute
rozwigzuje problem.

Typowy use-case to pobranie parametrow przekazanych do ekranu lub odczytanie nazwy
trasy. Przyktad uzycia:

import { useRoute } from '@react-navigation/native';

function MyText() {
const route = useRoute();
return <Text>{route.name}: {ISON.stringify(route.params)}</Text>;

}

W powyzszym przyktadzie wyswietlamy nazwe aktualnego ekranu (route.name) oraz
parametry w formie tekstowej. Oczywiscie zazwyczaj interesuje nas konkretne pole z
route.params — NP. route.params.userld. useRoute jest szczegdlnie przydatny w komponencie,
ktéry nie otrzymuje props route (np. wnuk ekranu), a potrzebuje tych danych.

Typowanie useRoute: Podobnie jak z useNavigation, warto zapewni¢ odpowiedni typ
zwracanego obiektu. React Navigation udostepnia generyk RouteProp<ParamList, RouteName>.
Jesli np. mamy:

type RootStackParamlList = { Details: { itemld: number } };
type DetailsRouteProp = RouteProp<RootStackParamlList, 'Details'>;

to mozemy uzyc:
const route = useRoute<DetailsRouteProp>();

Wodwczas TypeScript bedzie wiedziat, ze route.params ma strukture {itemld: number } — dzieki
czemu od razu ztapie literowki w nazwach pdl czy niewtasciwe typy.

Typowanie nawigacji w TypeScript

Aby w petni wykorzysta¢ moc TypeScript w nawigacji, powinnismy zdefiniowac typy
parametrow dla wszystkich ekranéw oraz uzywac ich przy tworzeniu navigatoréow i hookdéw.
Proces wyglada nastepujgco:

1. Definicja listy parametrow — tworzymy typ obiektu, w ktérym kluczami sg nazwy
tras, a wartosciami typy parametréw (lub undefined, jesli brak parametru). Przyktad dla
prostego stosu:

type AuthStackParamlList = {
Login: undefined;
Register: undefined;
ForgotPassword: { email?: string }; // przyktadowo ekran resetu hasta z opcjonalnym e-mailem

b

oraz dla gtdwnej czesci aplikacji z zaktadkami:

type AppTabsParamlList = {
Home: undefined;
Profile: { userld: string };

b

Tutaj zaktadamy, ze ekran Home nie potrzebuje parametru, a ekran Profile wymaga
userld (np. identyfikatora uzytkownika, ktérego profil wyswietlamy).

2. Tworzenie navigatora z powyizszym typem — przy wywotaniu fabryki navigatora
przekazujemy typ param list jako parametr generyczny. Np. dla stack:

const Stack = createNativeStackNavigator<AuthStackParamList>();
a dla tabs:
const Tab = createBottomTabNavigator<AppTabsParamList>();

Teraz komponenty <Stack.Screen> i <Tab.Screen> bedg oczekiwac nazwy oraz
komponentu zgodnych z zdefiniowanymi w typie trasami.

3. Typowanie propsow ekrandéw: Mozemy uzyskaé typy nawigacji i routy dla konkretnej
trasy uzywajgc dostarczonych typéw utility. Przyktadowo, dla ekranu Profil w tab
navigatorze:

import type { CompositeScreenProps } from '@react-navigation/native';
import type { BottomTabScreenProps } from '@react-navigation/bottom-tabs';

type ProfileScreenProps = BottomTabScreenProps<AppTabsParamList, 'Profile'>;

W przypadku bardziej ztozonym, gdy ekran jest zagniezdzony (np. ekran w stacku
wewnatrz taba), uzywa sie CompositeScreenProps tgczgc typ stacku i taba. Dla

uproszczenia, mozna tez skorzysta¢ z hookéw z generykami zamiast typowac caty
komponent.

W praktyce czesto robi sie to tak:

function ProfileScreen() {
const navigation = useNavigation<BottomTabNavigationProp<AppTabsParamList, 'Profile'>>();
const route = useRoute<RouteProp<AppTabsParamList, 'Profile'>>();
// teraz navigation i route s3 $cisle typowane
const { userld } = route.params;

}...

Takie podejscie daje petne bezpieczenstwo: jesli spréobujemy navigation.navigate('Home"',
{userld: '123'}) ale Home nie przyjmuje parametru, TS zgtosi btagd. Lub odwrotnie —
wywoftanie navigation.navigate('Profile') bez wymaganego userld bedzie btedne.

4. Globalny typ param list: React Navigation v6+ umozliwia zadeklarowanie w
przestrzeni globalnej (namespace ReactNavigation) domyslnego typu param list.
Woystarczy zrobi¢ cos takiego w pliku definicji (np. types.d.ts):

declare global {
namespace ReactNavigation {
interface RootParamList extends AppTabsParamlList {}

}
}

Po tej deklaracji, wszedzie tam gdzie React Navigation uzywa RootParamList (np. w
useNavigation() bez generyka), zostanie zastosowany nasz typ. To upraszcza korzystanie
z hookdw — nie musimy podawac generykdw za kazdym razem. Upewnijmy sie tylko,
ze deklaracja jest w zasiegu projektu (wtgczona przez TSconfig).

Podsumowanie: Konfiguracja TypeScript z nawigacjg wymaga odrobiny pracy na starcie, ale
opfaca sie. Zyskujemy autouzupetnianie nazw ekranéw, pewnos¢ co do parametréw i ich
typow, mniej btedow w czasie wykonania. W duzych aplikacjach to niemal koniecznosé.
React Navigation w wersji 7 dodatkowo wprowadzit tzw. Static API, ktére upraszcza
konfiguracje navigatora i poprawia inferencje typow (definiujemy ekrany jako obiekty z
kluczami, co utatwia wyprowadzenie typdw param list). Niezaleznie od podejscia, warto
zawsze definiowac param listy i korzystaé z dostarczonych typdéw pomocniczych.

Powrét do poprzedniego ekranu i resetowanie stosu

Nawigacja to nie tylko przechodzenie “do przodu” (push/navigate), ale tez wracanie i
zarzadzanie historig ekrandw. Ponizej najwazniejsze operacje:

¢ Powrot (goBack): Kazdy obiekt navigation posiada metode navigation.goBack(), ktora cofa
nas o jeden ekran w tyt (analogicznie do nacisniecia systemowego back na Androidzie
czy gestu cofania na iOS). Jesli jesteSmy na pierwszym ekranie stosu, wywotanie
goBack() domysinie zamknie catg aplikacje (lub przeniesie jg w tfo) na Androidzie —
warto to mie¢ na uwadze przy obstudze hardware back (mozna ten behavior

nadpisac¢, o czym za chwile). W naszym wczesniej pokazanym MyBackButton uzylismy
navigation.goBack(). Istnieje tez metoda navigation.canGoBack(), ktdrg mozna sprawdzic czy
jest do czego wracac (zwraca true/false).

e Pop stack: Alternatywa do goBack jest navigation.pop(n), ktdra cofa o n ekranéw
(domywnie 1). Ponadto navigation.popToTop() cofnie nas od razu na poczatek stosu
(pierwszy ekran). Te metody sg przydatne np. aby wyjs$¢ z wieloetapowego
formularza od razu na ekran gtéwny itp.

e Reset nawigacji (reset stack): Czasem chcemy catkowicie zmienié¢ stan nawigacji — np.
wyczyscic historie i wstawi¢ nowy zestaw ekranéw. Przyktadem jest przeptyw
logowania: po pomysinym zalogowaniu nie chcemy, by uzytkownik wrécit przyciskiem
“wstecz” do ekranu logowania. W takim wypadku mozna zastosowac reset stosu.
React Navigation udostepnia akcje CommonActions.reset do zdefiniowania nowego
stanu nawigacji. Uzywa sie jej mniej wiecej tak:

import { CommonActions } from '@react-navigation/native';

navigation.dispatch(
CommonActions.reset({
index: 0,
routes: [{ name: 'Home' }] // nowy stos z tylko jednym ekranem Home
)
);

Powyzszy kod wyczysci catg historie i ustawi stos zawierajgcy pojedynczg trase Home.
Mozemy oczywiscie podac¢ wiecej routes w tablicy, okreslajgc nawet parametry
kazdej z nich. Np.:

CommonActions.reset({
index: 1,
routes: [
{ name: 'Profile', params: { user: 'janek' } },
{ name: 'Home' }
]
1

Tutaj ustawiamy, ze nowy stos ma dwa ekrany: Profile (bedzie pod indeksem 0) i
Home (indeks 1), i od razu startujemy na indeksie 1 czyli Home. Efekt: uzytkownik
zobaczy Home, wstecz cofnie do Profile, a wczesniejsze ekrany zostaty usuniete.

Uwaga: Stosujgc reset trzeba uwazaé na spéjnosc stanu. Akcja reset zastepuje caty stan
nawigatora nowym obiektem stanu. Jesli pominiemy jakies$ klucze lub nadamy dwa ekrany z
t3 sama nazwa klucza, mozemy doprowadzi¢ do niespdjnosci. Zazwyczaj ograniczamy sie do
ustawienia index oraz nowej listy routes zawierajgcej name i opcjonalnie params. Unikajmy
manipulowania wewnetrznymi strukturami stanu nawigacji — API CommonActions.reset
wystarcza w 99% przypadkdow. Reagujgc na zmiany stanu aplikacji (np. wylogowanie), czesto
jednak nie musimy recznie wykonywac reset, a zamiast tego warunkowo renderujemy rézne
nawigatory (co omowimy w sekcji o protected routes). Taka zmiana konfiguracji nawigacji
automatycznie usuwa poprzednie ekrany z widoku.

+ Blokowanie powrotu (preventing goBack): Czasem chcemy zapobiec cofnieciu sie z
konkretnego ekranu (np. ekran "potwierdz zamodwienie" — uzytkownik nie powinien
cofng¢ do koszyka). React Navigation udostepnia hook usePreventRemove() do
zablokowania opuszczania ekranu. Mozna tez obstuzy¢ zdarzenie beforeRemove na
nawigatorze. W ramach tego wyktadu tylko sygnalizujemy istnienie takiej opcji —
warto wiedzieé, ze mozna przejac kontrole nad fizycznym przyciskiem
wstecz/gestem, wyswietli¢ np. modal "Czy na pewno chcesz wyjs$é?" i warunkowo
zablokowac¢ nawigacje.

o Specyfika Androida: Na Androidzie fizyczny przycisk cofania jest domysinie
zintegrowany z nawigatorem — dziata jak navigation.goBack() dla najwyzszego
nawigatora na stosie (o ile nie nadpisaliSmy tego zachowania). Gdy uzytkownik jest
na ekranie poczatkowym nawigacji gitéwnej, domyslinie przycisk ten zamknie
aplikacje. Mozemy to zachowanie zmieni¢ uzywajgc BackHandler z RN, ale jesli logika
nawigacji jest poprawnie zbudowana (i np. blokujemy cofniecie tam gdzie nie ma
sensu), zwykle domyslne dziatanie jest okej.

Podsumowanie sekcji: Hooki useNavigation i useRoute upraszczajg dostep do nawigacji i
informacji o trasie w komponentach funkcyjnych. W potaczeniu z dobrze skonfigurowanym
TypeScriptem zapewniajg wygode i bezpieczenstwo. Pamietajmy o metodach nawigacji
wstecz i reset — tworzac bardziej ztozone flow uzytkownika (np. logowanie -> gtéwna
aplikacja) s3 one niezbedne do zapewnienia poprawnego zachowania (np. brak mozliwosci
cofniecia do ekranu logowania). W kolejnych sekcjach zobaczymy, jak zastosowac te
mechanizmy w praktyce, m.in. przy implementacji deep linkéw oraz chronionych tras
wymagajacych uwierzytelnienia.

Deep linking — obstuga linkow zewnetrznych

Deep linking to mechanizm pozwalajacy otworzy¢ aplikacje mobilng w okreslonym miejscu
nawigacji za pomoca linku/URL. Przyktadowo, klikniecie w przegladarce linku
myapp://profile/42 moze bezposrednio otworzy¢ naszg aplikacje RN i przenies¢ uzytkownika do
ekranu profilu uzytkownika o ID 42. Dzieki deep linking mozemy integrowac aplikacje z e-
mailami, strong WWW, czy innymi aplikacjami (np. otwieranie odnos$nika z Facebooka
uruchamia naszg aplikacje).

Aby obstuzyé deep linki, trzeba skonfigurowaé kilka rzeczy po stronie aplikacji oraz
zewnetrznych Zzrédet (systemu i ewentualnie serwera WWW):

Definiowanie schematu URL

Podstawag deep linkdéw jest unikalny schemat URI przypisany do naszej aplikacji. Schemat to
cigg znakdw przed :// w URL — np. w myapp://home schematem jest myapp. W systemach
mobilnych mozemy zarejestrowad aplikacje do obstugi konkretnego schematu.

e Expo (Managed): W przypadku aplikacji expo najtatwiej zdefiniowa¢ schemat w pliku
konfiguracyjnym app.json / app.config.js. W sekcji expo dodajemy pole "scheme":
"myapp" (oczywiscie zamiast myapp dowolna unikalna nazwa). Podczas budowy

aplikacji expo ustawi ten schemat w odpowiednich miejscach Android/iOS
automatycznie.
e Aplikacja RN (bare workflow): Trzeba recznie zarejestrowac URL types:
o i0S: w Info.plist dodaj CFBundleURLTypes z wpisem dla myapp.
o Android: w AndroidManifest.xml dodac¢ <intent-filter> z <data scheme="myapp" ...>
pozwalajgcy otwieraé aktywnos¢ gtéwng tym schematem.
o (Expo bare: mozna uzy¢ komendy npx uri-scheme add myapp ktéra automatyzuje
te czynnosci).

Po ustawieniu schematu np. myapp://, kazda zewnetrzna aplikacja odwotujgca sie do takiego
URL spowoduje uruchomienie/wybudzenie naszej aplikacji.

Warto wybra¢ unikalny schemat, by nie kolidowat z innymi. Czesto uzywa sie odwréconego
adresu domeny, np. com.firma.apka://, ale nie jest to konieczne.

Konfiguracja linkingu w React Navigation

Samo posiadanie schematu to tylko pierwszy krok. Nastepnie musimy powiedzieé React
Navigation, jak mapowa¢ przychodzace linki na trasy w naszym nawigatorze. Stuzy do tego
konfiguracja linking w <NavigationContainer>.

React Navigation moze integrowac sie z modutem RN Linking w celu nastuchiwania linkéw.
Mozemy skorzystaé z prop linking przekazujac obiekt konfiguracji. Przyktad minimalne;j
konfiguracji (Expo):

import * as Linking from 'expo-linking';
const prefix = Linking.createURL('/"); // automatycznie ustali prefix, uwzgledniajac tryb Expo (dev/standalone)

const linking = {
prefixes: [prefix], // lista dozwolonych prefixéw URLi
config: {
screens: {
Home: "home",
Profile: "profile/:userld",
// ...mapowanie kolejnych ekranéw na sciezki
}
}
7

return (
<NavigationContainer linking={linking} fallback={<Text>tadowanie...</Text>}>
{/* nawigatory */}
</NavigationContainer>

);
Kilka wyjasnien do powyzszego:
o prefixes — to tablica prefiksow URL, ktére majg by¢ przechwytywane. Najczesciej

umieszczamy tu nasz schemat (np. "myapp://") oraz ewentualne adresy URL naszej
domeny, jesli chcemy obstuzy¢ tzw. universal links/app links. W kodzie uzyto

Linking.createURL('/") z expo-linking, ktére generuje odpowiedni prefix zarowno dla
trybu dev (exp://IP:PORT/--/) jak i dla produkcji (myapp://). Warto dodac rowniez
prefix z https:// naszej strony, jesli planujemy integracje web -> app. Np.:

prefixes: [Linking.createURL('/"), 'https://moja-domena.pl']

config — tu definiujemy mapowanie nazw ekrandw na Sciezki URL. W przykfadzie powyzej
ekran Home zdefiniowalismy pod $ciezkg "home" (czyli myapp://home odpali Home), a
Profile pod "profile/:userld". Dwukropek oznacza parametry w $ciezce — w tym wypadku
kazda Sciezka myapp://profile/XYZ spowoduje przejscie do ekranu Profile z route.params = {
userld: "XYz" }. Mozemy mapowacé rowniez ekrany zagniezdzone, uzywajgc zagniezdzonych
obiektow screens. Np. jesli Profile jest w zagniezdzonym stacku, config moze wygladac:

config: {
screens: {
Home: "home",
ProfileStack: { // nazwa stosu jako ekran w gtéwnym nav
screens: {
Profile: "profile/:userld",
EditProfile: "profile/edit"
}
}
}
}

Taki config moze robi¢ wrazenie skomplikowanego, ale sprowadza sie do odzwierciedlenia
struktury nawigacji aplikacji za pomocg zagniezdzonych obiektow.

fallback komponent — NavigationContainer przyjmuje fallback Ul na czas, gdy przetwarza link
i odpala wtasciwy ekran. W powyzszym ustawiliSmy po prostu tekst "tadowanie...". Mozna
wyswietli¢ splashscreen lub nic, byle nie zostawi¢ uzytkownika w niepewnosci.

Po tej konfiguracji React Navigation automatycznie:

e Przy starcie aplikacji sprawdzi, czy zostata uruchomiona z linka (tzw. initial URL). Jesli
tak, sparsuje URL wzgledem prefixes i config i ustawi odpowiedni stan poczatkowy
nawigatora. To znaczy, np. od razu zataduje stos z ekranem Profile i parametrem
userld zamiast ekranu domysinego.

o Gdy aplikacja juz dziata i przyjdzie nowy link (np. poprzez Linking.addEventListener w
RN), nastgpi nawigacja do wskazanego miejsca (update state nawigatora). Nie
musimy sami wywotywac navigate — zrobi to za nas mechanizm linkingu.

e Obstuzy poprawnie specyfike web (jesli budujemy RN na web, linki bedg uzywac
Sciezek URL i historii przegladarki).

Expo a deep linking: W trybie Expo Dev klient uzywa innego schematu (exp://127.0.0.1:19000/--/
z path) i nie mozemy fatwo testowac custom schematu bez budowy standalone. Na szczescie
Linking.createURL('/") robi to za nas — w trybie deweloperskim prefixem bedzie adres exp:// z
naszym manifestem, a w zbudowanej apce prefixem bedzie myapp://. Dzieki temu mozemy
testowac deep linki w trakcie developmentu: np. odpalajgc komende:

npx uri-scheme open "myapp://profile/42" --android

(analogicznie --ios dla i0OS) — expo CLI przeksztatci to na odpowiedni link (exp://...) i poda do
aplikacji. Alternatywnie, w Expo Go mozna skopiowac link exp:// z parametrem za --/ (cow
praktyce oznacza path w aplikacji). Jesli mamy aplikacje standalone, to na fizycznym
urzgdzeniu klikniecie w link myapp://... z dowolnej aplikacji (np. z notatki czy przegladarki)
powinno wywotaé otwarcie naszej aplikacji.

Universal Links / App Links: Poza custom schematem, mozna tez zarejestrowac aplikacje do
obstugi linkdw HTTP(S) z wtasnej domeny. Np. klikniecie w https://moja-
domena.pl/invite?code=abc moze otwiera¢ aplikacje. W iOS nazywa sie to Universal Links, w
Androidzie App Links — wymagajg one spetnienia dodatkowych warunkéw bezpieczenstwa
(potwierdzenie wiascicielstwa domeny poprzez plik apple-app-site-association na serwerze,
oraz wpisy w Xcode i Digital Asset Links JSON na Androidzie). Expo rowniez to wspiera: w
app.json dodajemy associatedDomains dla iOS, a w AndroidManifest analogiczne intent-filter z
android:autoVerify="true" i hostem domeny. Szczegdty tego procesu sg nieco poza zakresem
tego wykfadu (to temat na osobng sesje). Wiedzmy tylko, ze jest taka mozliwos¢ — aby nasze
linki webowe otwieraty aplikacje natywng, co poprawia UX (tzw. app/website integration).

Obstuga linkéw wychodzacych: Wspomnijmy krétko, ze RN Linking pozwala tez otwierac z
poziomu aplikacji linki zewnetrzne — np. Linking.openURL('tel:123456789') wywota telefon, a
Linking.openURL('https://google.com') otworzy strone w domysinej przegladarce. To odwrotnos¢
deep linkdéw, ale bywa przydatna (np. link do polityki prywatnosci otwiera przegladarke). W
kontekscie React Navigation warto uwazaé, by nie pomyli¢ navigation.navigate (do wewnetrznej
nawigacji) z Linking.openURL (do zewnetrznej). Jesli otwarcie URL jest obstugiwane przez nas
samych (np. wtasny schemat), lepiej uzy¢ navigation.navigate z odpowiednim parametrem niz
emulowac to przez openURL.

Debugowanie deep linkéw:

e W trybie dev obserwuj logi Metro — gdy przyjdzie link, powinna pojawic sie
informacja o prébie parsowania URL.

e Jeslilink nie dziata, upewnij sie, ze prefixes zawiera wtasciwy schemat/protokét, a
config doktadnie odwzorowuje $ciezke. Literowki w nazwach ekranéw w configu mogag
sprawic, ze link zostanie zignorowany.

o Na Androidzie, jesli link myapp://... nie otwiera aplikacji, mozliwe ze inna aplikacja
zarejestrowata ten sam schemat — zmien schemat na bardziej unikalny.

e Do testowania uzywaj npx uri-scheme (szybkie i wygodne) oraz np. w XCode Devices ->
Open URL dla iOS Simulator. Na Android emulatorze adb shell am start -W -a
android.intent.action.VIEW -d "myapp://..." com.twojpakiet wywofa intencje.

o Sprawdzaj tez wypadki graniczne: np. co jesli uzytkownik miat aplikacje otwartg na
innym ekranie i kliknie link? (Powinno przekierowac¢ na nowy ekran w ramach juz
otwartej apki — RN to obstuzy automatycznie poprzez update stanu nawigacji).

Deep linking otwiera fajne mozliwosci integracji, ale dodaje sporo ztozonosci. Dla porzadku,
ponizej kréotkie zestawienie krokdw, ktére nalezy wykonaé, by w petni zaimplementowadé
deep linki:

1. Rejestracja schematu URL aplikacji (Expo: app.json, iOS: Info.plist, Android:
AndroidManifest.xml).

2. Konfiguracja React Navigation: ustawienie NavigationContainer prop linking z prefixami i
mapowaniem sciezek na ekrany.

3. (Opcjonalnie) Universal/App Links: konfiguracja asocjacji domeny, by linki HTTPS tez
trafiaty do aplikacji.

4. Testy: uzycie uri-scheme lub fizyczne klikanie linkéw, sprawdzenie poprawnego
otwierania.

5. Fallback: zapewnienie sensownego fallbacku Ul, jesli link jest nieprawidtowy (mozna
obstuzy¢ zdarzenie Linking.addEventListener('url', ...) manualnie jesli chcemy custom
zachowanie w niektérych wypadkach).

Na potrzeby tego wyktadu warto po prostu mie¢ swiadomosé, ze deep linking istnieje i znaé
podstawy konfiguracji.

Ochrona tras (Protected Routes) i warunkowe flow

Wiele aplikacji wymaga uwierzytelnienia uzytkownika — tzn. pewne ekrany sg dostepne tylko
po zalogowaniu. Musimy zatem chronic trasy przed nieautoryzowanym dostepem. W React
Navigation nie ma gotowego mechanizmu "Route Guards" takiego jak np. w Angular, ale
mozemy osiggnac to samo, warunkowo renderujgc odpowiednie ekrany/nawigatory w
zaleznosci od stanu aplikacji (stanu zalogowania, ukoniczenia onboardingu itp.).

Straznicy tras — koncept

Route guard to kawatek logiki, ktdry decyduje, czy uzytkownika wpuscié¢ na dang trase, czy
przekierowac go gdzie indziej. W webowym React Router jest to np. komponent
<PrivateRoute> sprawdzajgcy auth. W React Navigation podejscie jest nieco inne: najczesciej
ukrywamy cate sekcje nawigacji gdy warunek nie jest spetniony, zamiast przekierowywac w
momencie wejscia.

Mozna to zrobi¢ na dwa sposoby:

e Statycznie przy konfiguracji navigatora: W najnowszym Static API RN7 mozna przy
definicji ekranu dodac opcje if: someCondition. Gdy warunek (funkcja/hook) zwraca
false, ekran nie jest w ogdle dostepny w nawigacji. Np.:

const RootStack = createNativeStackNavigator({
screens: {
Home: { if: uselsSignedIn, screen: HomeScreen },
Signin: {if: uselsSignedOut, screen: SigninScreen }

}
N;

W powyzszym pseudokodzie uselsSignedin i uselsSignedOut to hooki zwracajgce booleany
zaleznie od stanu auth. React Navigation wtedy automatycznie pokaze tylko te ekrany,
ktorych warunek jest spetniony — nigdy oba jednoczesnie. Gdy stan sie zmieni (uzytkownik

zaloguje sie/wyloguje), navigator zaktualizuje zestaw ekrandw: jeden zniknie, pojawi sie
drugi. To eleganckie rozwigzanie dostepne w Static API.

e Dynamicznie w kodzie JSX: To podejscie dostepne zawsze (takze w RN6 i nizej). Polega
na tym, ze warunkowo renderujemy komponenty <Screen> lub cate navigatory.
Przyktad:

<NavigationContainer>
<Stack.Navigator>
{isSignedIn ? (
<Stack.Screen name="Home" component={HomeScreen} />
)i (
<Stack.Screen name="SignIn" component={SigninScreen} />

)}
</Stack.Navigator>
</NavigationContainer>

Jezeli uzytkownik jest zalogowany (isSignedin === true), do stosu zostanie dodany tylko ekran
Home. Jesli nie jest — tylko ekran Signin. Nieautoryzowany uzytkownik nie ma wiec jak nawet
sprébowac wejsé na Home, bo nawigator go nie zna. Gdy stan isSignedin zmieni sie,
komponent sie przerenderuje z nowym zestawem ekrandéw — stary ekran zostanie usuniety
(unmount) i pojawi sie nowy.

Obie metody sprowadzajg sie do jednego: réznicowanie konfiguracji nawigacji na
podstawie stanu aplikacji. Druga metoda (dynamiczna JSX) jest tatwiejsza do zrozumienia i
wystarczajgco dobra, wiec skupimy sie na niej.

Rdéznicowanie flow na podstawie stanu uzytkownika
Typowy scenariusz to aplikacja z rozréznieniem na:

e Niezalogowany uzytkownik — widzi ekrany logowania/rejestracji (tzw. AuthStack).

o Zalogowany uzytkownik — widzi gtéwng czesc¢ aplikacji (tzw. AppStack lub AppTabs).

¢ Onboarding (opcjonalnie) — nowy uzytkownik, ktéry sie zalogowat, ale musi np.
przejsc tutorial lub uzupetnic profil, zanim uzyska petny dostep.

Mozemy wyrdznié wiec kilka standw: signedOut, signedin, ewentualnie
signedInButNotOnboarded. W zaleznosci od tego, pokazujemy inng nawigacje.

Implementacja moze wyglgdac¢ nastepujaco (pseudo-kod z wykorzystaniem hooka
useContext do trzymania stanu zalogowania):

const AuthContext = React.createContext();

function AppNavigator() {
const { user, isLoading } = useContext(AuthContext);

if (isLoading) {
// np. ekran splash/loading podczas sprawdzania tokenu w pamieci
return <SplashScreen />;

}

return (
<NavigationContainer>

{user ==null ? (
<AuthStackNavigator /> // uzytkownik niezalogowany

) : user.onboardComplete === false ? (
<OnboardingStackNavigator /> // zalogowany, ale nie przeszedt onboardingu

)i (
<MainAppNavigator /> // zalogowany i gotowy - gtéwna aplikacja

)}

</NavigationContainer>
);
}

W powyzszym pseudokodzie:

e isLoading to stan mowigcy, ze jeszcze np. sprawdzamy w AsyncStorage czy jest
zapisany token (pokazujemy wtedy Splash zamiast migota¢ ekranem logowania po
odpaleniu apki).

e user to obiekt uzytkownika lub null, trzymany gdzies w globalnym stanie (np. Context
lub Zustand, o tym za moment).

e Sprawdzamy kolejno: jesli brak uzytkownika -> renderujemy navigator z ekranami
logowania (AuthStackNavigator); jesli jest uzytkownik, ale nieukoriczony onboarding ->
renderujemy OnboardingStackNavigator; W przeciwnym razie (zalogowany w petni) ->
MainAppNavigator z wtasciwymi ekranami aplikacji.

Kazdy z tych navigatoréw (AuthStack, OnboardingStack, MainApp) to np. oddzielnie
zdefiniowany Stack lub Tab ze swoimi ekranami. Moglibysmy tez zamiast trzech oddzielnych
navigatorow uzyc¢ jednego warunkowo dodajgc Screeny — to kwestia organizacji kodu. Czesto
dla czytelnosci rozdziela sie je.

Co daje takie podejscie? Uzytkownik nigdy nie zobaczy ekranu, do ktérego nie powinien
mie¢ dostepu:

e Gdy nie jest zalogowany —w drzewie nawigacji nie ma zadnej trasy z gtéwnej aplikacji
(ani Home, ani Profile, etc.). Nawet jesli by znat nazwe ekranu, nie przejdzie do niego
(navigation.navigate('Home') rzuci btgd/brak takiej trasy).

e Gdy jest zalogowany — usuwamy ekrany logowania ze stosu, wiec nie moze wrécié do
Login. W przykfadzie z dynamiczng zmiang konfiguracji, poprzednie ekrany sg
unmountowane, co oznacza ze np. nacisniecie hardware back nie cofnie do Loginu,
bo login juz nie istnieje w nawigatorze. Spetnilismy tym samym wymadg odciecia
historii.

e Gdy jest w trakcie onboardingu — dopdki nie skoriczy, nie wpuscimy go do MainApp
(bo warunek nie pozwoli wyrenderowaé¢ MainAppNavigator).

To podejscie jest preferowane wzgledem prob przekierowywania w useEffect pojedynczych
ekrandéw. Czasem ludzie implementujg w komponentach cos$ w stylu: jesli user = null to
navigation.replace('Login’). Takie co$ dziata, ale jest mniej przejrzyste — lepiej na poziomie
konfiguracji nawigacji decydowac, co jest dostepne.

Implementacja stanu uzytkownika (auth): Zazwyczaj potrzebujemy globalnego stanu
przechowujgcego informacje o tym, czy mamy token/credentials. Mozna do tego uzy¢:

e Context API (AuthContext) — jak w powyzszym przyktadzie, prosty kontekst
trzymajacy obiekt uzytkownika i ewentualnie funkcje login/logout.

e Zustand lub MobX/Redux — dowolne centralne przechowywanie stanu. Zustand jest
lekkim storem, gdzie mozemy trzymad isLoggedin oraz np. profil uzytkownika. Jego
przewaga to prostota i brak boilerplate Reduxowego. Przyktad uzycia:

const useAuthStore = create((set) => ({
user: null,
login: (userData) => set({ user: userData }),
logout: () => set({ user: null })

N);

/...

const user = useAuthStore(state => state.user);
Nastepnie user uzywamy w warunku do przetgczania nawigatoréw.

e AsyncStorage/SecureStore — stuzg do persistent storage, czyli np. zapisania tokenu
JWT lub flagi pierwszego uruchomienia. Podczas startu aplikacji robimy cos$ takiego:

useEffect(() => {
SecureStore.getltemAsync('token').then(storedToken => {
if(storedToken) {
// mamy token, mozna sprébowac odswiezy¢ profil uzytkownika z API etc.
setUserToken(storedToken);

}

setLoading(false);
N
L)

Kiedy zatadujemy stan z pamieci, ustawiamy isLoading na false i warunkowe renderowanie
pokaze odpowiednie ekrany. Wazne, by ten zatadunek byt wykonany zanim pokazemy
jakiekolwiek ekrany (stad Splash w tym czasie).

Guardy a nawigacja wstecz: Przy dynamicznej zmianie nawigatora (Auth -> App) warto
dodatkowo zabezpieczy¢ scenariusz, gdy uzytkownik w trakcie logowania mogt mie¢ jakis
stos ekrandéw (np. ekran rejestracji itp.). Gdy zaloguje sie i wyrenderujemy MainApp zamiast
Auth, stare ekrany znikna. Jesli jednak uzytkownik szybko nacisnie “back” (np. tuz po
zalogowaniu na Androidzie), moze to spowodowac wyijscie z aplikacji, bo w nowym
nawigatorze nie bedzie historii. To generalnie OK, ale jesli chcielibysmy np. zablokowa¢
wyjscie, musielibysmy obstuzy¢ to recznie (np. BackHandler i ignorowanie w pierwszych
sekundach po zalogowaniu). W wiekszosci przypadkow jednak natychmiastowe wcisniecie
back po zalogowaniu jest mato prawdopodobne, a nawet jesli — opuszczenie aplikacji na
ekranie Home jest zgodne z przewidywaniami (uzytkownik mysli, ze cofa do logowania, ale
aplikacja sie zamyka, bo logowanie juz nie istnieje — nastepnym razem aplikacja otworzy sie
juz zalogowana). To drobny szczegdét UX do rozwazenia w realnym projekcie.

Inne zastosowania protected routes: Nie tylko auth. Mozemy warunkowo pokazywac
pewne ekrany np. jesli uzytkownik ma uprawnienia (role-based access). Albo np. ekran
PremiumContent tylko gdy user.isPremium. Wtedy analogicznie — warunek decyduje o dodaniu
ekranu do navigatora. Jezeli warunek moze sie zmienia¢ w trakcie dziatania aplikacji,
dynamiczne dodawanie/usuwanie ekrandw jest w porzgdku. React Navigation 7 potrafi dos¢
elegancko reagowac na zmiany warunkéw (dzieki opcji if we static API) i np. usuwacé
niedostepne ekrany z nawigacji bez btedéw.

Podsumowanie: Ochrona tras w RN sprowadza sie do oddzielenia czesci publicznej od
prywatnej aplikacji. Najlepszg praktyka jest przygotowanie osobnych navigatoréw dla
roznych stanéw i przetgczanie miedzy nimi w zaleznosci od tego stanu.

Przeptyw logowania (Auth Flow) w React Navigation

Przeptyw logowania to szczegdlny przypadek zarzadzania nawigacjg w aplikacji. Sktada sie na
niego ekrany logowania/rejestracji, ewentualnie ekran powitalny (onboarding), oraz gtéwna
czesc aplikacji dla zalogowanego uzytkownika. Dobrze zaprojektowany flow powinien
spetniaé nastepujace zatozenia:

e Po uruchomieniu aplikacji sprawdzamy stan uwierzytelnienia (np. czy jest wazny
token sesji). Dopoki sprawdzamy — pokazujemy ekran startowy (Splash).

e Jesli uzytkownik nie jest zalogowany, pokazujemy ekrany logowania/rejestracji
(AuthStack).

o Jesli uzytkownik jest zalogowany, od razu kierujemy go do gtéwnej aplikacji
(AppStack / AppTabs).

e Po pomysinym zalogowaniu/rejestracji przekierowujemy uzytkownika do gtéwnej
aplikacji i usuwamy ekrany logowania z historii, aby nie mozna byto wréci¢ wstecz.

e Gdy uzytkownik wyloguje sie w trakcie dziatania aplikacji, czy$cimy dane sesji i
kierujemy go ponownie na ekrany logowania (najlepiej czyszczac historie gtéwnej
nawigacji).

Dodatkowo, jesli mamy onboarding dla nowych uzytkownikéw (np. krdétki tutorial albo
ekran zgdd), musimy to wpasowaé w powyzszy schemat. Czesto robi sie to poprzez flage w
profilu uzytkownika lub w pamieci (np. hasSeenTutorial). Przyktadowe podejscie:

o Jesli zalogowany uzytkownik ma flage onboarded = false, zamiast od razu AppStacka
dajemy mu OnboardingStack (np. kilka ekranéw przewodnika). Dopiero po ich
ukonczeniu (gdy ustawiamy flage na true) przestawiamy na gtéwny AppStack.

Rdznica miedzy AuthStack a AppStack polega gtéwnie na zestawie ekrandw:

o AuthStack — zawiera ekrany: Logowanie, Rejestracja, Zapomniane hasto, Ekran
powitalny (np. z logo) itd. Wszystkie te ekrany nie wymagajg uwierzytelnienia. Czesto
jest to createNativeStackNavigator z wytgczonym headerem lub custom headerem (np.
logo apki na goérze).

o AppStack (badz AppTabs jesli uzywamy tabow) — zawiera ekrany dostepne tylko po
zalogowaniu, np. Home, Dashboard, Profil, Ustawienia itp. Moze to by¢ stack albo tab
w zaleznosci od designu aplikacji.

Czasem stosuje sie tez koncepcje SplashStack z tylko jednym ekranem tadowania (Splash),
ktory jest domysinie wyswietlany zanim zdecydujemy co dalej. Ale rdwnie dobrze Splash
mozna wyrenderowac¢ warunkowo jak w poprzednim rozdziale.

Przy implementacji przeptywu logowania w React Navigation, warto oprzec sie na
przyktadach z dokumentacji. Tworcy RN sugerujg uzycie Context do trzymania statusu auth i
pokazujg przyktad z uzyciem SecureStore expo do trzymania tokenu. Najwazniejsze jest
rozdzielenie drzew nawigacji: osobne dla “signed in” i “signed out”, oraz przetgczanie miedzy
nimi po zmianie stanu auth.

Onboarding — pierwsze uruchomienie
Onboarding moze przybierac rézne formy:

o Ekran powitalny z przyciskiem "Rozpocznij" (np. prezentacja gtéwnej wartosci
aplikacji).

o Kilka ekranow przewijanych (carousel) z instrukcjg obstugi, pytaniami preferencji
uzytkownika itp.

e Ekran wyboru jezyka/tematu itp.

Z perspektywy nawigacji, onboarding to tez pewien mini-stos ekranéw, ktdéry pokazujemy
tylko raz dla nowego uzytkownika. Najczesciej implementuje sie to poprzez:

o Flage persistent, np. zapis w AsyncStorage hasOnboarded=true po przejsciu.

e Warunkowe dotgczenie ekranu do AuthStack: np. pierwszy ekran AuthStack to
Welcome, a dopiero potem Login. | jesli stwierdzimy, ze user juz widziat welcome
(sprawdzamy AsyncStorage), to nawigujemy go od razu do Login pomijajac welcome.
Mozna to zrobi¢ na starcie aplikacji (np. w Splash, decydujgc do ktérej trasy is¢).

Albo:

e Osobny OnboardingStack jak wczes$niej wspomniano, ktéry renderujemy przed
AppStack. Ten stack po zakoniczeniu ustawia flage i przetaczamy na AppStack.

Przechowywanie informacji o logowaniu

Ten temat czeSciowo juz omoéwilismy przy route guards. W kontekscie przeptywu logowania
sprowadza sie on do:

e Przechowywanie tokenu/autoryzacji — jezeli korzystamy z API, to po zalogowaniu
zapewne otrzymujemy token (JWT lub session id). Nalezy go bezpiecznie przechowac.
Zaleca sie uzy¢ do tego SecureStore (Expo) lub Keychain/Keystore na urzadzeniach.
SecureStore (Expo) zapisuje dane zaszyfrowane w bezpiecznej pamieci urzadzenia.
AsyncStorage nie szyfruje, wiec token tam jest jawny — do mniej wrazliwych rzeczy

ok, ale tokeny raczej trzymajmy bezpiecznie. W ostatecznosci, jesli testujemy, mozna
i AsyncStorage uzyc.

¢ Przechowywanie stanu zalogowania w aplikacji — aby cata aplikacja wiedziata, ze
user jest zalogowany i np. wyswietlita jego dane w réznych miejscach. Do tego
Swietnie nadaje sie Context API lub globalny store (Zustand/Redux). Context
wystarcza: tworzymy AuthContext z wartoscig { user, login(), logout() }. Po pomysinym
logowaniu (np. gdy APl zwrdci 200 OK) wywotujemy login(userData) z obiektu
kontekstu. To zmienia user i powoduje re-render zaleznych komponentéw (w tym
naszego warunkowego navigatora). W efekcie nastgpi przejscie do AppStack.

e Zustand — ma przewage, ze nawet gdy komponenty contextowe sie rozmontujg, stan
zostaje (ale to samo daje trzymanie w useState w komponencie wyzej niz
NavigationContainer). Dla poczatkujgcych — Context jest fatwiejszy.

e Wylogowanie — powinno wyczysci¢ wszystkie dane: usungc¢ token z SecureStore,
wyzerowac user w state, ewentualnie zresetowac nawigacje. Jesli korzystamy z
warunkowego renderowania navigatorow, to wyzerowanie usera automatycznie
przerenderuje NavContainer na AuthStack, usuwajgc tym samym wszystkie ekrany
aplikacji z widoku. Warto jednak upewnic sie, ze np. nie pozostawimy jakiego$
modala otwartego itp. Zwykle wystarczy logout() w kontekscie.

Przyktad uzycia Context (pseudo-kod):

const AuthContext = React.createContext();

function AuthProvider({ children }) {
const [user, setUser] = useState(null);

const login = async (credentials) => {
const token = await APl.login(credentials);
await SecureStore.setltemAsync('token’', token);
const userData = await API.fetchProfile(token);
setUser(userData);

5

const logout = async () => {
await SecureStore.deleteltemAsync('token');
setUser(null);

b

return (
<AuthContext.Provider value={{ user, login, logout }}>
{children}
</AuthContext.Provider>

);
}

Cata aplikacje opakowujemy w <AuthProvider> (np. w pliku App.js). W komponentach (np.
ekranach logowania) wywotujemy const { login } = useContext(AuthContext) by zalogowa¢, a w
ekranie profilu const { logout } = useContext(AuthContext) by sie wylogowac.

Dobra praktyka: Podczas logowania, gdy przechodzimy do gtéwnej aplikacji, mozemy
zresetowac stos (jesli uzywalismy zwyktego navigate) lub, jak pokazalismy, usung¢ ekrany

logowania poprzez warunkowe renderowanie. Wiele gotowych template’ow uzywa
navigation.reset({ routes: [{ name: 'MainApp' }]}) po loginie, gdzie MainApp to np. navigator
zaktadek.

Podsumowujgc: oddzielenie AuthStack i AppStack to podstawa uporzadkowania flow
logowania. Trzymajmy stan logowania globalnie, by tatwo reagowac na jego zmiany w
drzewie nawigacji. Pamietajmy o bezpiecznym przechowaniu wszelkich tokenéw oraz o tym,
by po wylogowaniu “posprzatac” (wyczyscic stan i nawigacje).

Demo: Mini-aplikacja z nawigacjg (AuthStack + AppTabs)

Teraz przejdzmy do praktycznego przyktadu, ktéry tgczy wszystkie poruszone koncepty.
Zbudujemy uproszczong aplikacje React Native, ktéra posiada dwa gtdwne “tryby” nawigacji:

e AuthStack — stos z ekranem logowania (LoginScreen).
e AppTabs — nawigator z zaktadkami zawierajgcy dwa ekrany: HomeScreen i
ProfileScreen.

Uzytkownik niezalogowany zobaczy ekran logowania. Po "zalogowaniu" (symulujemy je w
aplikacji) zostanie przeniesiony do zaktadek aplikacji: Home i Profile. Home wyswietli
powitanie i umozliwi przejscie do ekranu Profil (np. przyciskiem) — przy okazji przekazemy ID
uzytkownika jako parametr. Profil wyswietli identyfikator zalogowanego uzytkownika i da
opcje wylogowania (powrdt do ekranu logowania).

W kodzie wykorzystamy React Context do przechowywania informacji o zalogowanym
uzytkowniku (userld), co pozwoli na warunkowe renderowanie odpowiedniego navigatora.
Pokazemy réwniez uzycie hookdw useNavigation i useRoute wewnatrz ekrandéw.

Oto kod demonstracyjnej aplikacji:

import React, { useState, useContext, createContext } from 'react’;

import { Text, View, Button } from 'react-native';

// Navigatory

import { NavigationContainer } from '@react-navigation/native';

import { createNativeStackNavigator } from '@react-navigation/native-stack’;
import { createBottomTabNavigator } from '@react-navigation/bottom-tabs';

// 1. Definicje typdw parametréow dla nawigatorow (TypeScript)
type AuthStackParamlList = {
Login: undefined;
b
type AppTabsParamList = {
Home: undefined;
Profile: { userld: string };
b
// 2. Utworzenie navigatoréw
const AuthStack = createNativeStackNavigator<AuthStackParamList>();

const AppTabs = createBottomTabNavigator<AppTabsParamList>();

// 3. Kontekst uwierzytelnienia

type AuthContextType = { userld: string | null, login: (id: string) => void, logout: () => void };
const AuthContext = createContext<AuthContextType | undefined>(undefined);

// 4. Ekran logowania
function LoginScreen() {
const auth = useContext(AuthContext);
return (
<View style={{ flex: 1, justifyContent: 'center’, alignltems: 'center' }}>
<Text>[| Ekran logowania</Text>
<Button title="Zaloguj mnie jako user #123"
onPress={() => auth?.login('123")} />
</View>
);
}

// 5. Ekran Home (zaktadka gtéwna)
function HomeScreen({ navigation }: { navigation: any }) { // typowanie navigation pominiete dla czytelnosci
const auth = useContext(AuthContext);
const userld = auth?.userld;
return (
<View style={{ flex: 1, justifyContent: 'center’, alignltems: 'center' }}>
<Text>[] Ekran Home - witaj uzytkowniku #{userld}!</Text>
{/* Przyktadowy przycisk nawigujacy do Profilu z parametrem */}
<Button title="Przejdz do Profilu (param: userld)"
onPress={() => navigation.navigate('Profile', { userld })} />
</View>
);
}

// 6. Ekran Profil (zaktadka profilowa)
function ProfileScreen({ route }: { route: any }) {
const auth = useContext(AuthContext);
// Pobieramy userld z parametru lub z kontekstu:
const routeUserld = route.params?.userld;
const userld = routeUserld | | auth?.userld;
return (
<View style={{ flex: 1, justifyContent: 'center’, alignltems: 'center' }}>
<Text>[| Ekran Profil uzytkownika #{userld}</Text>
<Button title="Wylogu;j" onPress={() => auth?.logout()} />
</View>
);
}

// 7. Gtéwny komponent nawigacji oparty o context
export default function App() {
const [userld, setUserld] = useState<string | null>(null);

const authContext: AuthContextType = {
userld,
login: (id: string) => setUserld(id),
logout: () => setUserld(null)

b

return (
<AuthContext.Provider value={authContext}>
<NavigationContainer>
{userld == null ? (

// Gdy brak zalogowanego uzytkownika -> pokazujemy AuthStack
<AuthStack.Navigator>
<AuthStack.Screen
name="Login"
component={LoginScreen}
options={{ headerShown: false }}
/>
</AuthStack.Navigator>
)i (
// Gdy jest zalogowany -> pokazujemy zaktadki aplikacji
<AppTabs.Navigator screenOptions={{ headerShown: false }}>
<AppTabs.Screen
name="Home"
component={HomeScreen}
options={{ title: 'Home' }}
/>
<AppTabs.Screen
name="Profile"
component={ProfileScreen}
options={{ title: 'Profil' }}
/>
</AppTabs.Navigator>
)}

</NavigationContainer>
</AuthContext.Provider>

);
}

(Kod pisany z myslq o czytelnosci dla poczgtkujgcych — w praktyce typowanie nawigacji
bytoby dopracowane, ale tutaj skupiamy sie na idei.)

Objasnienia do powyiszego kodu:

¢ Na poczatku definiujemy typy nawigatoréw i tworzymy navigatory AuthStack i AppTabs.
AuthStack to stos (NativeStack) z jednym ekranem Login. AppTabs to dolne zaktadki z
dwoma ekranami: Home i Profile. Zauwaz, ze dla Profile przewidzieliSmy parametr
userld (typu string).

¢ Tworzymy kontekst AuthContext, ktdry bedzie przechowywac stan userld (lub null) oraz
funkcje login i logout. Cata logika autoryzacji jest tu uproszczona: zaktadamy, ze
klikniecie przycisku "Zaloguj" zawsze sie udaje i loguje nas jako user #123.

e LoginScreen: Pobiera login z kontekstu (auth?.login) i po kliknieciu loguje uzytkownika o
ID "123". W realnej aplikacji zamiast tego wywotalibySmy np. APl logowania, a po
sukcesie zapisali token i user id. Tu robimy natychmiast auth?.login('123'), co ustawia
userld w stanie kontekstu.

e HomeScreen: Wyswietla powitanie z numerem uzytkownika (pobieramy go z
kontekstu). Ma réwniez przycisk "Przejdz do Profilu (param: userld)". Po kliknieciu
wywotujemy navigation.navigate('Profile', { userld }). To demonstruje przekazanie
parametru do zaktadki Profil — choé w tym wypadku Profil mégtby rownie dobrze
skorzystaé z kontekstu, pokazujemy przekazanie param dla ilustracji. Poniewaz Home
i Profile sg w tym samym navigatorze AppTabs, wywotanie navigate spowoduje
przetaczenie zaktadki na Profile, przekazujac jej parametr.

o ProfileScreen: Odbiera parametry przez { route } (otrzymuje je jako prop, bo to ekran
nawigacji). Wyciaga z route.params warto$¢ userld. Dla bezpieczenstwa, jesli param nie
zostat przekazany (np. uzytkownik przetaczyt sie na zaktadke Profile bez uzycia
przycisku z parametrem), wtedy route.params bedzie undefined — wéwczas bierzemy
userld z kontekstu. W naszym flow, gdy uzytkownik najpierw kliknie na Home "Przejdz
do Profilu" — param bedzie obecny. Jesli jednak bedgc na Home uzyje dolnej nawigacji
(kliknie ikonke Profil w tab barze), to przetaczy zaktadke bez parametru (React
Navigation nie przekazuje param przy zwyktym tapnieciu w tab, bo to nie
navigation.navigate tylko wewnetrzne przetgczenie). Dzieki naszej logice
ProfileScreen i tak ustali userld z kontekstu.

ProfileScreen wyswietla identyfikator i posiada przycisk "Wyloguj". Po naci$nieciu
wywotujemy auth?.logout(), ktdre w naszym kontekscie ustawia userld = null. To
spowoduje przerenderowanie catego drzewa nawigacji — poniewaz w App() warunek
userld == null znowu stanie sie true, pokaze sie AuthStack zamiast AppTabs, czyli
wrocimy do ekranu logowania. Jest to natychmiastowe i skuteczne — zaktadki znikaja,
stos logowania sie pojawia.

e W komponencie gtdwnym <App> osadzamy NavigationContainer oraz warunkowo
wybieramy miedzy <AuthStack.Navigator> a <AppTabs.Navigator>. Zwréémy uwage:
AuthStack.Navigator i AppTabs.Navigator to dwa zupetnie osobne nawigatory — nie
majg wspolnych ekrandéw. Przetaczenie nastepuje czysto przez React (ternary
operator) i React Navigation bez problemu radzi sobie z
montowaniem/odmontowaniem jednego navigatora i zastgpieniem go drugim.

o NavigationContainer otaczamy AuthContext.Provider, zeby ekrany miaty dostep do
auth wartosci.

Testowanie scenariusza:

e Po uruchomieniu: userld jest null, wiec renderuje sie AuthStack z LoginScreen.
LoginScreen pokazuje przycisk. Gdy go naci$niemy:

e auth.login('123') ustawia userld = '123". Teraz userld nie jest null, wiec App re-render:
zamiast AuthStack w NavigationContainer pojawia sie AppTabs. Uzytkownik zobaczy
ekran Home (domyslinie pierwsza zaktadka Home).

e HomeScreen wyswietla "Witaj uzytkowniku #123". Uzytkownik ma dwie drogi: albo
kliknie przycisk "Przejdz do Profilu" (co wywota navigation.navigate z param), albo po
prostu wybierze zaktadke Profile na dole.

o Jesli kliknat przycisk: zostaje przetgczony na ekran Profile, a ten otrzymuje
route.param {userld: '123' }. Wyswietli "Profil uzytkownika #123".

o Jesli zamiast tego uzytkownik dotknat zaktadki Profile na tab barze: zostanie
przetaczony na ProfileScreen, ale bez parametru. Nasz kod w ProfileScreen
zobaczy, ze route.params jest undefined i weZmie userld z kontekstu, rowniez
dostajac '123'. Wynik koncowy dla uzytkownika identyczny — widzi profil #123.

o Na ekranie Profil jest przycisk "Wyloguj". Po tapnieciu: auth.logout() ustawia userld = null.
Nastepuje unmount AppTabs i mount AuthStack z powrotem (NavigationContainer
zdejmuje zaktadki i wstawia login). Uzytkownik widzi zndw ekran logowania. Gdyby
wcisnat w tym momencie back na Androidzie — zamknie aplikacje (bo jesteSmy na
jedynym ekranie w stacku gtdwnym). Mozemy to traktowac jako oczekiwane

zachowanie (wylogowat sie, wiec wyjscie z apki jest logiczne, albo moze zalogowac sie
ponownie).

Uwagi dot. debugowania i rozszerzania:

e Gdybysmy nie uzywali kontekstu, alternatywg bytoby np. trzymanie userld w state
wyzej i przekazywanie go do screens jako props (via initialParams lub wtasne propsy
w nawigatorze). Context jest jednak wygodniejszy.

e W realnej apce po zalogowaniu pewnie chcielibysmy wykona¢ navigation.reset zamiast
zwyktego navigate — ale tutaj zrobilismy to “architektonicznie” usuwajgc AuthStack
catkowicie.

e Podczas developmentu fatwo mozna sprawdzi¢, czy na pewno po zalogowaniu nie
zostaje w pamieci ekran logowania — np. w React DevTools sprawdzajgc drzewo
komponentéw albo logujgc w useEffect unmount w LoginScreen. Powinien zostaé
odmontowany przy przejsciu.

e Nasz param userld jest stringiem — w prawdziwym API to mdgtby by¢ token JWT albo
obiekt uzytkownika. Wtedy raczej nie przekazujemy tego przez paramy nawigacji (bo
to wrazliwe dane), tylko trzymamy w kontekscie/state. Parametr w nawigacji bardziej
przydaje sie do danych dotyczqcych konkretnej pod-strony, np. postid dla ekranu
PostDetails. Dla globalnego userld lepiej uzyé context jak pokazalismy, co i tak
zrobilismy.

¢ Gdybysmy mieli wiecej ekrandw w AuthStack (np. Register, ForgotPassword),
moglibysmy je doda¢ do AuthStack.Navigator. Wtedy z LoginScreen normalnie
navigation.navigate('Register') by dziatato. Po zalogowaniu niezaleznie, cata nawigacja
AuthStack jest wymieniana.

e Podobnie w AppTabs — mogliby$Smy ftatwo doda¢ np. trzecig zaktadke Ustawienia bez
wptywu na logike auth.

Podsumowanie i dobre praktyki

W trakcie tego wyktadu przeszliémy przez wszystkie kluczowe aspekty nawigacji w React
Native z uzyciem React Navigation:

e Poznalismy rdzne rodzaje nawigatoréw i ich zastosowania (Stack do sekwencji
ekrandéw, Tabs do réwnolegtych sekcji, Drawer do ukrytego menu).

e Nauczylismy sie przekazywac parametry miedzy ekranami i odbierad je, a takze jak
dbad o ich poprawne typowanie w TypeScript.

e WykorzystaliSmy hooki nawigacyjne useNavigation i useRoute do wygodnego
wywotywania nawigacji i pobierania danych routy w komponentach funkcyjnych.

e Omoéwilismy jak cofaé nawigacje, zaréwno pojedynczo (goBack), jak i hurtowo
(popToTop), oraz jak resetowac stos ekrandéw — co okazato sie wazne w scenariuszu
logowania.

e Zajelismy sie tematem deep linkdw, konfigurujac schematy URL i integracje z Expo,
aby nasza aplikacja mogta reagowad na linki zewnetrzne i otwieraé wtasciwe ekrany.

¢ Wprowadzili§my koncepcje ochrony tras — ograniczania dostepu do czesci aplikacji
poprzez warunkowe renderowanie nawigatoréw zaleznie od stanu (np. logowania).
Dzieki temu zrealizowalismy przeptyw uwierzytelniania, oddzielajgc ekrany
logowania od gtéwnej aplikacji.

o Zwienczylismy wszystko praktycznym demo, ktére krok po kroku pokazato
implementacje mini-apki z kontekstem autoryzacji i dwoma nawigatorami. Demo
ilustruje, jak w realnym kodzie spigé razem React Navigation, Context oraz
komponenty RN, by uzyskaé przyjazny dla uzytkownika flow (logowanie -> aplikacja ->
wylogowanie -> z powrotem logowanie).

Literatura:

10.

https://reactnavigation.org/docs/getting-started/ (Data dostepu: 1.10.2025) -

Oficjalna dokumentacja React Navigation (strona gtéwna).
https://reactnavigation.org/docs/typescript/ (Data dostepu: 1.10.2025) - Oficjalny

przewodnik po integracji React Navigation z TypeScript.
https://reactnavigation.org/docs/auth-flow/ (Data dostepu: 1.10.2025) - Kluczowa

dokumentacja opisujgca rekomendowany wzorzec przeptywu uwierzytelniania.
https://reactnavigation.org/docs/deep-linking/ (Data dostepu: 1.10.2025) - Oficjalny

przewodnik po konfiguracji Deep Linkéw.
https://reactnavigation.org/docs/navigating/ (Data dostepu: 1.10.2025) -

Dokumentacja podstawowych operacji (navigate, push, goBack).
https://reactnavigation.org/docs/params/ (Data dostepu: 1.10.2025) - Dokumentacja

na temat przekazywania i odbierania parametréw (route.params).
https://reactnavigation.org/docs/hooks/ (Data dostepu: 1.10.2025) - Dokumentacja

hookéw useNavigation i useRoute.
https://reactnavigation.org/docs/native-stack-navigator/ (Data dostepu: 1.10.2025) -

Dokumentacja Native Stack Navigator (rekomendowanego dla wydajnosci).
https://reactnavigation.org/docs/bottom-tab-navigator/ (Data dostepu: 1.10.2025) -

Dokumentacja Bottom Tab Navigator.
https://docs.expo.dev/routing/linking/ (Data dostepu: 1.10.2025) - Przewodnik Expo

dotyczacy konfiguracji linkowania (w tym expo-linking).

https://reactnavigation.org/docs/getting-started/
https://reactnavigation.org/docs/typescript/
https://reactnavigation.org/docs/auth-flow/
https://reactnavigation.org/docs/deep-linking/
https://reactnavigation.org/docs/navigating/
https://reactnavigation.org/docs/params/
https://www.google.com/search?q=https://reactnavigation.org/docs/hooks/
https://reactnavigation.org/docs/native-stack-navigator/
https://reactnavigation.org/docs/bottom-tab-navigator/
https://www.google.com/search?q=https://docs.expo.dev/routing/linking/

