
POLITECHNIKA ŚWIĘTOKRZYSKA

Aplikacje mobilne –
wykład 3

Nawigacja i przepływ użytkownika – React
Navigation w React Native

Mateusz Pawełkiewicz

1.10.2025

Wprowadzenie: W aplikacjach mobilnych React Native nawigacja między ekranami odgrywa
kluczową rolę w tzw. user flow (przepływie użytkownika). Biblioteką de facto standardową
do nawigacji jest React Navigation, oferująca wygodne API do tras (routingu) na iOS,
Androidzie, a nawet na web. W tym wykładzie omówimy typy nawigatorów (stos, zakładki,
szuflada), ich zagnieżdżanie, przekazywanie parametrów między ekranami, a także bardziej
zaawansowane zagadnienia: hooki nawigacyjne, integrację z TypeScript, mechanizmy deep
linków, ochronę tras (protected routes) w kontekście uwierzytelniania oraz kompletny
przepływ logowania.

React Navigation – typy nawigacji

React Navigation to biblioteka umożliwiająca definiowanie różnych rodzajów nawigacji w
aplikacji React Native. Podstawowe typy nawigatorów to: Stack Navigator (stos ekranów),
Bottom Tab Navigator (nawigacja z zakładkami) oraz Drawer Navigator (nawigacja
szufladkowa). Każdy z nich odpowiada innemu wzorcowi poruszania się po aplikacji:

 Stack Navigator (stos): Umożliwia przechodzenie do kolejnych ekranów układając je
na stosie – nowy ekran jest nakładany na poprzedni, a powrót cofa do wcześniejszych
ekranów. Jest to analogia do nawigacji w iOS/Android: ekrany wchodzą z prawej
strony lub w domyślnym stylu systemowym. Domyślnie React Navigation zapewnia
animacje przejścia zgodne z platformą (przesunięcie w poziomie na iOS, standardowy
fade/slide na Androidzie). Implementacja stosu występuje w dwóch odmianach:
@react-navigation/stack (w JavaScript) oraz @react-navigation/native-stack (wykorzystująca
natywne API nawigacji). Wersja JavaScript jest bardziej konfigurowalna, ale może być
nieco mniej wydajna, dlatego w przypadku złożonych animacji warto rozważyć
wariant natywny dla lepszej płynności. Stack Navigator sprawdza się w
sekwencyjnych przepływach ekranów – np. lista artykułów → ekran szczegółów
artykułu.

 Bottom Tab Navigator (zakładki): Zapewnia nawigację za pomocą paska kart (tabs)
najczęściej umieszczonego na dole ekranu. Użytkownik może przełączać się między
zakładkami reprezentującymi niezależne sekcje aplikacji (np. Home, Wyszukaj, Profil).
Każda zakładka ma przypisany własny ekran (lub zagnieżdżony stos ekranów). Taby
są inicjalizowane leniwie (ekran zakładki ładuje się dopiero przy pierwszym przejściu)
i utrzymywane w pamięci, co umożliwia szybki powrót bez utraty stanu. Możemy
dostosować ikonki i etykiety zakładek, a także styl paska. Ten nawigator jest idealny,
gdy aplikacja ma kilka głównych modułów dostępnych równolegle (np. strona główna
i ekran ustawień jako osobne zakładki).

 Drawer Navigator (szuflada): Oferuje nawigację z menu wysuwanym z boku ekranu
(tzw. hamburger menu). Zazwyczaj na Androidzie otwierane gestem przesunięcia od
krawędzi, a na iOS dodatkowo często ikoną hamburgera w nagłówku. Drawer
Navigator jest użyteczny do pomieszczenia wielu opcji nawigacyjnych lub nawigacji
globalnej, np. panel boczny aplikacji z linkami do różnych ekranów (profil, ustawienia,
FAQ itp.). W React Navigation implementacja szuflady opiera się pod spodem na
komponencie react-native-drawer-layout, a do poprawnego działania wymaga
zainstalowania zależności jak react-native-gesture-handler i react-native-reanimated (Expo
instaluje je automatycznie). Konfigurując Drawer Navigator definiujemy ekrany
dostępne w menu; możemy także dostosować pozycję szuflady (lewa/prawa) czy

zawartość nagłówka. Drawer sprawdza się, gdy chcemy ukryć nawigację pod gestem,
zostawiając więcej miejsca na ekranie głównym.

Zagnieżdżanie nawigatorów (nesting): Często w realnej aplikacji używamy kilku typów
nawigacji jednocześnie, zagnieżdżając je w sobie. Przykładowo, możemy mieć główny
Drawer Navigator, a w nim każda opcja otwiera osobny Stack lub Tab navigator. Albo
popularny przypadek: Tab Navigator jako główna nawigacja aplikacji, gdzie poszczególne
zakładki mają wewnętrzne Stack Navigatory (np. zakładka Home ma stos z ekranem głównym
i ekranem szczegółów). React Navigation pozwala traktować navigator jak ekran – np.
możemy zdefiniować w Stack Navigatorze ekran, którego komponentem jest MyTabs (nasz
Tab Navigator). W ten sposób nawigatory są hierarchiczne. Należy pamiętać, że każdy
nawigator ma własną przestrzeń nazw dla routów – tzn. ekrany w zagnieżdżonym
navigatorze mają swoje nazwy niezależne od nazw ekranów w rodzicu. Aby nawigować
pomiędzy zagnieżdżonymi navigatorami, zazwyczaj wywołujemy nawigację względem
wspólnego NavigationContainer lub używamy pełnych ścieżek (np.
navigation.navigate('NazwaNavigatora', { screen: 'NazwaEkranu', params: {...} })). Zagnieżdżanie
nawigatorów pozwala łączyć różne wzorce nawigacji – np. zakładki dolne plus opcje w
szufladzie, albo stos logowania oddzielony od głównego stosu aplikacji.

Przekazywanie parametrów między ekranami: Często przy przechodzeniu na kolejny ekran
chcemy przekazać mu dane (np. ID obiektu, który ma wyświetlić szczegóły). React Navigation
umożliwia to poprzez drugi argument funkcji nawigującej. Przykładowo, mając nawigację
stosu, możemy przejść do ekranu "Details" z parametrami:

navigation.navigate('Details', {
 itemId: 86,
 otherParam: 'dowolna wartość'
});

W powyższym wywołaniu przekazaliśmy obiekt parametrów do routa "Details". Na ekranie
docelowym dostęp do tych danych uzyskamy przez właściwość route.params. Dla przykładu, w
komponencie DetailsScreen możemy pobrać parametry:

function DetailsScreen({ route }) {
 const { itemId, otherParam } = route.params;
 // użycie itemId i otherParam...
}

Pobraliśmy itemId i otherParam z obiektu parametrów przekazanych nawigacją. Warto
zauważyć, że parametry najlepiej przekazywać w formie prostego JSON (typy proste, obiekty,
tablice) – dzięki temu są serializowalne, co ułatwia np. zapisywanie stanu nawigacji czy
obsługę deep linków.

Możemy także definiować parametry początkowe ekranu niezależnie od nawigacji. Jeśli np.
chcemy, by ekran Details domyślnie miał itemId: 42, możemy ustawić initialParams przy definicji
ekranu:

<Stack.Screen
 name="Details"

 component={DetailsScreen}
 initialParams={{ itemId: 42 }}
/>

Parametry przekazane podczas navigate nadpiszą wartości początkowe, a jeśli nie przekażemy
żadnych – ekran użyje initialParams. Ekran może również aktualizować parametry własnej
routy w trakcie działania, wywołując navigation.setParams({ ... }) – np. aby zmienić parametry
wpływające na UI nagłówka itp. (przydatne przy dynamicznych tytułach).

Kilka dobrych praktyk przy przekazywaniu parametrów:

 Przekazuj tylko niezbędne dane (np. ID, klucz), a większe obiekty pobieraj ponownie
na ekranie docelowym lub użyj globalnego stanu. Unikniesz w ten sposób problemów
z serializacją i wydzielisz odpowiedzialności.

 Upewnij się, że ekran odbierający parametry obsłuży przypadek braku parametru (np.
gdyby nawigacja nastąpiła bez niego). Możesz zdefiniować wartości domyślne:
route.params?.userName ?? 'Anonim' itp.

 W TypeScript warto uściślić typy parametrów dla każdej trasy – dzięki temu edytor
wychwyci brak wymaganych parametrów już na etapie kompilacji. Typowanie
nawigacji omówimy w dalszej części.

Uwaga: W Stack Navigatorze navigation.navigate('RouteName', params) zachowuje się nieco inaczej
niż navigation.push('RouteName', params). navigate spróbuje znaleźć istniejący ekran o danej
nazwie w stosie i odświeżyć jego parametry (lub przejść do niego, jeśli jest niżej na stosie).
Jeśli taki ekran nie istnieje, dopiero wtedy wstawi nowy na górę stosu. Natomiast push
zawsze dodaje nowy ekran na wierzch, nawet jeśli już taki znajduje się na stosie. Dlatego
gdy chcemy wejść na ten sam ekran wielokrotnie (np. oglądać różne szczegóły w pętli),
używamy push. Gdy chcemy przejść do ekranu bez duplikowania (np. z menu do istniejącego
już stosu), lepsze jest navigate. Istnieje też navigation.replace('RouteName', params) – zastępuje
bieżący ekran nowym, co bywa użyteczne np. po zakończeniu onboardingu (usuwamy ekran
powitalny ze stosu i wstawiamy główny ekran aplikacji).

Hooki nawigacyjne i nawigacja w praktyce

React Navigation dostarcza specjalne hooki, które ułatwiają korzystanie z nawigacji w
komponentach funkcyjnych. Główne to useNavigation oraz useRoute. Omówimy ich działanie, a
także pokażemy, jak używać ich z TypeScriptem dla pełnego bezpieczeństwa typów.
Przyjrzymy się też metodom nawigacji wstecz i resetowania stosu – niezbędnym w
zarządzaniu historią ekranów.

useNavigation – dostęp do obiektu nawigacji

useNavigation() zwraca obiekt nawigacji (navigation prop) dla ekranu, w kontekście którego
hook został wywołany. Dzięki temu możemy wołać navigation.navigate, navigation.goBack() i inne
metody bez przekazywania obiektu nawigacji przez propsy. Jest to przydatne np. w
komponentach zagnieżdżonych, które nie są ekranami, ale chcą nawigować (np. przycisk w
customowym headerze).

Przykład: Załóżmy, że chcemy stworzyć komponent przycisku “Wstecz” działający w
dowolnym miejscu aplikacji:

import { useNavigation } from '@react-navigation/native';

function MyBackButton() {
 const navigation = useNavigation();

 return (
 <Button title="Powrót" onPress={() => navigation.goBack()} />
);
}

Tutaj hook useNavigation() dostarcza nam aktualny obiekt nawigacji, a my wywołujemy
navigation.goBack() po kliknięciu. Naciśnięcie przycisku spowoduje cofnięcie do poprzedniego
ekranu na stosie (tożsame z użyciem gestu/cofnięcia systemowego).

Użycie z klasami: Jeśli musimy skorzystać z useNavigation w komponencie klasowym (który nie
obsługuje hooków), można owinąć komponent klasowy w funkcję korzystającą z hooka i
przekazać navigation jako prop:

class MyLegacyComponent extends React.Component {
 render() {
 const { navigation } = this.props;
 // ...
 }
}

// eksport zastępujemy wersją z przekazanym navigation:
export default function(props) {
 const navigation = useNavigation();
 return <MyLegacyComponent {...props} navigation={navigation} />;
}

Generalnie jednak w nowych aplikacjach trzymamy się komponentów funkcyjnych i hooków.

Typowanie useNavigation: Domyślnie, bez dodatkowej konfiguracji, obiekt zwracany przez
useNavigation ma ogólny typ (nie zawiera informacji o dostępnych routach i parametrach). Aby
mieć lepsze podpowiedzi i kontrolę, możemy skorzystać z typu generycznego. Przykładowo,
jeśli mamy zdefiniowany typ parametrów nawigatora głównego RootStackParamList (o
definiowaniu typów za chwilę), możemy zrobić:

type NavProp = NativeStackNavigationProp<RootStackParamList, 'Profile'>;
const navigation = useNavigation<NavProp>();

Wtedy np. navigation.navigate('Home', ...) będzie sprawdzać zgodność nazwy routy i typów
parametrów z RootStackParamList. Innym podejściem (w React Navigation 6+) jest
zadeklarowanie globalnego typu param list – wtedy useNavigation() automatycznie użyje go
bez konieczności przekazywania generyka. Szczegóły tego podejścia omówimy w sekcji o
TypeScript.

Uwaga: useNavigation musi być wywoływany w kontekście ekranu podpiętego do nawigatora
(tj. wewnątrz drzewa NavigationContainer). Jeśli użyjemy go poza nawigatorem, otrzymamy
błąd o braku kontekstu. W praktyce oznacza to, że np. nie możemy wywołać useNavigation w
kodzie, który renderuje NavigationContainer – tylko wewnątrz komponentów będących
ekranami lub ich dziećmi. Jeśli potrzebujemy nawigować globalnie spoza komponentów (np.
z poziomu modułu, serwisu) – React Navigation oferuje obiekt navigation ref
(React.createRef()), który możemy ręcznie wykorzystywać do nawigacji imperatywnej, ale to
zaawansowany przypadek.

useRoute – informacje o bieżącej trasie

useRoute() pozwala nam uzyskać obiekt aktualnej trasy (route) w danym ekranie.
Standardowo komponent-ekran otrzymuje route w propsach ({ route, navigation }), ale jeśli
zagnieżdżamy logikę głębiej lub chcemy skorzystać z hooka zamiast props, useRoute
rozwiązuje problem.

Typowy use-case to pobranie parametrów przekazanych do ekranu lub odczytanie nazwy
trasy. Przykład użycia:

import { useRoute } from '@react-navigation/native';

function MyText() {
 const route = useRoute();
 return <Text>{route.name}: {JSON.stringify(route.params)}</Text>;
}

W powyższym przykładzie wyświetlamy nazwę aktualnego ekranu (route.name) oraz
parametry w formie tekstowej. Oczywiście zazwyczaj interesuje nas konkretne pole z
route.params – np. route.params.userId. useRoute jest szczególnie przydatny w komponencie,
który nie otrzymuje props route (np. wnuk ekranu), a potrzebuje tych danych.

Typowanie useRoute: Podobnie jak z useNavigation, warto zapewnić odpowiedni typ
zwracanego obiektu. React Navigation udostępnia generyk RouteProp<ParamList, RouteName>.
Jeśli np. mamy:

type RootStackParamList = { Details: { itemId: number } };
type DetailsRouteProp = RouteProp<RootStackParamList, 'Details'>;

to możemy użyć:

const route = useRoute<DetailsRouteProp>();

Wówczas TypeScript będzie wiedział, że route.params ma strukturę { itemId: number } – dzięki
czemu od razu złapie literówki w nazwach pól czy niewłaściwe typy.

Typowanie nawigacji w TypeScript

Aby w pełni wykorzystać moc TypeScript w nawigacji, powinniśmy zdefiniować typy
parametrów dla wszystkich ekranów oraz używać ich przy tworzeniu navigatorów i hooków.
Proces wygląda następująco:

1. Definicja listy parametrów – tworzymy typ obiektu, w którym kluczami są nazwy
tras, a wartościami typy parametrów (lub undefined, jeśli brak parametru). Przykład dla
prostego stosu:

type AuthStackParamList = {
 Login: undefined;
 Register: undefined;
 ForgotPassword: { email?: string }; // przykładowo ekran resetu hasła z opcjonalnym e-mailem
};

oraz dla głównej części aplikacji z zakładkami:

type AppTabsParamList = {
 Home: undefined;
 Profile: { userId: string };
};

Tutaj zakładamy, że ekran Home nie potrzebuje parametru, a ekran Profile wymaga
userId (np. identyfikatora użytkownika, którego profil wyświetlamy).

2. Tworzenie navigatora z powyższym typem – przy wywołaniu fabryki navigatora
przekazujemy typ param list jako parametr generyczny. Np. dla stack:

const Stack = createNativeStackNavigator<AuthStackParamList>();

a dla tabs:

const Tab = createBottomTabNavigator<AppTabsParamList>();

Teraz komponenty <Stack.Screen> i <Tab.Screen> będą oczekiwać nazwy oraz
komponentu zgodnych z zdefiniowanymi w typie trasami.

3. Typowanie propsów ekranów: Możemy uzyskać typy nawigacji i routy dla konkretnej
trasy używając dostarczonych typów utility. Przykładowo, dla ekranu Profil w tab
navigatorze:

import type { CompositeScreenProps } from '@react-navigation/native';
import type { BottomTabScreenProps } from '@react-navigation/bottom-tabs';

type ProfileScreenProps = BottomTabScreenProps<AppTabsParamList, 'Profile'>;

W przypadku bardziej złożonym, gdy ekran jest zagnieżdżony (np. ekran w stacku
wewnątrz taba), używa się CompositeScreenProps łącząc typ stacku i taba. Dla

uproszczenia, można też skorzystać z hooków z generykami zamiast typować cały
komponent.

W praktyce często robi się to tak:

function ProfileScreen() {
 const navigation = useNavigation<BottomTabNavigationProp<AppTabsParamList, 'Profile'>>();
 const route = useRoute<RouteProp<AppTabsParamList, 'Profile'>>();
 // teraz navigation i route są ściśle typowane
 const { userId } = route.params;
 ...
}

Takie podejście daje pełne bezpieczeństwo: jeśli spróbujemy navigation.navigate('Home',

{userId: '123'}) ale Home nie przyjmuje parametru, TS zgłosi błąd. Lub odwrotnie –
wywołanie navigation.navigate('Profile') bez wymaganego userId będzie błędne.

4. Globalny typ param list: React Navigation v6+ umożliwia zadeklarowanie w
przestrzeni globalnej (namespace ReactNavigation) domyślnego typu param list.
Wystarczy zrobić coś takiego w pliku definicji (np. types.d.ts):

declare global {
 namespace ReactNavigation {
 interface RootParamList extends AppTabsParamList {}
 }
}

Po tej deklaracji, wszędzie tam gdzie React Navigation używa RootParamList (np. w
useNavigation() bez generyka), zostanie zastosowany nasz typ. To upraszcza korzystanie
z hooków – nie musimy podawać generyków za każdym razem. Upewnijmy się tylko,
że deklaracja jest w zasięgu projektu (włączona przez TSconfig).

Podsumowanie: Konfiguracja TypeScript z nawigacją wymaga odrobiny pracy na starcie, ale
opłaca się. Zyskujemy autouzupełnianie nazw ekranów, pewność co do parametrów i ich
typów, mniej błędów w czasie wykonania. W dużych aplikacjach to niemal konieczność.
React Navigation w wersji 7 dodatkowo wprowadził tzw. Static API, które upraszcza
konfigurację navigatora i poprawia inferencję typów (definiujemy ekrany jako obiekty z
kluczami, co ułatwia wyprowadzenie typów param list). Niezależnie od podejścia, warto
zawsze definiować param listy i korzystać z dostarczonych typów pomocniczych.

Powrót do poprzedniego ekranu i resetowanie stosu

Nawigacja to nie tylko przechodzenie “do przodu” (push/navigate), ale też wracanie i
zarządzanie historią ekranów. Poniżej najważniejsze operacje:

 Powrót (goBack): Każdy obiekt navigation posiada metodę navigation.goBack(), która cofa
nas o jeden ekran w tył (analogicznie do naciśnięcia systemowego back na Androidzie
czy gestu cofania na iOS). Jeśli jesteśmy na pierwszym ekranie stosu, wywołanie
goBack() domyślnie zamknie całą aplikację (lub przeniesie ją w tło) na Androidzie –
warto to mieć na uwadze przy obsłudze hardware back (można ten behavior

nadpisać, o czym za chwilę). W naszym wcześniej pokazanym MyBackButton użyliśmy
navigation.goBack(). Istnieje też metoda navigation.canGoBack(), którą można sprawdzić czy
jest do czego wracać (zwraca true/false).

 Pop stack: Alternatywą do goBack jest navigation.pop(n), która cofa o n ekranów
(domywnie 1). Ponadto navigation.popToTop() cofnie nas od razu na początek stosu
(pierwszy ekran). Te metody są przydatne np. aby wyjść z wieloetapowego
formularza od razu na ekran główny itp.

 Reset nawigacji (reset stack): Czasem chcemy całkowicie zmienić stan nawigacji – np.
wyczyścić historię i wstawić nowy zestaw ekranów. Przykładem jest przepływ
logowania: po pomyślnym zalogowaniu nie chcemy, by użytkownik wrócił przyciskiem
“wstecz” do ekranu logowania. W takim wypadku można zastosować reset stosu.
React Navigation udostępnia akcję CommonActions.reset do zdefiniowania nowego
stanu nawigacji. Używa się jej mniej więcej tak:

import { CommonActions } from '@react-navigation/native';

navigation.dispatch(
 CommonActions.reset({
 index: 0,
 routes: [{ name: 'Home' }] // nowy stos z tylko jednym ekranem Home
 })
);

Powyższy kod wyczyści całą historię i ustawi stos zawierający pojedynczą trasę Home.
Możemy oczywiście podać więcej routes w tablicy, określając nawet parametry
każdej z nich. Np.:

CommonActions.reset({
 index: 1,
 routes: [
 { name: 'Profile', params: { user: 'janek' } },
 { name: 'Home' }
]
})

Tutaj ustawiamy, że nowy stos ma dwa ekrany: Profile (będzie pod indeksem 0) i
Home (indeks 1), i od razu startujemy na indeksie 1 czyli Home. Efekt: użytkownik
zobaczy Home, wstecz cofnie do Profile, a wcześniejsze ekrany zostały usunięte.

Uwaga: Stosując reset trzeba uważać na spójność stanu. Akcja reset zastępuje cały stan
nawigatora nowym obiektem stanu. Jeśli pominiemy jakieś klucze lub nadamy dwa ekrany z
tą samą nazwą klucza, możemy doprowadzić do niespójności. Zazwyczaj ograniczamy się do
ustawienia index oraz nowej listy routes zawierającej name i opcjonalnie params. Unikajmy
manipulowania wewnętrznymi strukturami stanu nawigacji – API CommonActions.reset
wystarcza w 99% przypadków. Reagując na zmiany stanu aplikacji (np. wylogowanie), często
jednak nie musimy ręcznie wykonywać reset, a zamiast tego warunkowo renderujemy różne
nawigatory (co omówimy w sekcji o protected routes). Taka zmiana konfiguracji nawigacji
automatycznie usuwa poprzednie ekrany z widoku.

 Blokowanie powrotu (preventing goBack): Czasem chcemy zapobiec cofnięciu się z
konkretnego ekranu (np. ekran "potwierdź zamówienie" – użytkownik nie powinien
cofnąć do koszyka). React Navigation udostępnia hook usePreventRemove() do
zablokowania opuszczania ekranu. Można też obsłużyć zdarzenie beforeRemove na
nawigatorze. W ramach tego wykładu tylko sygnalizujemy istnienie takiej opcji –
warto wiedzieć, że można przejąć kontrolę nad fizycznym przyciskiem
wstecz/gestem, wyświetlić np. modal "Czy na pewno chcesz wyjść?" i warunkowo
zablokować nawigację.

 Specyfika Androida: Na Androidzie fizyczny przycisk cofania jest domyślnie
zintegrowany z nawigatorem – działa jak navigation.goBack() dla najwyższego
nawigatora na stosie (o ile nie nadpisaliśmy tego zachowania). Gdy użytkownik jest
na ekranie początkowym nawigacji głównej, domyślnie przycisk ten zamknie
aplikację. Możemy to zachowanie zmienić używając BackHandler z RN, ale jeśli logika
nawigacji jest poprawnie zbudowana (i np. blokujemy cofnięcie tam gdzie nie ma
sensu), zwykle domyślne działanie jest okej.

Podsumowanie sekcji: Hooki useNavigation i useRoute upraszczają dostęp do nawigacji i
informacji o trasie w komponentach funkcyjnych. W połączeniu z dobrze skonfigurowanym
TypeScriptem zapewniają wygodę i bezpieczeństwo. Pamiętajmy o metodach nawigacji
wstecz i reset – tworząc bardziej złożone flow użytkownika (np. logowanie -> główna
aplikacja) są one niezbędne do zapewnienia poprawnego zachowania (np. brak możliwości
cofnięcia do ekranu logowania). W kolejnych sekcjach zobaczymy, jak zastosować te
mechanizmy w praktyce, m.in. przy implementacji deep linków oraz chronionych tras
wymagających uwierzytelnienia.

Deep linking – obsługa linków zewnętrznych

Deep linking to mechanizm pozwalający otworzyć aplikację mobilną w określonym miejscu
nawigacji za pomocą linku/URL. Przykładowo, kliknięcie w przeglądarce linku
myapp://profile/42 może bezpośrednio otworzyć naszą aplikację RN i przenieść użytkownika do
ekranu profilu użytkownika o ID 42. Dzięki deep linking możemy integrować aplikację z e-
mailami, stroną WWW, czy innymi aplikacjami (np. otwieranie odnośnika z Facebooka
uruchamia naszą aplikację).

Aby obsłużyć deep linki, trzeba skonfigurować kilka rzeczy po stronie aplikacji oraz
zewnętrznych źródeł (systemu i ewentualnie serwera WWW):

Definiowanie schematu URL

Podstawą deep linków jest unikalny schemat URI przypisany do naszej aplikacji. Schemat to
ciąg znaków przed :// w URL – np. w myapp://home schematem jest myapp. W systemach
mobilnych możemy zarejestrować aplikację do obsługi konkretnego schematu.

 Expo (Managed): W przypadku aplikacji expo najłatwiej zdefiniować schemat w pliku
konfiguracyjnym app.json / app.config.js. W sekcji expo dodajemy pole "scheme":

"myapp" (oczywiście zamiast myapp dowolna unikalna nazwa). Podczas budowy

aplikacji expo ustawi ten schemat w odpowiednich miejscach Android/iOS
automatycznie.

 Aplikacja RN (bare workflow): Trzeba ręcznie zarejestrować URL types:
o iOS: w Info.plist dodaj CFBundleURLTypes z wpisem dla myapp.
o Android: w AndroidManifest.xml dodać <intent-filter> z <data scheme="myapp" ...>

pozwalający otwierać aktywność główną tym schematem.
o (Expo bare: można użyć komendy npx uri-scheme add myapp która automatyzuje

te czynności).

Po ustawieniu schematu np. myapp://, każda zewnętrzna aplikacja odwołująca się do takiego
URL spowoduje uruchomienie/wybudzenie naszej aplikacji.

Warto wybrać unikalny schemat, by nie kolidował z innymi. Często używa się odwróconego
adresu domeny, np. com.firma.apka://, ale nie jest to konieczne.

Konfiguracja linkingu w React Navigation

Samo posiadanie schematu to tylko pierwszy krok. Następnie musimy powiedzieć React
Navigation, jak mapować przychodzące linki na trasy w naszym nawigatorze. Służy do tego
konfiguracja linking w <NavigationContainer>.

React Navigation może integrować się z modułem RN Linking w celu nasłuchiwania linków.
Możemy skorzystać z prop linking przekazując obiekt konfiguracji. Przykład minimalnej
konfiguracji (Expo):

import * as Linking from 'expo-linking';

const prefix = Linking.createURL('/'); // automatycznie ustali prefix, uwzględniając tryb Expo (dev/standalone)

const linking = {
 prefixes: [prefix], // lista dozwolonych prefixów URLi
 config: {
 screens: {
 Home: "home",
 Profile: "profile/:userId",
 // ...mapowanie kolejnych ekranów na ścieżki
 }
 }
};

return (
 <NavigationContainer linking={linking} fallback={<Text>Ładowanie...</Text>}>
 {/* nawigatory */}
 </NavigationContainer>
);

Kilka wyjaśnień do powyższego:

 prefixes – to tablica prefiksów URL, które mają być przechwytywane. Najczęściej
umieszczamy tu nasz schemat (np. "myapp://") oraz ewentualne adresy URL naszej
domeny, jeśli chcemy obsłużyć tzw. universal links/app links. W kodzie użyto

Linking.createURL('/') z expo-linking, które generuje odpowiedni prefix zarówno dla
trybu dev (exp://IP:PORT/--/) jak i dla produkcji (myapp://). Warto dodać również
prefix z https:// naszej strony, jeśli planujemy integrację web -> app. Np.:

prefixes: [Linking.createURL('/'), 'https://moja-domena.pl']

config – tu definiujemy mapowanie nazw ekranów na ścieżki URL. W przykładzie powyżej
ekran Home zdefiniowaliśmy pod ścieżką "home" (czyli myapp://home odpali Home), a
Profile pod "profile/:userId". Dwukropek oznacza parametry w ścieżce – w tym wypadku
każda ścieżka myapp://profile/XYZ spowoduje przejście do ekranu Profile z route.params = {

userId: "XYZ" }. Możemy mapować również ekrany zagnieżdżone, używając zagnieżdżonych
obiektów screens. Np. jeśli Profile jest w zagnieżdżonym stacku, config może wyglądać:

config: {
 screens: {
 Home: "home",
 ProfileStack: { // nazwa stosu jako ekran w głównym nav
 screens: {
 Profile: "profile/:userId",
 EditProfile: "profile/edit"
 }
 }
 }
}

Taki config może robić wrażenie skomplikowanego, ale sprowadza się do odzwierciedlenia
struktury nawigacji aplikacji za pomocą zagnieżdżonych obiektów.

fallback komponent – NavigationContainer przyjmuje fallback UI na czas, gdy przetwarza link
i odpala właściwy ekran. W powyższym ustawiliśmy po prostu tekst "Ładowanie...". Można
wyświetlić splashscreen lub nic, byle nie zostawić użytkownika w niepewności.

Po tej konfiguracji React Navigation automatycznie:

 Przy starcie aplikacji sprawdzi, czy została uruchomiona z linka (tzw. initial URL). Jeśli
tak, sparsuje URL względem prefixes i config i ustawi odpowiedni stan początkowy
nawigatora. To znaczy, np. od razu załaduje stos z ekranem Profile i parametrem
userId zamiast ekranu domyślnego.

 Gdy aplikacja już działa i przyjdzie nowy link (np. poprzez Linking.addEventListener w
RN), nastąpi nawigacja do wskazanego miejsca (update state nawigatora). Nie
musimy sami wywoływać navigate – zrobi to za nas mechanizm linkingu.

 Obsłuży poprawnie specyfikę web (jeśli budujemy RN na web, linki będą używać
ścieżek URL i historii przeglądarki).

Expo a deep linking: W trybie Expo Dev klient używa innego schematu (exp://127.0.0.1:19000/--/
z path) i nie możemy łatwo testować custom schematu bez budowy standalone. Na szczęście
Linking.createURL('/') robi to za nas – w trybie deweloperskim prefixem będzie adres exp:// z
naszym manifestem, a w zbudowanej apce prefixem będzie myapp://. Dzięki temu możemy
testować deep linki w trakcie developmentu: np. odpalając komendę:

npx uri-scheme open "myapp://profile/42" --android

(analogicznie --ios dla iOS) – expo CLI przekształci to na odpowiedni link (exp://...) i poda do
aplikacji. Alternatywnie, w Expo Go można skopiować link exp:// z parametrem za --/ (co w
praktyce oznacza path w aplikacji). Jeśli mamy aplikację standalone, to na fizycznym
urządzeniu kliknięcie w link myapp://... z dowolnej aplikacji (np. z notatki czy przeglądarki)
powinno wywołać otwarcie naszej aplikacji.

Universal Links / App Links: Poza custom schematem, można też zarejestrować aplikację do
obsługi linków HTTP(S) z własnej domeny. Np. kliknięcie w https://moja-

domena.pl/invite?code=abc może otwierać aplikację. W iOS nazywa się to Universal Links, w
Androidzie App Links – wymagają one spełnienia dodatkowych warunków bezpieczeństwa
(potwierdzenie właścicielstwa domeny poprzez plik apple-app-site-association na serwerze,
oraz wpisy w Xcode i Digital Asset Links JSON na Androidzie). Expo również to wspiera: w
app.json dodajemy associatedDomains dla iOS, a w AndroidManifest analogiczne intent-filter z
android:autoVerify="true" i hostem domeny. Szczegóły tego procesu są nieco poza zakresem
tego wykładu (to temat na osobną sesję). Wiedzmy tylko, że jest taka możliwość – aby nasze
linki webowe otwierały aplikację natywną, co poprawia UX (tzw. app/website integration).

Obsługa linków wychodzących: Wspomnijmy krótko, że RN Linking pozwala też otwierać z
poziomu aplikacji linki zewnętrzne – np. Linking.openURL('tel:123456789') wywoła telefon, a
Linking.openURL('https://google.com') otworzy stronę w domyślnej przeglądarce. To odwrotność
deep linków, ale bywa przydatna (np. link do polityki prywatności otwiera przeglądarkę). W
kontekście React Navigation warto uważać, by nie pomylić navigation.navigate (do wewnętrznej
nawigacji) z Linking.openURL (do zewnętrznej). Jeśli otwarcie URL jest obsługiwane przez nas
samych (np. własny schemat), lepiej użyć navigation.navigate z odpowiednim parametrem niż
emulować to przez openURL.

Debugowanie deep linków:

 W trybie dev obserwuj logi Metro – gdy przyjdzie link, powinna pojawić się
informacja o próbie parsowania URL.

 Jeśli link nie działa, upewnij się, że prefixes zawiera właściwy schemat/protokół, a
config dokładnie odwzorowuje ścieżkę. Literówki w nazwach ekranów w configu mogą
sprawić, że link zostanie zignorowany.

 Na Androidzie, jeśli link myapp://... nie otwiera aplikacji, możliwe że inna aplikacja
zarejestrowała ten sam schemat – zmień schemat na bardziej unikalny.

 Do testowania używaj npx uri-scheme (szybkie i wygodne) oraz np. w XCode Devices ->

Open URL dla iOS Simulator. Na Android emulatorze adb shell am start -W -a

android.intent.action.VIEW -d "myapp://..." com.twojpakiet wywoła intencję.
 Sprawdzaj też wypadki graniczne: np. co jeśli użytkownik miał aplikację otwartą na

innym ekranie i kliknie link? (Powinno przekierować na nowy ekran w ramach już
otwartej apki – RN to obsłuży automatycznie poprzez update stanu nawigacji).

Deep linking otwiera fajne możliwości integracji, ale dodaje sporo złożoności. Dla porządku,
poniżej krótkie zestawienie kroków, które należy wykonać, by w pełni zaimplementować
deep linki:

1. Rejestracja schematu URL aplikacji (Expo: app.json, iOS: Info.plist, Android:
AndroidManifest.xml).

2. Konfiguracja React Navigation: ustawienie NavigationContainer prop linking z prefixami i
mapowaniem ścieżek na ekrany.

3. (Opcjonalnie) Universal/App Links: konfiguracja asocjacji domeny, by linki HTTPS też
trafiały do aplikacji.

4. Testy: użycie uri-scheme lub fizyczne klikanie linków, sprawdzenie poprawnego
otwierania.

5. Fallback: zapewnienie sensownego fallbacku UI, jeśli link jest nieprawidłowy (można
obsłużyć zdarzenie Linking.addEventListener('url', ...) manualnie jeśli chcemy custom
zachowanie w niektórych wypadkach).

Na potrzeby tego wykładu warto po prostu mieć świadomość, że deep linking istnieje i znać
podstawy konfiguracji.

Ochrona tras (Protected Routes) i warunkowe flow

Wiele aplikacji wymaga uwierzytelnienia użytkownika – tzn. pewne ekrany są dostępne tylko
po zalogowaniu. Musimy zatem chronić trasy przed nieautoryzowanym dostępem. W React
Navigation nie ma gotowego mechanizmu "Route Guards" takiego jak np. w Angular, ale
możemy osiągnąć to samo, warunkowo renderując odpowiednie ekrany/nawigatory w
zależności od stanu aplikacji (stanu zalogowania, ukończenia onboardingu itp.).

Strażnicy tras – koncept

Route guard to kawałek logiki, który decyduje, czy użytkownika wpuścić na daną trasę, czy
przekierować go gdzie indziej. W webowym React Router jest to np. komponent
<PrivateRoute> sprawdzający auth. W React Navigation podejście jest nieco inne: najczęściej
ukrywamy całe sekcje nawigacji gdy warunek nie jest spełniony, zamiast przekierowywać w
momencie wejścia.

Można to zrobić na dwa sposoby:

 Statycznie przy konfiguracji navigatora: W najnowszym Static API RN7 można przy
definicji ekranu dodać opcję if: someCondition. Gdy warunek (funkcja/hook) zwraca
false, ekran nie jest w ogóle dostępny w nawigacji. Np.:

const RootStack = createNativeStackNavigator({
 screens: {
 Home: { if: useIsSignedIn, screen: HomeScreen },
 SignIn: { if: useIsSignedOut, screen: SignInScreen }
 }
});

W powyższym pseudokodzie useIsSignedIn i useIsSignedOut to hooki zwracające booleany
zależnie od stanu auth. React Navigation wtedy automatycznie pokaże tylko te ekrany,
których warunek jest spełniony – nigdy oba jednocześnie. Gdy stan się zmieni (użytkownik

zaloguje się/wyloguje), navigator zaktualizuje zestaw ekranów: jeden zniknie, pojawi się
drugi. To eleganckie rozwiązanie dostępne w Static API.

 Dynamicznie w kodzie JSX: To podejście dostępne zawsze (także w RN6 i niżej). Polega
na tym, że warunkowo renderujemy komponenty <Screen> lub całe navigatory.
Przykład:

<NavigationContainer>
 <Stack.Navigator>
 {isSignedIn ? (
 <Stack.Screen name="Home" component={HomeScreen} />
) : (
 <Stack.Screen name="SignIn" component={SignInScreen} />
)}
 </Stack.Navigator>
</NavigationContainer>

Jeżeli użytkownik jest zalogowany (isSignedIn === true), do stosu zostanie dodany tylko ekran
Home. Jeśli nie jest – tylko ekran SignIn. Nieautoryzowany użytkownik nie ma więc jak nawet
spróbować wejść na Home, bo nawigator go nie zna. Gdy stan isSignedIn zmieni się,
komponent się przerenderuje z nowym zestawem ekranów – stary ekran zostanie usunięty
(unmount) i pojawi się nowy.

Obie metody sprowadzają się do jednego: różnicowanie konfiguracji nawigacji na
podstawie stanu aplikacji. Druga metoda (dynamiczna JSX) jest łatwiejsza do zrozumienia i
wystarczająco dobra, więc skupimy się na niej.

Różnicowanie flow na podstawie stanu użytkownika

Typowy scenariusz to aplikacja z rozróżnieniem na:

 Niezalogowany użytkownik – widzi ekrany logowania/rejestracji (tzw. AuthStack).
 Zalogowany użytkownik – widzi główną część aplikacji (tzw. AppStack lub AppTabs).
 Onboarding (opcjonalnie) – nowy użytkownik, który się zalogował, ale musi np.

przejść tutorial lub uzupełnić profil, zanim uzyska pełny dostęp.

Możemy wyróżnić więc kilka stanów: signedOut, signedIn, ewentualnie
signedInButNotOnboarded. W zależności od tego, pokazujemy inną nawigację.

Implementacja może wyglądać następująco (pseudo-kod z wykorzystaniem hooka
useContext do trzymania stanu zalogowania):

const AuthContext = React.createContext();

function AppNavigator() {
 const { user, isLoading } = useContext(AuthContext);

 if (isLoading) {
 // np. ekran splash/loading podczas sprawdzania tokenu w pamięci
 return <SplashScreen />;
 }

 return (
 <NavigationContainer>
 {user == null ? (
 <AuthStackNavigator /> // użytkownik niezalogowany
) : user.onboardComplete === false ? (
 <OnboardingStackNavigator /> // zalogowany, ale nie przeszedł onboardingu
) : (
 <MainAppNavigator /> // zalogowany i gotowy - główna aplikacja
)}
 </NavigationContainer>
);
}

W powyższym pseudokodzie:

 isLoading to stan mówiący, że jeszcze np. sprawdzamy w AsyncStorage czy jest
zapisany token (pokazujemy wtedy Splash zamiast migotać ekranem logowania po
odpaleniu apki).

 user to obiekt użytkownika lub null, trzymany gdzieś w globalnym stanie (np. Context
lub Zustand, o tym za moment).

 Sprawdzamy kolejno: jeśli brak użytkownika -> renderujemy navigator z ekranami
logowania (AuthStackNavigator); jeśli jest użytkownik, ale nieukończony onboarding ->
renderujemy OnboardingStackNavigator; w przeciwnym razie (zalogowany w pełni) ->
MainAppNavigator z właściwymi ekranami aplikacji.

Każdy z tych navigatorów (AuthStack, OnboardingStack, MainApp) to np. oddzielnie
zdefiniowany Stack lub Tab ze swoimi ekranami. Moglibyśmy też zamiast trzech oddzielnych
navigatorów użyć jednego warunkowo dodając Screeny – to kwestia organizacji kodu. Często
dla czytelności rozdziela się je.

Co daje takie podejście? Użytkownik nigdy nie zobaczy ekranu, do którego nie powinien
mieć dostępu:

 Gdy nie jest zalogowany – w drzewie nawigacji nie ma żadnej trasy z głównej aplikacji
(ani Home, ani Profile, etc.). Nawet jeśli by znał nazwę ekranu, nie przejdzie do niego
(navigation.navigate('Home') rzuci błąd/brak takiej trasy).

 Gdy jest zalogowany – usuwamy ekrany logowania ze stosu, więc nie może wrócić do
Login. W przykładzie z dynamiczną zmianą konfiguracji, poprzednie ekrany są
unmountowane, co oznacza że np. naciśnięcie hardware back nie cofnie do Loginu,
bo login już nie istnieje w nawigatorze. Spełniliśmy tym samym wymóg odcięcia
historii.

 Gdy jest w trakcie onboardingu – dopóki nie skończy, nie wpuścimy go do MainApp
(bo warunek nie pozwoli wyrenderować MainAppNavigator).

To podejście jest preferowane względem prób przekierowywania w useEffect pojedynczych
ekranów. Czasem ludzie implementują w komponentach coś w stylu: jeśli user = null to
navigation.replace('Login'). Takie coś działa, ale jest mniej przejrzyste – lepiej na poziomie
konfiguracji nawigacji decydować, co jest dostępne.

Implementacja stanu użytkownika (auth): Zazwyczaj potrzebujemy globalnego stanu
przechowującego informację o tym, czy mamy token/credentials. Można do tego użyć:

 Context API (AuthContext) – jak w powyższym przykładzie, prosty kontekst
trzymający obiekt użytkownika i ewentualnie funkcje login/logout.

 Zustand lub MobX/Redux – dowolne centralne przechowywanie stanu. Zustand jest
lekkim storem, gdzie możemy trzymać isLoggedIn oraz np. profil użytkownika. Jego
przewaga to prostota i brak boilerplate Reduxowego. Przykład użycia:

const useAuthStore = create((set) => ({
 user: null,
 login: (userData) => set({ user: userData }),
 logout: () => set({ user: null })
}));
// ...
const user = useAuthStore(state => state.user);

Następnie user używamy w warunku do przełączania nawigatorów.

 AsyncStorage/SecureStore – służą do persistent storage, czyli np. zapisania tokenu
JWT lub flagi pierwszego uruchomienia. Podczas startu aplikacji robimy coś takiego:

useEffect(() => {
 SecureStore.getItemAsync('token').then(storedToken => {
 if(storedToken) {
 // mamy token, można spróbować odświeżyć profil użytkownika z API etc.
 setUserToken(storedToken);
 }
 setLoading(false);
 });
}, []);

Kiedy załadujemy stan z pamięci, ustawiamy isLoading na false i warunkowe renderowanie
pokaże odpowiednie ekrany. Ważne, by ten załadunek był wykonany zanim pokażemy
jakiekolwiek ekrany (stąd Splash w tym czasie).

Guardy a nawigacja wstecz: Przy dynamicznej zmianie nawigatora (Auth -> App) warto
dodatkowo zabezpieczyć scenariusz, gdy użytkownik w trakcie logowania mógł mieć jakiś
stos ekranów (np. ekran rejestracji itp.). Gdy zaloguje się i wyrenderujemy MainApp zamiast
Auth, stare ekrany znikną. Jeśli jednak użytkownik szybko naciśnie “back” (np. tuż po
zalogowaniu na Androidzie), może to spowodować wyjście z aplikacji, bo w nowym
nawigatorze nie będzie historii. To generalnie OK, ale jeśli chcielibyśmy np. zablokować
wyjście, musielibyśmy obsłużyć to ręcznie (np. BackHandler i ignorowanie w pierwszych
sekundach po zalogowaniu). W większości przypadków jednak natychmiastowe wciśnięcie
back po zalogowaniu jest mało prawdopodobne, a nawet jeśli – opuszczenie aplikacji na
ekranie Home jest zgodne z przewidywaniami (użytkownik myśli, że cofa do logowania, ale
aplikacja się zamyka, bo logowanie już nie istnieje – następnym razem aplikacja otworzy się
już zalogowana). To drobny szczegół UX do rozważenia w realnym projekcie.

Inne zastosowania protected routes: Nie tylko auth. Możemy warunkowo pokazywać
pewne ekrany np. jeśli użytkownik ma uprawnienia (role-based access). Albo np. ekran
PremiumContent tylko gdy user.isPremium. Wtedy analogicznie – warunek decyduje o dodaniu
ekranu do navigatora. Jeżeli warunek może się zmieniać w trakcie działania aplikacji,
dynamiczne dodawanie/usuwanie ekranów jest w porządku. React Navigation 7 potrafi dość
elegancko reagować na zmiany warunków (dzięki opcji if we static API) i np. usuwać
niedostępne ekrany z nawigacji bez błędów.

Podsumowanie: Ochrona tras w RN sprowadza się do oddzielenia części publicznej od
prywatnej aplikacji. Najlepszą praktyką jest przygotowanie osobnych navigatorów dla
różnych stanów i przełączanie między nimi w zależności od tego stanu.

Przepływ logowania (Auth Flow) w React Navigation

Przepływ logowania to szczególny przypadek zarządzania nawigacją w aplikacji. Składa się na
niego ekrany logowania/rejestracji, ewentualnie ekran powitalny (onboarding), oraz główna
część aplikacji dla zalogowanego użytkownika. Dobrze zaprojektowany flow powinien
spełniać następujące założenia:

 Po uruchomieniu aplikacji sprawdzamy stan uwierzytelnienia (np. czy jest ważny
token sesji). Dopóki sprawdzamy – pokazujemy ekran startowy (Splash).

 Jeśli użytkownik nie jest zalogowany, pokazujemy ekrany logowania/rejestracji
(AuthStack).

 Jeśli użytkownik jest zalogowany, od razu kierujemy go do głównej aplikacji
(AppStack / AppTabs).

 Po pomyślnym zalogowaniu/rejestracji przekierowujemy użytkownika do głównej
aplikacji i usuwamy ekrany logowania z historii, aby nie można było wrócić wstecz.

 Gdy użytkownik wyloguje się w trakcie działania aplikacji, czyścimy dane sesji i
kierujemy go ponownie na ekrany logowania (najlepiej czyszcząc historię głównej
nawigacji).

Dodatkowo, jeśli mamy onboarding dla nowych użytkowników (np. krótki tutorial albo
ekran zgód), musimy to wpasować w powyższy schemat. Często robi się to poprzez flagę w
profilu użytkownika lub w pamięci (np. hasSeenTutorial). Przykładowe podejście:

 Jeśli zalogowany użytkownik ma flagę onboarded = false, zamiast od razu AppStacka
dajemy mu OnboardingStack (np. kilka ekranów przewodnika). Dopiero po ich
ukończeniu (gdy ustawiamy flagę na true) przestawiamy na główny AppStack.

Różnica między AuthStack a AppStack polega głównie na zestawie ekranów:

 AuthStack – zawiera ekrany: Logowanie, Rejestracja, Zapomniane hasło, Ekran
powitalny (np. z logo) itd. Wszystkie te ekrany nie wymagają uwierzytelnienia. Często
jest to createNativeStackNavigator z wyłączonym headerem lub custom headerem (np.
logo apki na górze).

 AppStack (bądź AppTabs jeśli używamy tabów) – zawiera ekrany dostępne tylko po
zalogowaniu, np. Home, Dashboard, Profil, Ustawienia itp. Może to być stack albo tab
w zależności od designu aplikacji.

Czasem stosuje się też koncepcję SplashStack z tylko jednym ekranem ładowania (Splash),
który jest domyślnie wyświetlany zanim zdecydujemy co dalej. Ale równie dobrze Splash
można wyrenderować warunkowo jak w poprzednim rozdziale.

Przy implementacji przepływu logowania w React Navigation, warto oprzeć się na
przykładach z dokumentacji. Twórcy RN sugerują użycie Context do trzymania statusu auth i
pokazują przykład z użyciem SecureStore expo do trzymania tokenu. Najważniejsze jest
rozdzielenie drzew nawigacji: osobne dla “signed in” i “signed out”, oraz przełączanie między
nimi po zmianie stanu auth.

Onboarding – pierwsze uruchomienie

Onboarding może przybierać różne formy:

 Ekran powitalny z przyciskiem "Rozpocznij" (np. prezentacja głównej wartości
aplikacji).

 Kilka ekranów przewijanych (carousel) z instrukcją obsługi, pytaniami preferencji
użytkownika itp.

 Ekran wyboru języka/tematu itp.

Z perspektywy nawigacji, onboarding to też pewien mini-stos ekranów, który pokazujemy
tylko raz dla nowego użytkownika. Najczęściej implementuje się to poprzez:

 Flagę persistent, np. zapis w AsyncStorage hasOnboarded=true po przejściu.
 Warunkowe dołączenie ekranu do AuthStack: np. pierwszy ekran AuthStack to

Welcome, a dopiero potem Login. I jeśli stwierdzimy, że user już widział welcome
(sprawdzamy AsyncStorage), to nawigujemy go od razu do Login pomijając welcome.
Można to zrobić na starcie aplikacji (np. w Splash, decydując do której trasy iść).

Albo:

 Osobny OnboardingStack jak wcześniej wspomniano, który renderujemy przed
AppStack. Ten stack po zakończeniu ustawia flagę i przełączamy na AppStack.

Przechowywanie informacji o logowaniu

Ten temat częściowo już omówiliśmy przy route guards. W kontekście przepływu logowania
sprowadza się on do:

 Przechowywanie tokenu/autoryzacji – jeżeli korzystamy z API, to po zalogowaniu
zapewne otrzymujemy token (JWT lub session id). Należy go bezpiecznie przechować.
Zaleca się użyć do tego SecureStore (Expo) lub Keychain/Keystore na urządzeniach.
SecureStore (Expo) zapisuje dane zaszyfrowane w bezpiecznej pamięci urządzenia.
AsyncStorage nie szyfruje, więc token tam jest jawny – do mniej wrażliwych rzeczy

ok, ale tokeny raczej trzymajmy bezpiecznie. W ostateczności, jeśli testujemy, można
i AsyncStorage użyć.

 Przechowywanie stanu zalogowania w aplikacji – aby cała aplikacja wiedziała, że
user jest zalogowany i np. wyświetliła jego dane w różnych miejscach. Do tego
świetnie nadaje się Context API lub globalny store (Zustand/Redux). Context
wystarcza: tworzymy AuthContext z wartością { user, login(), logout() }. Po pomyślnym
logowaniu (np. gdy API zwróci 200 OK) wywołujemy login(userData) z obiektu
kontekstu. To zmienia user i powoduje re-render zależnych komponentów (w tym
naszego warunkowego navigatora). W efekcie nastąpi przejście do AppStack.

 Zustand – ma przewagę, że nawet gdy komponenty contextowe się rozmontują, stan
zostaje (ale to samo daje trzymanie w useState w komponencie wyżej niż
NavigationContainer). Dla początkujących – Context jest łatwiejszy.

 Wylogowanie – powinno wyczyścić wszystkie dane: usunąć token z SecureStore,
wyzerować user w state, ewentualnie zresetować nawigację. Jeśli korzystamy z
warunkowego renderowania navigatorów, to wyzerowanie usera automatycznie
przerenderuje NavContainer na AuthStack, usuwając tym samym wszystkie ekrany
aplikacji z widoku. Warto jednak upewnić się, że np. nie pozostawimy jakiegoś
modala otwartego itp. Zwykle wystarczy logout() w kontekście.

Przykład użycia Context (pseudo-kod):

const AuthContext = React.createContext();

function AuthProvider({ children }) {
 const [user, setUser] = useState(null);

 const login = async (credentials) => {
 const token = await API.login(credentials);
 await SecureStore.setItemAsync('token', token);
 const userData = await API.fetchProfile(token);
 setUser(userData);
 };

 const logout = async () => {
 await SecureStore.deleteItemAsync('token');
 setUser(null);
 };

 return (
 <AuthContext.Provider value={{ user, login, logout }}>
 {children}
 </AuthContext.Provider>
);
}

Całą aplikację opakowujemy w <AuthProvider> (np. w pliku App.js). W komponentach (np.
ekranach logowania) wywołujemy const { login } = useContext(AuthContext) by zalogować, a w
ekranie profilu const { logout } = useContext(AuthContext) by się wylogować.

Dobra praktyka: Podczas logowania, gdy przechodzimy do głównej aplikacji, możemy
zresetować stos (jeśli używaliśmy zwykłego navigate) lub, jak pokazaliśmy, usunąć ekrany

logowania poprzez warunkowe renderowanie. Wiele gotowych template’ów używa
navigation.reset({ routes: [{ name: 'MainApp' }] }) po loginie, gdzie MainApp to np. navigator
zakładek.

Podsumowując: oddzielenie AuthStack i AppStack to podstawa uporządkowania flow
logowania. Trzymajmy stan logowania globalnie, by łatwo reagować na jego zmiany w
drzewie nawigacji. Pamiętajmy o bezpiecznym przechowaniu wszelkich tokenów oraz o tym,
by po wylogowaniu “posprzątać” (wyczyścić stan i nawigację).

Demo: Mini-aplikacja z nawigacją (AuthStack + AppTabs)

Teraz przejdźmy do praktycznego przykładu, który łączy wszystkie poruszone koncepty.
Zbudujemy uproszczoną aplikację React Native, która posiada dwa główne “tryby” nawigacji:

 AuthStack – stos z ekranem logowania (LoginScreen).
 AppTabs – nawigator z zakładkami zawierający dwa ekrany: HomeScreen i

ProfileScreen.

Użytkownik niezalogowany zobaczy ekran logowania. Po "zalogowaniu" (symulujemy je w
aplikacji) zostanie przeniesiony do zakładek aplikacji: Home i Profile. Home wyświetli
powitanie i umożliwi przejście do ekranu Profil (np. przyciskiem) – przy okazji przekażemy ID
użytkownika jako parametr. Profil wyświetli identyfikator zalogowanego użytkownika i da
opcję wylogowania (powrót do ekranu logowania).

W kodzie wykorzystamy React Context do przechowywania informacji o zalogowanym
użytkowniku (userId), co pozwoli na warunkowe renderowanie odpowiedniego navigatora.
Pokażemy również użycie hooków useNavigation i useRoute wewnątrz ekranów.

Oto kod demonstracyjnej aplikacji:

import React, { useState, useContext, createContext } from 'react';
import { Text, View, Button } from 'react-native';
// Navigatory
import { NavigationContainer } from '@react-navigation/native';
import { createNativeStackNavigator } from '@react-navigation/native-stack';
import { createBottomTabNavigator } from '@react-navigation/bottom-tabs';

// 1. Definicje typów parametrów dla nawigatorów (TypeScript)
type AuthStackParamList = {
 Login: undefined;
};
type AppTabsParamList = {
 Home: undefined;
 Profile: { userId: string };
};

// 2. Utworzenie navigatorów
const AuthStack = createNativeStackNavigator<AuthStackParamList>();
const AppTabs = createBottomTabNavigator<AppTabsParamList>();

// 3. Kontekst uwierzytelnienia

type AuthContextType = { userId: string | null, login: (id: string) => void, logout: () => void };
const AuthContext = createContext<AuthContextType | undefined>(undefined);

// 4. Ekran logowania
function LoginScreen() {
 const auth = useContext(AuthContext);
 return (
 <View style={{ flex: 1, justifyContent: 'center', alignItems: 'center' }}>

 <Text>� Ekran logowania</Text>
 <Button title="Zaloguj mnie jako user #123"
 onPress={() => auth?.login('123')} />
 </View>
);
}

// 5. Ekran Home (zakładka główna)
function HomeScreen({ navigation }: { navigation: any }) { // typowanie navigation pominięte dla czytelności
 const auth = useContext(AuthContext);
 const userId = auth?.userId;
 return (
 <View style={{ flex: 1, justifyContent: 'center', alignItems: 'center' }}>
 <Text>� Ekran Home - witaj użytkowniku #{userId}!</Text>
 {/* Przykładowy przycisk nawigujący do Profilu z parametrem */}
 <Button title="Przejdź do Profilu (param: userId)"
 onPress={() => navigation.navigate('Profile', { userId })} />
 </View>
);
}

// 6. Ekran Profil (zakładka profilowa)
function ProfileScreen({ route }: { route: any }) {
 const auth = useContext(AuthContext);
 // Pobieramy userId z parametru lub z kontekstu:
 const routeUserId = route.params?.userId;
 const userId = routeUserId || auth?.userId;
 return (
 <View style={{ flex: 1, justifyContent: 'center', alignItems: 'center' }}>

 <Text>� Ekran Profil użytkownika #{userId}</Text>
 <Button title="Wyloguj" onPress={() => auth?.logout()} />
 </View>
);
}

// 7. Główny komponent nawigacji oparty o context
export default function App() {
 const [userId, setUserId] = useState<string | null>(null);

 const authContext: AuthContextType = {
 userId,
 login: (id: string) => setUserId(id),
 logout: () => setUserId(null)
 };

 return (
 <AuthContext.Provider value={authContext}>
 <NavigationContainer>
 {userId == null ? (

 // Gdy brak zalogowanego użytkownika -> pokazujemy AuthStack
 <AuthStack.Navigator>
 <AuthStack.Screen
 name="Login"
 component={LoginScreen}
 options={{ headerShown: false }}
 />
 </AuthStack.Navigator>
) : (
 // Gdy jest zalogowany -> pokazujemy zakładki aplikacji
 <AppTabs.Navigator screenOptions={{ headerShown: false }}>
 <AppTabs.Screen
 name="Home"
 component={HomeScreen}
 options={{ title: 'Home' }}
 />
 <AppTabs.Screen
 name="Profile"
 component={ProfileScreen}
 options={{ title: 'Profil' }}
 />
 </AppTabs.Navigator>
)}
 </NavigationContainer>
 </AuthContext.Provider>
);
}

(Kod pisany z myślą o czytelności dla początkujących – w praktyce typowanie nawigacji
byłoby dopracowane, ale tutaj skupiamy się na idei.)

Objaśnienia do powyższego kodu:

 Na początku definiujemy typy nawigatorów i tworzymy navigatory AuthStack i AppTabs.
AuthStack to stos (NativeStack) z jednym ekranem Login. AppTabs to dolne zakładki z
dwoma ekranami: Home i Profile. Zauważ, że dla Profile przewidzieliśmy parametr
userId (typu string).

 Tworzymy kontekst AuthContext, który będzie przechowywać stan userId (lub null) oraz
funkcje login i logout. Cała logika autoryzacji jest tu uproszczona: zakładamy, że
kliknięcie przycisku "Zaloguj" zawsze się udaje i loguje nas jako user #123.

 LoginScreen: Pobiera login z kontekstu (auth?.login) i po kliknięciu loguje użytkownika o
ID "123". W realnej aplikacji zamiast tego wywołalibyśmy np. API logowania, a po
sukcesie zapisali token i user id. Tu robimy natychmiast auth?.login('123'), co ustawia
userId w stanie kontekstu.

 HomeScreen: Wyświetla powitanie z numerem użytkownika (pobieramy go z
kontekstu). Ma również przycisk "Przejdź do Profilu (param: userId)". Po kliknięciu
wywołujemy navigation.navigate('Profile', { userId }). To demonstruje przekazanie
parametru do zakładki Profil – choć w tym wypadku Profil mógłby równie dobrze
skorzystać z kontekstu, pokazujemy przekazanie param dla ilustracji. Ponieważ Home
i Profile są w tym samym navigatorze AppTabs, wywołanie navigate spowoduje
przełączenie zakładki na Profile, przekazując jej parametr.

 ProfileScreen: Odbiera parametry przez { route } (otrzymuje je jako prop, bo to ekran
nawigacji). Wyciąga z route.params wartość userId. Dla bezpieczeństwa, jeśli param nie
został przekazany (np. użytkownik przełączył się na zakładkę Profile bez użycia
przycisku z parametrem), wtedy route.params będzie undefined – wówczas bierzemy
userId z kontekstu. W naszym flow, gdy użytkownik najpierw kliknie na Home "Przejdź
do Profilu" – param będzie obecny. Jeśli jednak będąc na Home użyje dolnej nawigacji
(kliknie ikonkę Profil w tab barze), to przełączy zakładkę bez parametru (React
Navigation nie przekazuje param przy zwykłym tapnięciu w tab, bo to nie
navigation.navigate tylko wewnętrzne przełączenie). Dzięki naszej logice
ProfileScreen i tak ustali userId z kontekstu.
ProfileScreen wyświetla identyfikator i posiada przycisk "Wyloguj". Po naciśnięciu
wywołujemy auth?.logout(), które w naszym kontekście ustawia userId = null. To
spowoduje przerenderowanie całego drzewa nawigacji – ponieważ w App() warunek
userId == null znowu stanie się true, pokaże się AuthStack zamiast AppTabs, czyli
wrócimy do ekranu logowania. Jest to natychmiastowe i skuteczne – zakładki znikają,
stos logowania się pojawia.

 W komponencie głównym <App> osadzamy NavigationContainer oraz warunkowo
wybieramy między <AuthStack.Navigator> a <AppTabs.Navigator>. Zwróćmy uwagę:
AuthStack.Navigator i AppTabs.Navigator to dwa zupełnie osobne nawigatory – nie
mają wspólnych ekranów. Przełączenie następuje czysto przez React (ternary
operator) i React Navigation bez problemu radzi sobie z
montowaniem/odmontowaniem jednego navigatora i zastąpieniem go drugim.

 NavigationContainer otaczamy AuthContext.Provider, żeby ekrany miały dostęp do
auth wartości.

Testowanie scenariusza:

 Po uruchomieniu: userId jest null, więc renderuje się AuthStack z LoginScreen.
LoginScreen pokazuje przycisk. Gdy go naciśniemy:

 auth.login('123') ustawia userId = '123'. Teraz userId nie jest null, więc App re-render:
zamiast AuthStack w NavigationContainer pojawia się AppTabs. Użytkownik zobaczy
ekran Home (domyślnie pierwsza zakładka Home).

 HomeScreen wyświetla "Witaj użytkowniku #123". Użytkownik ma dwie drogi: albo
kliknie przycisk "Przejdź do Profilu" (co wywoła navigation.navigate z param), albo po
prostu wybierze zakładkę Profile na dole.

o Jeśli kliknął przycisk: zostaje przełączony na ekran Profile, a ten otrzymuje
route.param { userId: '123' }. Wyświetli "Profil użytkownika #123".

o Jeśli zamiast tego użytkownik dotknął zakładki Profile na tab barze: zostanie
przełączony na ProfileScreen, ale bez parametru. Nasz kod w ProfileScreen
zobaczy, że route.params jest undefined i weźmie userId z kontekstu, również
dostając '123'. Wynik końcowy dla użytkownika identyczny – widzi profil #123.

 Na ekranie Profil jest przycisk "Wyloguj". Po tapnięciu: auth.logout() ustawia userId = null.
Następuje unmount AppTabs i mount AuthStack z powrotem (NavigationContainer
zdejmuje zakładki i wstawia login). Użytkownik widzi znów ekran logowania. Gdyby
wcisnął w tym momencie back na Androidzie – zamknie aplikację (bo jesteśmy na
jedynym ekranie w stacku głównym). Możemy to traktować jako oczekiwane

zachowanie (wylogował się, więc wyjście z apki jest logiczne, albo może zalogować się
ponownie).

Uwagi dot. debugowania i rozszerzania:

 Gdybyśmy nie używali kontekstu, alternatywą byłoby np. trzymanie userId w state
wyżej i przekazywanie go do screens jako props (via initialParams lub własne propsy
w nawigatorze). Context jest jednak wygodniejszy.

 W realnej apce po zalogowaniu pewnie chcielibyśmy wykonać navigation.reset zamiast
zwykłego navigate – ale tutaj zrobiliśmy to “architektonicznie” usuwając AuthStack
całkowicie.

 Podczas developmentu łatwo można sprawdzić, czy na pewno po zalogowaniu nie
zostaje w pamięci ekran logowania – np. w React DevTools sprawdzając drzewo
komponentów albo logując w useEffect unmount w LoginScreen. Powinien zostać
odmontowany przy przejściu.

 Nasz param userId jest stringiem – w prawdziwym API to mógłby być token JWT albo
obiekt użytkownika. Wtedy raczej nie przekazujemy tego przez paramy nawigacji (bo
to wrażliwe dane), tylko trzymamy w kontekście/state. Parametr w nawigacji bardziej
przydaje się do danych dotyczących konkretnej pod-strony, np. postId dla ekranu
PostDetails. Dla globalnego userId lepiej użyć context jak pokazaliśmy, co i tak
zrobiliśmy.

 Gdybyśmy mieli więcej ekranów w AuthStack (np. Register, ForgotPassword),
moglibyśmy je dodać do AuthStack.Navigator. Wtedy z LoginScreen normalnie
navigation.navigate('Register') by działało. Po zalogowaniu niezależnie, cała nawigacja
AuthStack jest wymieniana.

 Podobnie w AppTabs – moglibyśmy łatwo dodać np. trzecią zakładkę Ustawienia bez
wpływu na logikę auth.

Podsumowanie i dobre praktyki

W trakcie tego wykładu przeszliśmy przez wszystkie kluczowe aspekty nawigacji w React
Native z użyciem React Navigation:

 Poznaliśmy różne rodzaje nawigatorów i ich zastosowania (Stack do sekwencji
ekranów, Tabs do równoległych sekcji, Drawer do ukrytego menu).

 Nauczyliśmy się przekazywać parametry między ekranami i odbierać je, a także jak
dbać o ich poprawne typowanie w TypeScript.

 Wykorzystaliśmy hooki nawigacyjne useNavigation i useRoute do wygodnego
wywoływania nawigacji i pobierania danych routy w komponentach funkcyjnych.

 Omówiliśmy jak cofać nawigację, zarówno pojedynczo (goBack), jak i hurtowo
(popToTop), oraz jak resetować stos ekranów – co okazało się ważne w scenariuszu
logowania.

 Zajęliśmy się tematem deep linków, konfigurując schematy URL i integrację z Expo,
aby nasza aplikacja mogła reagować na linki zewnętrzne i otwierać właściwe ekrany.

 Wprowadziliśmy koncepcję ochrony tras – ograniczania dostępu do części aplikacji
poprzez warunkowe renderowanie nawigatorów zależnie od stanu (np. logowania).
Dzięki temu zrealizowaliśmy przepływ uwierzytelniania, oddzielając ekrany
logowania od głównej aplikacji.

 Zwieńczyliśmy wszystko praktycznym demo, które krok po kroku pokazało
implementację mini-apki z kontekstem autoryzacji i dwoma nawigatorami. Demo
ilustruje, jak w realnym kodzie spiąć razem React Navigation, Context oraz
komponenty RN, by uzyskać przyjazny dla użytkownika flow (logowanie -> aplikacja ->
wylogowanie -> z powrotem logowanie).

Literatura:

1. https://reactnavigation.org/docs/getting-started/ (Data dostępu: 1.10.2025) -
Oficjalna dokumentacja React Navigation (strona główna).

2. https://reactnavigation.org/docs/typescript/ (Data dostępu: 1.10.2025) - Oficjalny
przewodnik po integracji React Navigation z TypeScript.

3. https://reactnavigation.org/docs/auth-flow/ (Data dostępu: 1.10.2025) - Kluczowa
dokumentacja opisująca rekomendowany wzorzec przepływu uwierzytelniania.

4. https://reactnavigation.org/docs/deep-linking/ (Data dostępu: 1.10.2025) - Oficjalny
przewodnik po konfiguracji Deep Linków.

5. https://reactnavigation.org/docs/navigating/ (Data dostępu: 1.10.2025) -
Dokumentacja podstawowych operacji (navigate, push, goBack).

6. https://reactnavigation.org/docs/params/ (Data dostępu: 1.10.2025) - Dokumentacja
na temat przekazywania i odbierania parametrów (route.params).

7. https://reactnavigation.org/docs/hooks/ (Data dostępu: 1.10.2025) - Dokumentacja
hooków useNavigation i useRoute.

8. https://reactnavigation.org/docs/native-stack-navigator/ (Data dostępu: 1.10.2025) -
Dokumentacja Native Stack Navigator (rekomendowanego dla wydajności).

9. https://reactnavigation.org/docs/bottom-tab-navigator/ (Data dostępu: 1.10.2025) -
Dokumentacja Bottom Tab Navigator.

10. https://docs.expo.dev/routing/linking/ (Data dostępu: 1.10.2025) - Przewodnik Expo
dotyczący konfiguracji linkowania (w tym expo-linking).

https://reactnavigation.org/docs/getting-started/
https://reactnavigation.org/docs/typescript/
https://reactnavigation.org/docs/auth-flow/
https://reactnavigation.org/docs/deep-linking/
https://reactnavigation.org/docs/navigating/
https://reactnavigation.org/docs/params/
https://www.google.com/search?q=https://reactnavigation.org/docs/hooks/
https://reactnavigation.org/docs/native-stack-navigator/
https://reactnavigation.org/docs/bottom-tab-navigator/
https://www.google.com/search?q=https://docs.expo.dev/routing/linking/

