POLITECHNIKA SWIETOKRZYSKA

Aplikacje mobilne — wyktad
10

Bezpieczenstwo, dostepnosciil8n

Mateusz Pawetkiewicz
1.10.2025

Bezpieczenstwo aplikacji mobilnych

OWASP Mobile Top 10. Organizacja OWASP co pewien czas publikuje liste Top 10
najwazniejszych zagrozen bezpieczenstwa aplikacji mobilnych. Aktualna lista obejmuje m.in.
niewtasciwe uzycie mechanizmow platformy, niebezpieczne przechowywanie danych, stabe
uwierzytelnianie, btedy walidacji danych, niebezpieczng komunikacje sieciowg, braki w
kryptografii i inne aspekty (M1-M10). Lista ta stuzy jako przewodnik dla deweloperéw,
wskazujgc obszary, na ktore trzeba zwrdécic szczegdlng uwage podczas tworzenia aplikacji
mobilnych.

Najwazniejsze praktyki bezpieczenstwa: W odniesieniu do OWASP Top 10 warto stosowac¢
sprawdzone praktyki zabezpieczajgce aplikacje:

e Trzymanie sekretow z dala od kodu: Nalezy unika¢ hardcodowania sekretéw (kluczy
API, haset itp.) w kodzie aplikacji lub w niezabezpieczonych plikach konfiguracyjnych.
Takie dane powinny by¢ przechowywane bezpiecznie (np. pobierane z serwera po
uwierzytelnieniu lub zapisane w szyfrowanym magazynie urzadzenia). W przeciwnym
razie atakujgcy moze tatwo wydoby¢ te informacje, np. przez inzynierie wsteczna
aplikacji. Zalicza sie to do typowych btedow — czesto spotykane jest przechowywanie
kluczy i sekretéw w kodzie aplikacji. Zamiast tego korzystamy z bezpiecznych
magazynow platformowych.

e Bezpieczne przechowywanie danych: Urzadzenia mobilne czesto sg narazone na
fizyczng utrate lub ztosliwe oprogramowanie, dlatego wrazliwe dane lokalne nalezy
odpowiednio zabezpieczy¢. Uzywaj platformowych magazynéw bezpiecznych — na
iOS jest to Keychain, a na Androidzie Keystore — do przechowywania haset, tokenéw
sesji itp.. Dane tam zapisane sg chronione na poziomie sprzetowym i systemowym
(np. szyfrowane, powigzane z ekranem blokady). Unikaj przechowywania poufnych
informacji w zwyktych preferencjach, plikach czy bazach SQLite bez szyfrowania.
Minimalizuj lokalne przechowywanie — zapisuj tylko to, co konieczne, i czy$¢ dane
przy wylogowaniu uzytkownika. Czyszczenie danych (cache, danych sesyjnych) po
wylogowaniu zapewnia, ze kolejna osoba uzywajgca urzadzenia nie uzyska dostepu
do cudzych informacji.

e Logi bez wrazliwych informacji: Podczas debugowania aplikacji tatwo zostawi¢ w
logach informacje o uzytkowniku, tokeny czy inne wrazliwe dane. Unikaj logowania
poufnych danych w produkcyjnej wersji aplikacji. Nawet jesli Android od pewnej
wersji ogranicza dostep do logcat dla aplikacji trzecich, na wielu urzadzeniach
uprzywilejowane aplikacje systemowe nadal mogg czytac logi. Zasada jest prosta:
loguj tylko to, co niezbedne, najlepiej statyczne komunikaty, a przed publikacjg usuni
lub wytgcz szczegbtowe logowanie debugowe. Jesli juz musisz cos$ zalogowa¢ dla
celdw diagnostycznych, maskuj wrazliwe fragmenty (np. pokazuj tylko ostatnie 4
cyfry numeru karty) aby nie wyciekty petne dane. Warto stosowaé¢ mechanizmy
usuwania logéw debug w kompilacji produkcyjnej (np. przez narzedzia typu
ProGuard/R8 na Androidzie, ktére mogg usuwaé wywotania logowania).

Bezpieczna komunikacja sieciowa (MITM i pinning). Komunikacja aplikacji z serwerem
powinna by¢ zawsze odpowiednio zabezpieczona, aby uniemozliwié¢ podstuch (atak typu
man-in-the-middle, MITM). Nalezy uzywa¢ protokotu HTTPS (TLS) do wszelkiej komunikacji

z backendem i weryfikowac certyfikaty SSL. Aplikacja nie moze akceptowac dowolnych
certyfikatéw (np. samopodpisanych) bez weryfikacji — takie btedy pozwalajg atakujgcemu
podszyc sie pod serwer. Wedtug OWASP jednym z gtéwnych zagrozen jest niezabezpieczona
komunikacja, np. brak TLS lub akceptowanie kazdego certyfikatu, co umozliwia MITM.
Standardem jest wiec korzystanie z HTTPS z poprawng walidacjg certyfikatu CA.

Ponadto zalecang praktyka jest certyfikaty pinning, czyli przypiecie certyfikatu lub klucza
publicznego serwera w aplikacji. Polega to na tym, ze aplikacja ma zapisany wzorzec
certyfikatu lub klucz publiczny, ktéremu ufa — i podczas nawigzywania potaczenia TLS
sprawdza, czy certyfikat serwera odpowiada temu wzorcowi. Jesli nie, zrywa pofaczenie
nawet jesli systemowa lista zaufanych urzedéw certyfikacji by go zaakceptowata. Pinning
zabezpiecza przed sytuacja, w ktérej ktos zdota uzyskad fatszywy certyfikat od urzedu
certyfikacji lub przechwyci¢ ruch na urzadzeniu (np. za pomoca wtasnego zaufanego
certyfikatu). Implementacja pinningu wymaga aktualizacji aplikacji, gdy certyfikat serwera
wygasnie lub sie zmieni — nalezy to uwzglednié¢ (mozna np. pinowac klucz publiczny, ktéry
zmienia sie rzadziej niz caty certyfikat). OWASP zaleca wykorzystywa¢ pinning tam, gdzie to
mozliwe, jako dodatkowg warstwe obrony. Podsumowujac: zawsze uzywaj szyfrowania
transportu (TLS) i obstuguj btedy certyfikatéw poprawnie (nie ignoruj ich), aw
newralgicznych aplikacjach rozwaz pinning.

Ograniczanie liczby zgdan (Rate limiting). Aplikacje mobilne czesto korzystajg z API, ktére sg
narazone na naduzycia — np. préby sitowego odgadniecia hasta, spamowania endpointéw czy
generowania nadmiernego ruchu. Rate limiting to mechanizm ograniczania czestotliwosci
wywoftan danego dziatania w okreslonym czasie. Cho¢ zwykle implementuje sie go po stronie
serwera, deweloper mobilny powinien go uwzgledni¢ w projektowaniu systemu.
Przyktadowo: ograniczenie liczby préb logowania (np. kilka nieudanych préb skutkuje
czasowg blokada kolejnych) zapobiega atakom stownikowym. Limitowanie moze dotyczy¢
tez np. liczby zapytan do API na minute z jednego tokena czy adresu IP. Wedtug zalecen
bezpieczenstwa, stosowanie limitéw i odpowiednich kodéw btedéw/odpowiedzi (np. HTTP
429 Too Many Requests) jest kluczowe dla ochrony przed automatycznymi atakami i
nadmiernym obcigzeniem ustug. Z perspektywy aplikacji mobilnej warto réwniez lokalnie
throttlowac pewne akcje uzytkownika (np. nie pozwoli¢ wystaé¢ 100 zgdan na sekunde z Ul,
nawet jesli APl to utnie). Mechanizmy te nie wptywajg na zwyktych uzytkownikéw, a
znaczgco podnoszg bezpieczeristwo i odpornos¢ systemu.

Dostepnosc aplikacji (Accessibility)

Dostepnosé, okreslana czesto skrétem ally, to cecha aplikacji, ktéra pozwala na wygodne
korzystanie z niej rowniez osobom z niepetnosprawnosciami lub ograniczeniami (np. wzroku,
stuchu, motoryki). Tworzgc aplikacje mobilne musimy zapewni¢, ze kazdy uzytkownik bedzie
w stanie z niej skorzysta¢ — w praktyce oznacza to wsparcie dla czytnikow ekranu (VoiceOver
na i0S, TalkBack na Androidzie), mozliwos¢ obstugi aplikacji bez patrzenia na ekran lub bez
uzycia dotyku, dobre kontrasty kolordw, skalowalny tekst itp. W wielu krajach zadbanie o
dostepnosc nie jest tylko dobrg praktyka, ale wrecz wymogiem prawnym (np. aplikacje
publiczne muszg spetniac¢ standardy WCAG 2.1 na poziomie AA). Ponizej oméwimy gtowne
aspekty dostepnosci w kontekscie aplikacji (zwtaszcza React Native, ale zasady sg podobne
dla natywnych aplikacji).

Role i etykiety elementow interfejsu

Etykiety dostepnosci (accessibilityLabel). Kazdy element interfejsu, ktory przekazuje
informacje lub jest interaktywny, powinien miec¢ opis dla czytnika ekranu. W React Native
stuzy do tego wtasciwos¢ accessibilityLabel, w komponentach iOS/Android analogicznie ustawia
sie etykiety dostepnosci. Czytnik ekranu odczytuje te etykiete na gtos, gdy fokus znajdzie sie
na danym elemencie. Etykieta powinna zwiezle opisywac element, np. dla ikony przycisku
bez tekstu nalezy ustawié accessibilityLabel="Otwérz ustawienia uzytkownika" zamiast samej nazwy
ikony. W RN jezeli elementem jest tekst, atrybut ten domyslnie zacigga tres¢ tekstu — ale
czesto trzeba doprecyzowac. Przyktad w RN:

<Pressable accessibilityLabel="0Otwdrz ustawienia uzytkownika" onPress={openSettings}>
<Text>Ustawienia</Text>
</Pressable>

Tutaj przycisk wizualnie pokazuje ikone/tekst "Ustawienia", lecz dla czytnika ekranu
przekazujemy petniejszy opis co robi (np. "Otwodrz ustawienia uzytkownika"). Dobre etykiety
mowig co to jest i do czego stuzy element, nie zawierajg szczegétéw wizualnych (np. kolor
przycisku) — bo to nieistotne dla uzytkownika niewidomego.

Role (accessibilityRole). Kazdy element interfejsu ma pewna role (rodzaj) — np. przycisk,
nagtdwek, obraz, pole tekstowe itp. Okreslanie roli pomaga technologiom asystujgcym
poinformowacé uzytkownika, z czym ma do czynienia. W React Native stuzy do tego prop
accessibilityRole. Przyktadowe wartosci to m.in. "button" (przycisk), "header" (nagtowek sekcji),
"image", "text", "link", "search”, "checkbox" itd. Powinni$my ustawiac role zgodnie z
przeznaczeniem elementu — np. jesli zbudowalismy wtasny komponent dotykowy petnigcy
funkcje przycisku, nadajmy mu accessibilityRole="button". Czytnik wtedy ogtosi go jako
“przycisk”. W RN elementy interaktywne (TouchableOpacity, Pressable itp.) domysinie sg
dostepne i czesto traktowane jak przyciski, ale dla pewnosci mozna role podaé. Przyktad:

<View accessible={true} accessibilityRole="button" onTouchEnd={...}>
<Text>Kliknij mnie</Text>
</View>

Tutaj zwykty widok view zostat oznaczony jako dostepny i jego rola to button, wiec
VoiceOver/TalkBack potraktuje catos$¢ jako przycisk. Z drugiej strony, elementy czysto
dekoracyjne, ktére nie powinny by¢ czytane, powinny mieé wytgczong dostepnosé
(accessible={false}), aby nie “zasmiecaty” uzytkownikowi informacji.

Porzadek fokusu i nawigacja

Kolejnos¢ fokusu. Uzytkownik niewidomy lub majacy problemy z interakcjg czesto nawiguje
po aplikacji za pomocg przyciskow sprzetowych lub gestow, ktére przemieszczajg fokus
kolejno miedzy elementami. Bardzo wazne jest, aby logiczna kolejnos¢ fokusu odpowiadata
intuicyjnej kolejnosci tresci. Zazwyczaj jest to kolejnos¢ zgodna z uktadem Ul (np. od goéry do
dotu, lewa do prawa). W React Native (i ogdlnie w natywnych aplikacjach) kolejnos¢ czytania
odpowiada kolejnosci dodania elementéw w hierarchii widokéw. Dlatego nalezy tworzy¢
layout w takiej strukturze, by sekwencja elementéw w kodzie byta logiczna do czytania. Jesli

np. cos$ jest na ekranie po lewej a potem po prawej, ale w kodzie zostanie dodane odwrotnie,
czytnik moze czytaé w ztej kolejnosci.

W trudniejszych przypadkach platformy oferujg mechanizmy recznego ustalenia kolejnosci.
W RN eksperymentalnie istnieje prop accessibilityOrder pozwalajgcy definiowaé konkretnag
kolejnos¢ elementdéw, gdy domysina jest niewfasciwa. W Androidzie natywnie mozna uzy¢
atrybutu android:accessibilityTraversalAfter, a w iOS utozy¢ elementy w odpowiedniej kolejnosci
lub uzy¢ konteneréw dostepnosci. Kontenery dostepnosci (np. grupowanie pod
accessible={true} na rodzicu w RN) mogg sprawic, ze cata grupa jest czytana jako jedna catos¢,
co tez wptywa na kolejno$é. Podsumowujgc: upewnij sie, ze nawigacja po elementach jest
logiczna, i uzywaj mechanizmoéw konteneréw lub wytycznych platformy, by to osiggnac.
Testuj swojg aplikacje za pomocg czytnika ekranu, przechodzgc krokowo przez elementy —
czy fokus przeskakuje w sensowny sposéb. Jesli nie, popraw kolejnos¢ w kodzie lub zastosuj
odpowiednie atrybuty.

Kontrast kolorow

Kontrast tekstu do tta musi by¢ wystarczajgco wysoki, aby tekst byt czytelny dla oséb
stabowidzacych lub przy gorszym oswietleniu. Wytyczne WCAG 2.1 zalecajg kontrast co
najmniej 4.5:1 dla tekstu matej wielkosci (oraz 3:1 dla duzych nagtéwkdéw). Oznacza to, ze np.
szary tekst na jasnym tle moze by¢ nieczytelny. Nalezy dobierac¢ kolory tekstu i tta tak, by
réznica jasnosci i koloru spetniata te kryteria. Sprawdzaj kontrast za pomocg dostepnych
narzedzi — np. strona WebAIM udostepnia Color Contrast Checker, gdzie podajemy kolory i
otrzymujemy ich wspotczynnik kontrastu. W fazie designu warto od razu przewidzie¢
odpowiednig palete barw.

Ponadto aplikacje mobilne powinny respektowad tryby wysokiego kontrastu, jesli system
takowe oferuje. Np. w Androidzie jest opcja wysokiego kontrastu tekstu — nasza aplikacja
powinna nie nadpisywac systemowych ustawien (nie blokowac¢ zmiany koloréw). W i0OS
mozna uzy¢ dynamicznych koloréw z palety systemowej (ktére automatycznie dostosowuja
sie do trybu zwiekszonego kontrastu lub trybu ciemnego/jasnego). Generalnie, unikaj
matych, jasnoszarych literek na biatym tle czy kombinacji koloréw jak ciemnoczerwony tekst
na czarnym tle, itp. Zapewnij tez mozliwo$é odrdznienia elementéw interfejsu bez polegania
wyfacznie na kolorze — np. podkresl linki (nie tylko kolor) dla oséb z daltonizmem.
Dostateczny kontrast to podstawa dostepnosci wizualnej.

Dynamiczne skalowanie tekstu (Dynamic Type)

Wielu uzytkownikdw potrzebuje wiekszego tekstu na ekranie — np. osoby stabowidzgce lub
nawet w okreslonych warunkach (maty ekran, silne $wiatto stoneczne). Systemy mobilne
umozliwiajg ustawienie preferowanego rozmiaru czcionki. Dynamic Type to funkcja iOS (oraz
odpowiedniki w Androidzie), ktéra skaluje czcionki w aplikacjach zgodnie z preferencjami
uzytkownika. Jako twdrcy aplikacji musimy wspierac¢ skalowanie tekstu — to znaczy uzywac
stylow tekstu, ktore sg skalowalne, i testowac nasz interfejs na powiekszonych czcionkach. W
React Native standardowy komponent <Text> obstuguje dynamiczne skalowanie jesli nie
zablokujemy tego. RN uzywa mechanizmu Apple Dynamic Type automatycznie dla
systemowych fontéw, ale developer musi upewnié sie, ze interfejs nadal wyglada poprawnie

przy wiekszym tekscie. Absolutnie nie powinno sie ustawia¢ wszedzie sztywno font-size na
matg wartosc¢ ignorujgc ustawienia systemowe.

Dobra praktyka: wez urzgdzenie, wejdz w ustawienia Accessibility > Display & Text Size
(i0S) lub Utatwienia dostepu > Rozmiar tekstu (Android) i ustaw najwiekszg czcionke, a
nastepnie uruchom swojg aplikacje. Czy wszystkie napisy sg nadal czytelne i mieszczg sie na
ekranie? Czy nie obcinajg sie lub nie nachodzg na inne elementy? Jesli tak — musisz poprawié
layout (np. uzy¢ komponentéw przewijalnych dla dtugich tekstéw, da¢ elementom wiecej
elastycznosci). Zapewnienie dynamicznego tekstu czesto oznacza tez stosowanie jednostek
wzglednych (np. EMS) zamiast pikseli przy definiowaniu wtasnych fontéw. W RN mozna tez
odpyta¢ modut Accessibilitylnfo o preferowany rozmiar tekstu i reagowac na zmiany, jesli
potrzeba. Ogdlnie, szanuj ustawienia uzytkownika — ktos$ celowo ustawit duzy tekst, wiec
Twoja aplikacja powinna to respektowac zamiast np. wyswietla¢ tekst w formie obrazu,
ktérego nie da sie skalowaé.

Podsumowujgc cze$é o dostepnosci: projektuj interfejs z myslg o wszystkich. Oznacz
elementy wtasciwymi etykietami i rolami, dbaj o logiczng nawigacje po nich, uzywaj
czytelnych kontrastow i umozliwiaj skalowanie tresci. Testuj aplikacje uzywajac czytnika
ekranu (warto samemu wiaczy¢ VoiceOver/TalkBack i sprébowac uzy¢ aplikacji) oraz innych
ufatwien (zmiana czcionki, wysoki kontrast). Dzieki temu aplikacja bedzie bardziej uzyteczna
i przyjazna nie tylko dla osdb z niepetnosprawnosciami, ale dla wszystkich uzytkownikéw
(dostepnosé czesto poprawia ogdlng uzytecznosé produktu).

Internationalizacja (i18n) w aplikacjach

i18n (internationalization) to przystosowanie aplikacji do tatwego ttumaczenia interfejsu na
rézne jezyki i dostosowania do réznych regiondw. Z kolei lokalizacja (110n) to konkretne
przettumaczenie i dostosowanie do danego jezyka/kultury. W kontekscie React Native (i
ogdlnie aplikacji JavaScriptowych) popularnym rozwigzaniem jest biblioteka i1l8next wraz z
integracjg react-il8next. Pozwala ona zarzadzaé stownikami wielu jezykdw i przetgczaé je w
locie. Dlaczego to wazne? Jesli aplikacja ma uzytkownikéw w réznych krajach, oczekujg oni
interfejsu w swoim jezyku, jak rowniez lokalnych formatdéw dat, liczb, jednostek miar czy
walut. Brak lokalizacji oznacza gorsze doswiadczenie uzytkownika, a nawet moze
uniemozliwi¢ korzystanie z aplikacji (np. jesli ktos$ nie zna angielskiego). Dlatego juz na etapie
tworzenia trzeba zadbac¢ 0 i18n.

i1l8next w React Native. Wykorzystanie i18next w RN jest podobne jak w React na web.
Aplikacja taduje biblioteki i18next i react-i18next, inicjalizuje je z listg obstugiwanych jezykow i
plikami ttumaczen (np. pliki JSON z kluczami i przettumaczonymi tekstami), a nastepnie
zamiast pisac teksty na sztywno w komponentach, uzywa funkcji ttumaczacej. Typowy
przeptyw:

1. Instalacja: npm install i18next react-i18next (ew. dodatkowo detector jezyka uzytkownika,
backend do fadowania plikéw, jesli potrzebne).

2. Pliki ttumaczen: Utworzenie np. folderu locales, a w nim plikéw JSON dla kazdego
jezyka, np. en.json, pl.json. W $rodku obiekty klucz-wartos¢, np. { "login": "Log In",
"welcome": "Welcome {{name}}" } dla angielskiego i odpowiedniki po polsku { "login":

"Zaloguj", "welcome": "Witaj {{name}}" }. Klucze mogg miec tez zagniezdzong strukture
(kropki) dla organizacji.

3. Inicjalizacja i konfiguracja: Wywotujemy i18next.init() (lub korzystamy z useTranslation
hook z react-i18next) gdzie podajemy dostepne jezyki, domysiny jezyk, sposdb
wykrywania jezyka (np. na podstawie ustawien urzgdzenia) i tadujemy przygotowane
stowniki. Np.:

import i18n from 'il8next’;

import { initReactl18next } from 'react-il8next’;
import en from './locales/en.json’;

import pl from './locales/pl.json’;

i18n.use(initReactl18next).init({
resources: { en: { translation: en }, pl: { translation: pl } },
Ing: 'pl', // domyslny jezyk (np. ustawiony na polski)
fallbackLng: 'en',// jezyk zapasowy
interpolation: { escapeValue: false }

N;

Po takiej konfiguracji biblioteka udostepnia kontekst ttumaczen w aplikacji.

4. Uzycie w komponentach: Dzieki react-i18next mozemy wywota¢ hook const {t } =
useTranslation(); i nastepnie uzywac t('login') czy t('welcome', { name: 'Jan' }) aby uzyskaé
przettumaczony tekst. Zamiast <Text>Welcome</Text> piszemy <Text>{t('welcome', { name:
userName })}</Text>. Catfa tres¢ interfejsu powinna pochodzi¢ ze stownikéw — dzieki
temu tatwo przetaczy¢ jezyk w catej aplikacji.

Liczba mnoga (pluralizacja). Rdzne jezyki majg rézne formy liczby mnogiej, co trzeba
uwzgledni¢ w ttumaczeniach. i18next wspiera pluralizacje automatycznie — jesli przekazemy
do t parametr count, to biblioteka wybierze odpowiednig forme. W plikach ttumaczen
definiujemy wtedy teksty z sufiksami, np. klucze: "message_one": "Masz 1 nowg wiadomos¢",
"message_few": "Masz {{count}} nowe wiadomosci", "message_many": "Masz {{count}} nowych wiadomosci".
Dla jezyka polskiego wystepuja rézne formy w zaleznosci od liczby (1, 2-4, 5-21 itd.), wiec
mozemy zdefiniowad _one, _few, _many itp. Dla angielskiego sg zwykle tylko dwie formy: one i
other. Nastepnie w kodzie wywotujemy t('message’, { count: ileWiadomosci }) bez dodawania
sufiksu — i18next sam dobierze odpowiedni wariant na podstawie wartosci count i regut
danego jezyka. Wazne, by uzywaé parametru count o takiej nazwie, bo biblioteka go
rozpoznaje. Dzieki temu unikamy recznego wybierania form gramatycznych — biblioteka
korzysta z wbudowanych regut (np. dla polskiego zdefiniowane sg wyjatki dla liczebnikow
zakonczonych na 2,3,4 ale nie na 12,13,14 itd.). To znaczaco ufatwia przygotowanie
komunikatéw typu "X elementéw". Warto réwniez przewidzieé ttumaczenie dla liczby 0, bo
np. po polsku czesto jest osobna konstrukcja ("0 wiadomosci" — tutaj akurat forma jest jak
dla mnogiej, ale w innych zwrotach moze by¢ unikalna). 118next domysinie uzyje formy other
dla 0, chyba ze zdefiniujemy specjalnie klucz z sufiksem zero dla danego tekstu.

Formaty dat i liczb. Internacjonalizacja to nie tylko stowa, ale tez formatowanie dat, godzin,
liczb i walut zgodnie z lokalnymi zwyczajami. Np. data 03/04/2025 znaczy co innego w USA
(kwiecien 3) niz w Europie (3 kwietnia). Podobnie liczba 1,234.56 jest zapisywana jako

1 234,56 w Polsce (przecinek dziesietny zamiast kropki, spacja jako separator tysiecy). Kazdy

region ma witasne formaty — nawet kraje z tym samym jezykiem rdznig sie notacjg (np.
angielski w USA vs angielski w Kanadzie majg inny format daty i jednostki miar). Dlatego
aplikacja powinna uzywa¢ odpowiednich ustawien regionalnych (/ocale) do formatowania. W
JavaScript mamy wbudowane API Intl (Internationalization API) — obiekty takie jak
Intl.DateTimeFormat i Intl.NumberFormat pozwalajg formatowac daty oraz liczby zgodnie z locale.
i18next od wersji 21+ ma wbudowane funkcje formatowania korzystajgce z Intl. Mozna wiec
np. w tekscie ttumaczenia umiescic placeholder z formatowaniem: "today": "Dzi$ jest {{date,
datetime}}" i przekazac t('today’, { date: new Date() }), a biblioteka sformatuje date biezgcg wedtug
ustawien. Oczywiscie trzeba zdefiniowac, jakie formaty nas interesujg (np. krétsza czy
dtuzsza data). Alternatywnie, mozna samodzielnie uzy¢ Intl.DateTimeFormat(locale,
options).format(new Date()) — np. dla polskiego locale="pl-PL".

Wazne jest, by ustawi¢ poprawny locale z kodem kraju, nie tylko jezyk. Np. en-US vs en-GB —
obie to angielski, ale US uzywa miesigc/dzier/rok, a GB dzien/miesigc/rok i innej waluty. Z
kolei dla jezykow wieloregionalnych jak arabski, przeglgdarki mogg domysinie brac rézne
regiony (np. ar-SA vs ar-EG) co wptywa np. na uzywany kalendarz czy system numeracyjny.
W i18next mozna wymusic¢ formatowanie liczb/dat pod konkretny region poprzez
dostosowanie formattera lub wskazanie locale. Generalnie jednak, gdy aplikacja uzywa
jezyka urzadzenia, zwykle system podaje kod z regionem, wiec mozna go wykorzystac.

Przyktad formatowania liczby w i18next: w pliku ttumaczen:
"file_size": "Rozmiar pliku: {{val, number}} MB"

Jesli uzytkownik ma locale pl-PL, to t('file_size', { val: 1234.5 }) zwrdci np. "Rozmiar pliku: 1 234,5
MB", a dla en-US "File size: 1,234.5 MB". To zastuga Intl.NumberFormat pod spodem. Co wiecej,
mozna przekazywad opcje formatowania, np. {{val, number(minimumFractionDigits: 2)}} aby zawsze
byty 2 miejsca po przecinku. i1l8next udostepnia takze skrot currency, np. {{price, currency(USD)}}
wyswietli kwote w dolarach z symbolami.

Podsumowujgc, nalezy korzysta¢ z mechanizméw formatowania odpowiednich dla locale
zamiast sklejania dat recznie. To gwarantuje poprawnosc¢ i dostosowanie do przyzwyczajen
uzytkownika. Upewnijmy sie tez, ze w réznych jezykach uwzgledniamy rézne dtugosci
tekstow — np. ttumaczenie moze by¢ znacznie dtuzsze i trzeba to zmiesci¢ w Ul (projektujac
elastyczne kontenery).

Podejscie Offline-First w aplikacjach

Tradycyjnie aplikacje zaktadaty state potaczenie z internetem — to podejscie online-first.
Offline-first to filozofia projektowania, w ktdrej aplikacja jest w stanie dziata¢ (przynajmniej
czesciowo) bez dostepu do sieci. Oznacza to, ze rdzenne funkcje aplikacji dziatajg offline, a
gdy internet jest dostepny, nastepuje synchronizacja danych. W kontekscie aplikacji
mobilnych jest to niezwykle cenna cecha: uzytkownicy czesto tracg zasieg (metro, samolot,
staby sygnat), a chcieliby nadal korzysta¢ z aplikacji. Aplikacja offline-first nie wyswietli wtedy
komunikatu "brak internetu — nie da sie nic zrobic", tylko pozwoli dalej przeglada¢ dane,
wprowadzacé zmiany, ktdre zostang zapisane i wystane pdziniej.

Najwazniejsze sktadowe podejscia offline-first to cache danych, kolejka zmian do
synchronizacji oraz odpowiedni Ul awaryjny (fallback):

e Cache danych (pamie¢ podreczna): Aplikacja powinna przechowywa¢ lokalnie kopie
najwazniejszych danych pobranych z serwera, aby méc je wyswietlié, gdy potgczenie
zniknie. Przy pierwszym uzyciu lub przy pofaczeniu, dane sg pobierane i zapisywane w
lokalnej bazie danych, plikach (np. AsyncStorage w RN, baza SQLite, Realm, itp.). W
razie braku internetu aplikacja korzysta z danych z cache, dzieki czemu uzytkownik
ma dostep do ostatnio zatadowanych informacji. Przyktady: aplikacja newsowa moze
cache’owac ostatnie artykuty, aby dato sie je czytac¢ offline; mapy cache’ujg kafelki
map; sklep internetowy moze przechowac liste produktéw przeglgdanych ostatnio.
Wazne jest, by implementowa¢ mechanizmy odswiezania — np. wersjonowanie
cache lub jego uniewaznianie, aby po odzyskaniu sieci pobra¢ nowsze dane (zeby nie
tkwic¢ na zawsze w starych informacjach). Caching to podstawa trybu offline —
sprawia, ze nasza aplikacja w ogdéle ma co pokazac bez internetu.

o Kolejka mutacji (operacji do wykonania): Samo czytanie danych offline to jedno, ale
co jesli uzytkownik wykona akcje offline — np. napisze komentarz, wypetni formularz,
doda obiekt? Podejscie offline-first zaktada, ze takie operacje nie zostang utracone.
Zamiast odrzuci¢ dziatanie, aplikacja zapisuje je w kolejce i oznacza do wystania, gdy
tylko potgczenie wrdci. Czyli np. wiadomos¢ wystana w komunikatorze offline
powinna zostaé zapisana lokalnie i oznaczona jako "oczekujaca". Gdy siec sie pojawi,
aplikacja automatycznie podejmie prébe wystania tych zalegtych akcji do serwera
(background sync). Taka kolejka powinna by¢ trwata (persistent), czyli nawet jak
uzytkownik zamknie aplikacje zanim wréci sie¢, to po ponownym uruchomieniu i
odzyskaniu potfaczenia, synchronizacja powinna sie odbyé. Technicznie mozna to
zrobié np. zapisujac akcje w lokalnej bazie z timestampem. Po odzyskaniu sieci — co
mozna wykry¢ przez eventy systemowe lub biblioteke typu NetInfo — aplikacja
probuje wystac akcje z kolejki (w tle, niewidoczne dla uzytkownika). Jesli serwer
potwierdzi ich przyjecie, usuwa je z kolejki lokalnej. Moga tu wystgpié konflikty (np.
uzytkownik zmienit co$ offline, a w miedzyczasie online nastgpita inna zmiana) —
wtedy trzeba przewidziec strategie rozwigzywania konfliktow (np. ostatnia zmiana
wygrywa, albo pytamy uzytkownika). Najwazniejsze jednak, by zadne dane wpisane
offline nie przepadty. Przyktady: aplikacja ankietowa pozwala gtosowa¢ offline i
trzyma gtosy w kolejce, by wystaé je pdzniej; aplikacja do zarzadzania zadaniami
zapisuje dodane/edytowane zadania offline i synchronizuje z serwerem przy
najblizszej okazji. Implementujac to, warto tez wprowadzi¢ limit ponawiania i
mechanizm backoff (np. jesli wysytanie sie nie udaje, prébuj ponownie coraz rzadziej)
oraz zadbac o bezpieczenistwo — dane w kolejce tez mogg by¢ wrazliwe, wiec powinny
by¢ przechowywane bezpiecznie i przesytane po odzyskaniu sieci w sposéb
zabezpieczony (TLS).

e Fallback Ul (interfejs awaryjny): Uzytkownik powinien by¢ informowany o stanie
offline i o tym, co aplikacja robi. Dobre praktyki to np. oznaczanie tresci, ktore
pochodzg z cache (zeby byto jasne, ze mogg by¢ nieaktualne), komunikat "Jestes w
trybie offline — przegladasz ostatnio pobrane dane". Jesli uzytkownik wykonat akcje
(np. wystat wiadomos$¢), mozna jg od razu pokazac w interfejsie (tzw. optymistyczna
aktualizacja Ul), ale oznaczy¢ np. szarym kolorem lub ikonkg zegara, ze czeka na
wystanie. W razie gdyby synchronizacja sie nie powiodta, nalezy daé¢ mozliwos¢

ponownego wystania lub poinformowac o problemie. Obstuga btedéw i mechanizmy
zapasowe sg wazne: aplikacja moze np. jesli kolejka nie moze sie wystac przez dtuzszy
czas, powiadomi¢ uzytkownika "Twoje dane zostang wystane gdy tylko odzyskamy
potgczenie" zamiast trzymacé go w niepewnosci. Powinna tez mie¢ plan awaryjny:
jesli naprawde nic nie mozemy zatadowac (pierwsze uruchomienie offline, brak
cache) — wyswietlamy przyjazny komunikat lub ograniczong funkcjonalnos$¢ zamiast
zawieszenia. OWASP (oraz inne zrédta) zalecajg np. cache fallback — pokazywanie
"last known good state" danych, gdy nie mozna pobrac¢ nowszych. Uzytkownik wtedy
widzi przynajmniej cos$, zamiast pustego ekranu. Ponadto informuj o stanie
synchronizacji — np. jak tylko sie¢ wrdci, mozesz pokazac¢ toast "Potgczenie
przywrdcone — dane zostajg zsynchronizowane". Gdy operacje sie powiodg, usun
oznaczenia oczekujgcych elementdw. Taka transparentnosé zwieksza zaufanie
uzytkownika do aplikacji.

Podsumowujac, aplikacja offline-first wykorzystuje lokalng pamiec jako zrédto prawdy, a siec¢
stuzy do wymiany danych w tle. Wymaga to wiecej pracy przy implementacji, ale znaczgco
poprawia UX — aplikacja jest szybka (bo czyta lokalnie) i odporna na staby internet.
Przyktady udanych wdrozen to choéby mobilna aplikacja Trello, gdzie tablice i karty mozna
przegladac i edytowac offline, a zmiany zostang zsynchronizowane automatycznie po
odzyskaniu sieci. W dobie roku 2025 uzytkownicy wrecz oczekujg pewnej dozy dziatania
offline, a narzedzia (np. biblioteki Redux Offline, WatermelonDB, Apollo Client z cache
persist, itp.) znacznie to utatwiaja.

Przyktad: i18n, dostepnosc¢ i cache w praktyce

Na koniec pofagczmy powyzsze zagadnienia w mini demonstracje. Wyobrazmy sobie prosty
formularz logowania w aplikacji React Native, do ktdrego dodamy obstuge wielu jezykow
(i18n) oraz ulepszenia dostepnosci, a takze zaimplementujemy prosty mechanizm offline
dla listy danych.

1. Dodanie i18n do formularza: Zatézmy, ze mamy formularz z polami "Email", "Hasto" i
przyciskiem "Zaloguj". Chcemy obstugiwac angielski i polski. Korzystamy z i18next:

Przygotowujemy pliki ttumaczen en.json i pl.json:

// pl.json

{
"login_title": "Logowanie",
"email_label": "Email",
"password_label": "Hasto",
"login_button": "Zaloguj"

}

// en.json

{
"login_title": "Login",
"email_label": "Email",
"password_label": "Password",
"login_button": "Log In"

}

¢ Inicjalizujemy i18next z tymi zasobami (podobnie jak opisano wczesniej, uzywajac
initReactl18next). Ustawiamy domysiny jezyk na np. polski, ale tez mechanizm
wykrywania (zeby np. dopasowac do jezyka telefonu).

e W komponencie formularza korzystamy z hooka useTranslation(). Nastepnie zamiast na
sztywno wpisywac teksty, uzywamy t('email_label'), t('password_label') itp.:

import { useTranslation } from 'react-i18next’;

const { t } = useTranslation();
return (
<View>
<Text style={styles.title}>{t('login_title')}</Text>
<TextInput placeholder={t('email_label')} ... />
<TextInput placeholder={t('password_label')} secureTextEntry ... />
<Button title={t('login_button')} onPress={handleLogin} />
</View>

);

e Terazinterfejs bedzie w wybranym jezyku. Aby zmienic jezyk, wystarczy wywotac
i18n.changelanguage('en') — wszystkie komponenty korzystajgce z t zareagujg i pokazg
teksty po angielsku. Dzieki i18n tatwo rozbudujemy aplikacje o kolejne jezyki bez
modyfikacji kodu logiki.

2. Etykiety dostepnosci: Kontynuujac nasz formularz — dodamy atrybuty utatwiajgce zycie
osobom uzywajgcym czytnikow ekranu:

o Label dla tekstu tytutowego: Jesli "Logowanie" jest nagtéwkiem ekranu, mozna
oznaczyc go rolg nagtéwka. W RN moglibysmy zrobié <Text accessibilityRole="header">....
¢ Pola formularza: element <Textlnput> nie jest automatycznie odczytywany z etykietg

(placeholder bywa czytany, ale lepiej da¢ wtasng). Mozna podejs¢ dwojako: albo uzy¢

komponentu <Label> zwigzanego z polem (w natywnym iOS/Android mozna taczy¢
etykiety z polami), albo w RN skorzystac z accessibilityLabel. Np.:

<Textlnput
placeholder={t('email_label')}
accessibilityLabel={t('email_label')}

/>
W ten sposdb VoiceOver przeczyta "Email, pole edycji tekstu". Podobnie dla hasta:

<Textlnput
placeholder={t('password_label')}
accessibilityLabel={t('password_label")}
secureTextEntry={true}
accessibilityHint="Pole hasta. Tekst niewidoczny podczas pisania."

>

Tutaj uzyliSmy tez accessibilityHint, aby dodac wskazéwke, ze wpisywany tekst bedzie

maskowany (czytnik mogtby i tak to wiedzieé, bo secureTextEntry ustawia role hasta).

e Przycisk logowania: Uzywajgc komponentu <Button> w RN, on sam przekazuje tekst
jako etykiete. Ale jesli to bytby np. ikona zamiast tekstu, konieczne bytoby dodanie
accessibilityLabel={t('login_button')}. Upewniamy sie tez, ze rola jest wtasciwa (Button
zwykle ma juz role button).

¢ Grupowanie i kolejno$é: Sprawdzamy, czytnikiem ekranu, ze fokus idzie kolejno:
tytut "Logowanie" (nagtéwek), pole Email, pole Hasto, przycisk Zaloguj. Jesli np. Ul
jest w kolumnie, to tak bedzie. Gdyby kolejnos¢ byta niepoprawna, moglibysmy
owing¢ pola w kontener z accessible={false} lub zastosowac wspomniane atrybuty
kolejnosci (ale to raczej zbedne tutaj).

e Rozmiar przyciskow i czytelnosé: Upewnimy sie, ze elementy dotykowe sg
wystarczajgco duze (min. 44x44pt wedtug Apple —w RN tatwo osiggalne jesli
uzywamy standardowych przyciskdw). Kolory tekstu i tta — np. biaty tekst "Zaloguj" na
niebieskim przycisku — powinny mie¢ kontrast > 4.5:1. Jesli tto jest jasne, tekst musi
by¢ ciemny i vice versa.

3. Prosty cache offline dla listy: Teraz zatézmy, ze po zalogowaniu aplikacja wyswietla liste
np. ostatnich wiadomosci lub produktéw. Chcemy zaimplementowaé mechanizm cache +
offline:

¢ Przechowywanie danych: Wybierzemy najprostszg metode — AsyncStorage (w RN
jest to modut zapewniajgcy prosty asynchroniczny magazyn klucz-wartosc). Gdy

pobieramy liste z API, po udanym pobraniu zapiszemy jg réwniez w AsyncStorage.
Np.:

async function fetchData() {
try {
const response = await fetch(API_URL);
const data = await response.json();
setltems(data);
await AsyncStorage.setltem('itemsCache’, JSON.stringify(data));
} catch (err) {
console.error(err);
}
}

Ta funkcja pobiera dane i zapisuje cache pod kluczem 'itemsCache'.

e Odczyt z cache przy braku internetu: Potrzebujemy wykry¢ stan offline. Mozemy
skorzystac z biblioteki @react-native-community/netinfo — daje eventy o zmianie sieci. Jesli
okaze sie, ze uzytkownik jest offline (lub fetch zakorniczy sie btedem sieci), to:

const cached = await AsyncStorage.getltem('itemsCache');
if(cached) {
setltems(JSON.parse(cached));
}else {
// Brak cache - pokaz komunikat o braku danych
}

Czyli wyswietlamy dane z cache (jesli istniejg). Warto przy tym np. oznaczy¢ w Ul, ze
to dane offline (np. szary baner "Offline mode: showing cached data").

¢ Aktualizacja cache: Przy ponownym potgczeniu, mozemy automatycznie odswiezy¢
dane. Jesli uzywamy NetInfo, mozemy nastuchiwac kiedy isConnected zmienia sie na
true i wtedy wykonac fetchData() ponownie. Po odswiezeniu lista pokazuje najnowsze
dane, a cache zostaje zaktualizowany.

e Kolejka zmian (prostota): Jesli nasza lista pozwala np. usuwac elementy, a
uzytkownik zrobi to offline — mozemy zapisac taka akcje w kolejce (np.
AsyncStorage.setltem 'queuedDeletes’, itp.). W ramach tego prostego przyktadu
mozna zatozyé, ze lista jest tylko do odczytu offline, a zmiany wymagajg internetu (to
upraszcza sprawe). W bardziej rozbudowanej appce uzylibySmy np. biblioteki Redux
Offline albo napisali wtasny mechanizm kolejek jak opisano wczesniej.

o Fallback Ul: W naszym przyktadzie, gdy brak internetu i brak cache, powinnismy
pokazaé uzytkownikowi np. ekran z komunikatem "Brak potgczenia. Sprébuj
ponownie pdzniej." zamiast pustej listy. Gdy cache jest, pokazemy liste z cache + np.
ikone offline. Dobrze jest tez udostepnic przycisk "Sprébuj ponownie" do recznego
odswiezenia, ktéry wymusi sprawdzenie potaczenia.

o Bezpieczenstwo danych cache: Jesli lista zawiera bardzo wrazliwe dane, nalezatoby
rozwazyc szyfrowanie przed zapisem do AsyncStorage (bo AsyncStorage na
i0S/Android jest co prawda prywatne dla aplikacji, ale przechowywane w zwyktym
pliku). Dla naszych potrzeb demo, mozna pomingc.

Tak zaimplementowany prosty mechanizm zapewni, ze uzytkownik widzi ostatnie znane
dane nawet bez internetu, co znaczgco poprawia doswiadczenie. W realnej aplikacji mozna
pojsé dalej — np. uzy¢ biblioteki typu Realm lub WatermelonDB do przechowywania danych
lokalnie i mechanizmoéw sync. Wazne jednak, by juz na etapie projektowania przewidziec¢ te
scenariusze offline.

Literatura:

https://owasp.org/www-project-mobile-top-10/ (Data dostepu: 1.10.2025)
https://reactnative.dev/docs/accessibility (Data dostepu: 1.10.2025)
https://www.i18next.com/overview/typescript (Data dostepu: 1.10.2025
https://developer.android.com/training/articles/keystore (Data dostepu:
1.10.2025)

5. https://developer.apple.com/documentation/security/keychain_services (Data
dostepu: 1.10.2025)

PwnNPE

https://owasp.org/www-project-mobile-top-10/
https://reactnative.dev/docs/accessibility
https://www.i18next.com/overview/typescript
https://developer.android.com/training/articles/keystore
https://developer.apple.com/documentation/security/keychain_services

