
POLITECHNIKA ŚWIĘTOKRZYSKA

Aplikacje mobilne – wykład
10

Bezpieczeństwo, dostępność i i18n

Mateusz Pawełkiewicz

1.10.2025

Bezpieczeństwo aplikacji mobilnych

OWASP Mobile Top 10. Organizacja OWASP co pewien czas publikuje listę Top 10
najważniejszych zagrożeń bezpieczeństwa aplikacji mobilnych. Aktualna lista obejmuje m.in.
niewłaściwe użycie mechanizmów platformy, niebezpieczne przechowywanie danych, słabe
uwierzytelnianie, błędy walidacji danych, niebezpieczną komunikację sieciową, braki w
kryptografii i inne aspekty (M1–M10). Lista ta służy jako przewodnik dla deweloperów,
wskazując obszary, na które trzeba zwrócić szczególną uwagę podczas tworzenia aplikacji
mobilnych.

Najważniejsze praktyki bezpieczeństwa: W odniesieniu do OWASP Top 10 warto stosować
sprawdzone praktyki zabezpieczające aplikację:

 Trzymanie sekretów z dala od kodu: Należy unikać hardcodowania sekretów (kluczy
API, haseł itp.) w kodzie aplikacji lub w niezabezpieczonych plikach konfiguracyjnych.
Takie dane powinny być przechowywane bezpiecznie (np. pobierane z serwera po
uwierzytelnieniu lub zapisane w szyfrowanym magazynie urządzenia). W przeciwnym
razie atakujący może łatwo wydobyć te informacje, np. przez inżynierię wsteczną
aplikacji. Zalicza się to do typowych błędów – często spotykane jest przechowywanie
kluczy i sekretów w kodzie aplikacji. Zamiast tego korzystamy z bezpiecznych
magazynów platformowych.

 Bezpieczne przechowywanie danych: Urządzenia mobilne często są narażone na
fizyczną utratę lub złośliwe oprogramowanie, dlatego wrażliwe dane lokalne należy
odpowiednio zabezpieczyć. Używaj platformowych magazynów bezpiecznych – na
iOS jest to Keychain, a na Androidzie Keystore – do przechowywania haseł, tokenów
sesji itp.. Dane tam zapisane są chronione na poziomie sprzętowym i systemowym
(np. szyfrowane, powiązane z ekranem blokady). Unikaj przechowywania poufnych
informacji w zwykłych preferencjach, plikach czy bazach SQLite bez szyfrowania.
Minimalizuj lokalne przechowywanie – zapisuj tylko to, co konieczne, i czyść dane
przy wylogowaniu użytkownika. Czyszczenie danych (cache, danych sesyjnych) po
wylogowaniu zapewnia, że kolejna osoba używająca urządzenia nie uzyska dostępu
do cudzych informacji.

 Logi bez wrażliwych informacji: Podczas debugowania aplikacji łatwo zostawić w
logach informacje o użytkowniku, tokeny czy inne wrażliwe dane. Unikaj logowania
poufnych danych w produkcyjnej wersji aplikacji. Nawet jeśli Android od pewnej
wersji ogranicza dostęp do logcat dla aplikacji trzecich, na wielu urządzeniach
uprzywilejowane aplikacje systemowe nadal mogą czytać logi. Zasada jest prosta:
loguj tylko to, co niezbędne, najlepiej statyczne komunikaty, a przed publikacją usuń
lub wyłącz szczegółowe logowanie debugowe. Jeśli już musisz coś zalogować dla
celów diagnostycznych, maskuj wrażliwe fragmenty (np. pokazuj tylko ostatnie 4
cyfry numeru karty) aby nie wyciekły pełne dane. Warto stosować mechanizmy
usuwania logów debug w kompilacji produkcyjnej (np. przez narzędzia typu
ProGuard/R8 na Androidzie, które mogą usuwać wywołania logowania).

Bezpieczna komunikacja sieciowa (MITM i pinning). Komunikacja aplikacji z serwerem
powinna być zawsze odpowiednio zabezpieczona, aby uniemożliwić podsłuch (atak typu
man-in-the-middle, MITM). Należy używać protokołu HTTPS (TLS) do wszelkiej komunikacji

z backendem i weryfikować certyfikaty SSL. Aplikacja nie może akceptować dowolnych
certyfikatów (np. samopodpisanych) bez weryfikacji – takie błędy pozwalają atakującemu
podszyć się pod serwer. Według OWASP jednym z głównych zagrożeń jest niezabezpieczona
komunikacja, np. brak TLS lub akceptowanie każdego certyfikatu, co umożliwia MITM.
Standardem jest więc korzystanie z HTTPS z poprawną walidacją certyfikatu CA.

Ponadto zalecaną praktyką jest certyfikaty pinning, czyli przypięcie certyfikatu lub klucza
publicznego serwera w aplikacji. Polega to na tym, że aplikacja ma zapisany wzorzec
certyfikatu lub klucz publiczny, któremu ufa – i podczas nawiązywania połączenia TLS
sprawdza, czy certyfikat serwera odpowiada temu wzorcowi. Jeśli nie, zrywa połączenie
nawet jeśli systemowa lista zaufanych urzędów certyfikacji by go zaakceptowała. Pinning
zabezpiecza przed sytuacją, w której ktoś zdoła uzyskać fałszywy certyfikat od urzędu
certyfikacji lub przechwycić ruch na urządzeniu (np. za pomocą własnego zaufanego
certyfikatu). Implementacja pinningu wymaga aktualizacji aplikacji, gdy certyfikat serwera
wygaśnie lub się zmieni – należy to uwzględnić (można np. pinować klucz publiczny, który
zmienia się rzadziej niż cały certyfikat). OWASP zaleca wykorzystywać pinning tam, gdzie to
możliwe, jako dodatkową warstwę obrony. Podsumowując: zawsze używaj szyfrowania
transportu (TLS) i obsługuj błędy certyfikatów poprawnie (nie ignoruj ich), a w
newralgicznych aplikacjach rozważ pinning.

Ograniczanie liczby żądań (Rate limiting). Aplikacje mobilne często korzystają z API, które są
narażone na nadużycia – np. próby siłowego odgadnięcia hasła, spamowania endpointów czy
generowania nadmiernego ruchu. Rate limiting to mechanizm ograniczania częstotliwości
wywołań danego działania w określonym czasie. Choć zwykle implementuje się go po stronie
serwera, deweloper mobilny powinien go uwzględnić w projektowaniu systemu.
Przykładowo: ograniczenie liczby prób logowania (np. kilka nieudanych prób skutkuje
czasową blokadą kolejnych) zapobiega atakom słownikowym. Limitowanie może dotyczyć
też np. liczby zapytań do API na minutę z jednego tokena czy adresu IP. Według zaleceń
bezpieczeństwa, stosowanie limitów i odpowiednich kodów błędów/odpowiedzi (np. HTTP
429 Too Many Requests) jest kluczowe dla ochrony przed automatycznymi atakami i
nadmiernym obciążeniem usług. Z perspektywy aplikacji mobilnej warto również lokalnie
throttlować pewne akcje użytkownika (np. nie pozwolić wysłać 100 żądań na sekundę z UI,
nawet jeśli API to utnie). Mechanizmy te nie wpływają na zwykłych użytkowników, a
znacząco podnoszą bezpieczeństwo i odporność systemu.

Dostępność aplikacji (Accessibility)

Dostępność, określana często skrótem a11y, to cecha aplikacji, która pozwala na wygodne
korzystanie z niej również osobom z niepełnosprawnościami lub ograniczeniami (np. wzroku,
słuchu, motoryki). Tworząc aplikacje mobilne musimy zapewnić, że każdy użytkownik będzie
w stanie z niej skorzystać – w praktyce oznacza to wsparcie dla czytników ekranu (VoiceOver
na iOS, TalkBack na Androidzie), możliwość obsługi aplikacji bez patrzenia na ekran lub bez
użycia dotyku, dobre kontrasty kolorów, skalowalny tekst itp. W wielu krajach zadbanie o
dostępność nie jest tylko dobrą praktyką, ale wręcz wymogiem prawnym (np. aplikacje
publiczne muszą spełniać standardy WCAG 2.1 na poziomie AA). Poniżej omówimy główne
aspekty dostępności w kontekście aplikacji (zwłaszcza React Native, ale zasady są podobne
dla natywnych aplikacji).

Role i etykiety elementów interfejsu

Etykiety dostępności (accessibilityLabel). Każdy element interfejsu, który przekazuje
informację lub jest interaktywny, powinien mieć opis dla czytnika ekranu. W React Native
służy do tego właściwość accessibilityLabel, w komponentach iOS/Android analogicznie ustawia
się etykiety dostępności. Czytnik ekranu odczytuje tę etykietę na głos, gdy fokus znajdzie się
na danym elemencie. Etykieta powinna zwięźle opisywać element, np. dla ikony przycisku
bez tekstu należy ustawić accessibilityLabel="Otwórz ustawienia użytkownika" zamiast samej nazwy
ikony. W RN jeżeli elementem jest tekst, atrybut ten domyślnie zaciąga treść tekstu – ale
często trzeba doprecyzować. Przykład w RN:

<Pressable accessibilityLabel="Otwórz ustawienia użytkownika" onPress={openSettings}>
 <Text>Ustawienia</Text>
</Pressable>

Tutaj przycisk wizualnie pokazuje ikonę/tekst "Ustawienia", lecz dla czytnika ekranu
przekazujemy pełniejszy opis co robi (np. "Otwórz ustawienia użytkownika"). Dobre etykiety
mówią co to jest i do czego służy element, nie zawierają szczegółów wizualnych (np. kolor
przycisku) – bo to nieistotne dla użytkownika niewidomego.

Role (accessibilityRole). Każdy element interfejsu ma pewną rolę (rodzaj) – np. przycisk,
nagłówek, obraz, pole tekstowe itp. Określanie roli pomaga technologiom asystującym
poinformować użytkownika, z czym ma do czynienia. W React Native służy do tego prop
accessibilityRole. Przykładowe wartości to m.in. "button" (przycisk), "header" (nagłówek sekcji),
"image", "text", "link", "search", "checkbox" itd. Powinniśmy ustawiać role zgodnie z
przeznaczeniem elementu – np. jeśli zbudowaliśmy własny komponent dotykowy pełniący
funkcję przycisku, nadajmy mu accessibilityRole="button". Czytnik wtedy ogłosi go jako
“przycisk”. W RN elementy interaktywne (TouchableOpacity, Pressable itp.) domyślnie są
dostępne i często traktowane jak przyciski, ale dla pewności można rolę podać. Przykład:

<View accessible={true} accessibilityRole="button" onTouchEnd={...}>
 <Text>Kliknij mnie</Text>
</View>

Tutaj zwykły widok View został oznaczony jako dostępny i jego rola to button, więc
VoiceOver/TalkBack potraktuje całość jako przycisk. Z drugiej strony, elementy czysto
dekoracyjne, które nie powinny być czytane, powinny mieć wyłączoną dostępność
(accessible={false}), aby nie “zaśmiecały” użytkownikowi informacji.

Porządek fokusu i nawigacja

Kolejność fokusu. Użytkownik niewidomy lub mający problemy z interakcją często nawiguje
po aplikacji za pomocą przycisków sprzętowych lub gestów, które przemieszczają fokus
kolejno między elementami. Bardzo ważne jest, aby logiczna kolejność fokusu odpowiadała
intuicyjnej kolejności treści. Zazwyczaj jest to kolejność zgodna z układem UI (np. od góry do
dołu, lewa do prawa). W React Native (i ogólnie w natywnych aplikacjach) kolejność czytania
odpowiada kolejności dodania elementów w hierarchii widoków. Dlatego należy tworzyć
layout w takiej strukturze, by sekwencja elementów w kodzie była logiczna do czytania. Jeśli

np. coś jest na ekranie po lewej a potem po prawej, ale w kodzie zostanie dodane odwrotnie,
czytnik może czytać w złej kolejności.

W trudniejszych przypadkach platformy oferują mechanizmy ręcznego ustalenia kolejności.
W RN eksperymentalnie istnieje prop accessibilityOrder pozwalający definiować konkretną
kolejność elementów, gdy domyślna jest niewłaściwa. W Androidzie natywnie można użyć
atrybutu android:accessibilityTraversalAfter, a w iOS ułożyć elementy w odpowiedniej kolejności
lub użyć kontenerów dostępności. Kontenery dostępności (np. grupowanie pod
accessible={true} na rodzicu w RN) mogą sprawić, że cała grupa jest czytana jako jedna całość,
co też wpływa na kolejność. Podsumowując: upewnij się, że nawigacja po elementach jest
logiczna, i używaj mechanizmów kontenerów lub wytycznych platformy, by to osiągnąć.
Testuj swoją aplikację za pomocą czytnika ekranu, przechodząc krokowo przez elementy –
czy fokus przeskakuje w sensowny sposób. Jeśli nie, popraw kolejność w kodzie lub zastosuj
odpowiednie atrybuty.

Kontrast kolorów

Kontrast tekstu do tła musi być wystarczająco wysoki, aby tekst był czytelny dla osób
słabowidzących lub przy gorszym oświetleniu. Wytyczne WCAG 2.1 zalecają kontrast co
najmniej 4.5:1 dla tekstu małej wielkości (oraz 3:1 dla dużych nagłówków). Oznacza to, że np.
szary tekst na jasnym tle może być nieczytelny. Należy dobierać kolory tekstu i tła tak, by
różnica jasności i koloru spełniała te kryteria. Sprawdzaj kontrast za pomocą dostępnych
narzędzi – np. strona WebAIM udostępnia Color Contrast Checker, gdzie podajemy kolory i
otrzymujemy ich współczynnik kontrastu. W fazie designu warto od razu przewidzieć
odpowiednią paletę barw.

Ponadto aplikacje mobilne powinny respektować tryby wysokiego kontrastu, jeśli system
takowe oferuje. Np. w Androidzie jest opcja wysokiego kontrastu tekstu – nasza aplikacja
powinna nie nadpisywać systemowych ustawień (nie blokować zmiany kolorów). W iOS
można użyć dynamicznych kolorów z palety systemowej (które automatycznie dostosowują
się do trybu zwiększonego kontrastu lub trybu ciemnego/jasnego). Generalnie, unikaj
małych, jasnoszarych literek na białym tle czy kombinacji kolorów jak ciemnoczerwony tekst
na czarnym tle, itp. Zapewnij też możliwość odróżnienia elementów interfejsu bez polegania
wyłącznie na kolorze – np. podkreśl linki (nie tylko kolor) dla osób z daltonizmem.
Dostateczny kontrast to podstawa dostępności wizualnej.

Dynamiczne skalowanie tekstu (Dynamic Type)

Wielu użytkowników potrzebuje większego tekstu na ekranie – np. osoby słabowidzące lub
nawet w określonych warunkach (mały ekran, silne światło słoneczne). Systemy mobilne
umożliwiają ustawienie preferowanego rozmiaru czcionki. Dynamic Type to funkcja iOS (oraz
odpowiedniki w Androidzie), która skaluje czcionki w aplikacjach zgodnie z preferencjami
użytkownika. Jako twórcy aplikacji musimy wspierać skalowanie tekstu – to znaczy używać
stylów tekstu, które są skalowalne, i testować nasz interfejs na powiększonych czcionkach. W
React Native standardowy komponent <Text> obsługuje dynamiczne skalowanie jeśli nie
zablokujemy tego. RN używa mechanizmu Apple Dynamic Type automatycznie dla
systemowych fontów, ale developer musi upewnić się, że interfejs nadal wygląda poprawnie

przy większym tekście. Absolutnie nie powinno się ustawiać wszędzie sztywno font-size na
małą wartość ignorując ustawienia systemowe.

Dobra praktyka: weź urządzenie, wejdź w ustawienia Accessibility > Display & Text Size
(iOS) lub Ułatwienia dostępu > Rozmiar tekstu (Android) i ustaw największą czcionkę, a
następnie uruchom swoją aplikację. Czy wszystkie napisy są nadal czytelne i mieszczą się na
ekranie? Czy nie obcinają się lub nie nachodzą na inne elementy? Jeśli tak – musisz poprawić
layout (np. użyć komponentów przewijalnych dla długich tekstów, dać elementom więcej
elastyczności). Zapewnienie dynamicznego tekstu często oznacza też stosowanie jednostek
względnych (np. EMS) zamiast pikseli przy definiowaniu własnych fontów. W RN można też
odpytać moduł AccessibilityInfo o preferowany rozmiar tekstu i reagować na zmiany, jeśli
potrzeba. Ogólnie, szanuj ustawienia użytkownika – ktoś celowo ustawił duży tekst, więc
Twoja aplikacja powinna to respektować zamiast np. wyświetlać tekst w formie obrazu,
którego nie da się skalować.

Podsumowując część o dostępności: projektuj interfejs z myślą o wszystkich. Oznacz
elementy właściwymi etykietami i rolami, dbaj o logiczną nawigację po nich, używaj
czytelnych kontrastów i umożliwiaj skalowanie treści. Testuj aplikację używając czytnika
ekranu (warto samemu włączyć VoiceOver/TalkBack i spróbować użyć aplikacji) oraz innych
ułatwień (zmiana czcionki, wysoki kontrast). Dzięki temu aplikacja będzie bardziej użyteczna
i przyjazna nie tylko dla osób z niepełnosprawnościami, ale dla wszystkich użytkowników
(dostępność często poprawia ogólną użyteczność produktu).

Internationalizacja (i18n) w aplikacjach

i18n (internationalization) to przystosowanie aplikacji do łatwego tłumaczenia interfejsu na
różne języki i dostosowania do różnych regionów. Z kolei lokalizacja (l10n) to konkretne
przetłumaczenie i dostosowanie do danego języka/kultury. W kontekście React Native (i
ogólnie aplikacji JavaScriptowych) popularnym rozwiązaniem jest biblioteka i18next wraz z
integracją react-i18next. Pozwala ona zarządzać słownikami wielu języków i przełączać je w
locie. Dlaczego to ważne? Jeśli aplikacja ma użytkowników w różnych krajach, oczekują oni
interfejsu w swoim języku, jak również lokalnych formatów dat, liczb, jednostek miar czy
walut. Brak lokalizacji oznacza gorsze doświadczenie użytkownika, a nawet może
uniemożliwić korzystanie z aplikacji (np. jeśli ktoś nie zna angielskiego). Dlatego już na etapie
tworzenia trzeba zadbać o i18n.

i18next w React Native. Wykorzystanie i18next w RN jest podobne jak w React na web.
Aplikacja ładuje biblioteki i18next i react-i18next, inicjalizuje je z listą obsługiwanych języków i
plikami tłumaczeń (np. pliki JSON z kluczami i przetłumaczonymi tekstami), a następnie
zamiast pisać teksty na sztywno w komponentach, używa funkcji tłumaczącej. Typowy
przepływ:

1. Instalacja: npm install i18next react-i18next (ew. dodatkowo detector języka użytkownika,
backend do ładowania plików, jeśli potrzebne).

2. Pliki tłumaczeń: Utworzenie np. folderu locales, a w nim plików JSON dla każdego
języka, np. en.json, pl.json. W środku obiekty klucz-wartość, np. { "login": "Log In",

"welcome": "Welcome {{name}}" } dla angielskiego i odpowiedniki po polsku { "login":

"Zaloguj", "welcome": "Witaj {{name}}" }. Klucze mogą mieć też zagnieżdżoną strukturę
(kropki) dla organizacji.

3. Inicjalizacja i konfiguracja: Wywołujemy i18next.init() (lub korzystamy z useTranslation
hook z react-i18next) gdzie podajemy dostępne języki, domyślny język, sposób
wykrywania języka (np. na podstawie ustawień urządzenia) i ładujemy przygotowane
słowniki. Np.:

import i18n from 'i18next';
import { initReactI18next } from 'react-i18next';
import en from './locales/en.json';
import pl from './locales/pl.json';

i18n.use(initReactI18next).init({
 resources: { en: { translation: en }, pl: { translation: pl } },
 lng: 'pl', // domyślny język (np. ustawiony na polski)
 fallbackLng: 'en',// język zapasowy
 interpolation: { escapeValue: false }
});

Po takiej konfiguracji biblioteka udostępnia kontekst tłumaczeń w aplikacji.

4. Użycie w komponentach: Dzięki react-i18next możemy wywołać hook const { t } =

useTranslation(); i następnie używać t('login') czy t('welcome', { name: 'Jan' }) aby uzyskać
przetłumaczony tekst. Zamiast <Text>Welcome</Text> piszemy <Text>{t('welcome', { name:

userName })}</Text>. Cała treść interfejsu powinna pochodzić ze słowników – dzięki
temu łatwo przełączyć język w całej aplikacji.

Liczba mnoga (pluralizacja). Różne języki mają różne formy liczby mnogiej, co trzeba
uwzględnić w tłumaczeniach. i18next wspiera pluralizację automatycznie – jeśli przekażemy
do t parametr count, to biblioteka wybierze odpowiednią formę. W plikach tłumaczeń
definiujemy wtedy teksty z sufiksami, np. klucze: "message_one": "Masz 1 nową wiadomość",
"message_few": "Masz {{count}} nowe wiadomości", "message_many": "Masz {{count}} nowych wiadomości".
Dla języka polskiego występują różne formy w zależności od liczby (1, 2-4, 5-21 itd.), więc
możemy zdefiniować _one, _few, _many itp. Dla angielskiego są zwykle tylko dwie formy: one i
other. Następnie w kodzie wywołujemy t('message', { count: ileWiadomosci }) bez dodawania
sufiksu – i18next sam dobierze odpowiedni wariant na podstawie wartości count i reguł
danego języka. Ważne, by używać parametru count o takiej nazwie, bo biblioteka go
rozpoznaje. Dzięki temu unikamy ręcznego wybierania form gramatycznych – biblioteka
korzysta z wbudowanych reguł (np. dla polskiego zdefiniowane są wyjątki dla liczebników
zakończonych na 2,3,4 ale nie na 12,13,14 itd.). To znacząco ułatwia przygotowanie
komunikatów typu "X elementów". Warto również przewidzieć tłumaczenie dla liczby 0, bo
np. po polsku często jest osobna konstrukcja ("0 wiadomości" – tutaj akurat forma jest jak
dla mnogiej, ale w innych zwrotach może być unikalna). I18next domyślnie użyje formy other
dla 0, chyba że zdefiniujemy specjalnie klucz z sufiksem zero dla danego tekstu.

Formaty dat i liczb. Internacjonalizacja to nie tylko słowa, ale też formatowanie dat, godzin,
liczb i walut zgodnie z lokalnymi zwyczajami. Np. data 03/04/2025 znaczy co innego w USA
(kwiecień 3) niż w Europie (3 kwietnia). Podobnie liczba 1,234.56 jest zapisywana jako
1 234,56 w Polsce (przecinek dziesiętny zamiast kropki, spacja jako separator tysięcy). Każdy

region ma własne formaty – nawet kraje z tym samym językiem różnią się notacją (np.
angielski w USA vs angielski w Kanadzie mają inny format daty i jednostki miar). Dlatego
aplikacja powinna używać odpowiednich ustawień regionalnych (locale) do formatowania. W
JavaScript mamy wbudowane API Intl (Internationalization API) – obiekty takie jak
Intl.DateTimeFormat i Intl.NumberFormat pozwalają formatować daty oraz liczby zgodnie z locale.
i18next od wersji 21+ ma wbudowane funkcje formatowania korzystające z Intl. Można więc
np. w tekście tłumaczenia umieścić placeholder z formatowaniem: "today": "Dziś jest {{date,

datetime}}" i przekazać t('today', { date: new Date() }), a biblioteka sformatuje datę bieżącą według
ustawień. Oczywiście trzeba zdefiniować, jakie formaty nas interesują (np. krótsza czy
dłuższa data). Alternatywnie, można samodzielnie użyć Intl.DateTimeFormat(locale,

options).format(new Date()) – np. dla polskiego locale="pl-PL".

Ważne jest, by ustawić poprawny locale z kodem kraju, nie tylko język. Np. en-US vs en-GB –
obie to angielski, ale US używa miesiąc/dzień/rok, a GB dzień/miesiąc/rok i innej waluty. Z
kolei dla języków wieloregionalnych jak arabski, przeglądarki mogą domyślnie brać różne
regiony (np. ar-SA vs ar-EG) co wpływa np. na używany kalendarz czy system numeracyjny.
W i18next można wymusić formatowanie liczb/dat pod konkretny region poprzez
dostosowanie formattera lub wskazanie locale. Generalnie jednak, gdy aplikacja używa
języka urządzenia, zwykle system podaje kod z regionem, więc można go wykorzystać.

Przykład formatowania liczby w i18next: w pliku tłumaczeń:

"file_size": "Rozmiar pliku: {{val, number}} MB"

Jeśli użytkownik ma locale pl-PL, to t('file_size', { val: 1234.5 }) zwróci np. "Rozmiar pliku: 1 234,5
MB", a dla en-US "File size: 1,234.5 MB". To zasługa Intl.NumberFormat pod spodem. Co więcej,
można przekazywać opcje formatowania, np. {{val, number(minimumFractionDigits: 2)}} aby zawsze
były 2 miejsca po przecinku. i18next udostępnia także skrót currency, np. {{price, currency(USD)}}
wyświetli kwotę w dolarach z symbolami.

Podsumowując, należy korzystać z mechanizmów formatowania odpowiednich dla locale
zamiast sklejania dat ręcznie. To gwarantuje poprawność i dostosowanie do przyzwyczajeń
użytkownika. Upewnijmy się też, że w różnych językach uwzględniamy różne długości
tekstów – np. tłumaczenie może być znacznie dłuższe i trzeba to zmieścić w UI (projektując
elastyczne kontenery).

Podejście Offline-First w aplikacjach

Tradycyjnie aplikacje zakładały stałe połączenie z internetem – to podejście online-first.
Offline-first to filozofia projektowania, w której aplikacja jest w stanie działać (przynajmniej
częściowo) bez dostępu do sieci. Oznacza to, że rdzenne funkcje aplikacji działają offline, a
gdy internet jest dostępny, następuje synchronizacja danych. W kontekście aplikacji
mobilnych jest to niezwykle cenna cecha: użytkownicy często tracą zasięg (metro, samolot,
słaby sygnał), a chcieliby nadal korzystać z aplikacji. Aplikacja offline-first nie wyświetli wtedy
komunikatu "brak internetu – nie da się nic zrobić", tylko pozwoli dalej przeglądać dane,
wprowadzać zmiany, które zostaną zapisane i wysłane później.

Najważniejsze składowe podejścia offline-first to cache danych, kolejka zmian do
synchronizacji oraz odpowiedni UI awaryjny (fallback):

 Cache danych (pamięć podręczna): Aplikacja powinna przechowywać lokalnie kopie
najważniejszych danych pobranych z serwera, aby móc je wyświetlić, gdy połączenie
zniknie. Przy pierwszym użyciu lub przy połączeniu, dane są pobierane i zapisywane w
lokalnej bazie danych, plikach (np. AsyncStorage w RN, baza SQLite, Realm, itp.). W
razie braku internetu aplikacja korzysta z danych z cache, dzięki czemu użytkownik
ma dostęp do ostatnio załadowanych informacji. Przykłady: aplikacja newsowa może
cache’ować ostatnie artykuły, aby dało się je czytać offline; mapy cache’ują kafelki
map; sklep internetowy może przechować listę produktów przeglądanych ostatnio.
Ważne jest, by implementować mechanizmy odświeżania – np. wersjonowanie
cache lub jego unieważnianie, aby po odzyskaniu sieci pobrać nowsze dane (żeby nie
tkwić na zawsze w starych informacjach). Caching to podstawa trybu offline –
sprawia, że nasza aplikacja w ogóle ma co pokazać bez internetu.

 Kolejka mutacji (operacji do wykonania): Samo czytanie danych offline to jedno, ale
co jeśli użytkownik wykona akcję offline – np. napisze komentarz, wypełni formularz,
doda obiekt? Podejście offline-first zakłada, że takie operacje nie zostaną utracone.
Zamiast odrzucić działanie, aplikacja zapisuje je w kolejce i oznacza do wysłania, gdy
tylko połączenie wróci. Czyli np. wiadomość wysłana w komunikatorze offline
powinna zostać zapisana lokalnie i oznaczona jako "oczekująca". Gdy sieć się pojawi,
aplikacja automatycznie podejmie próbę wysłania tych zaległych akcji do serwera
(background sync). Taka kolejka powinna być trwała (persistent), czyli nawet jak
użytkownik zamknie aplikację zanim wróci sieć, to po ponownym uruchomieniu i
odzyskaniu połączenia, synchronizacja powinna się odbyć. Technicznie można to
zrobić np. zapisując akcje w lokalnej bazie z timestampem. Po odzyskaniu sieci – co
można wykryć przez eventy systemowe lub bibliotekę typu NetInfo – aplikacja
próbuje wysłać akcje z kolejki (w tle, niewidoczne dla użytkownika). Jeśli serwer
potwierdzi ich przyjęcie, usuwa je z kolejki lokalnej. Mogą tu wystąpić konflikty (np.
użytkownik zmienił coś offline, a w międzyczasie online nastąpiła inna zmiana) –
wtedy trzeba przewidzieć strategię rozwiązywania konfliktów (np. ostatnia zmiana
wygrywa, albo pytamy użytkownika). Najważniejsze jednak, by żadne dane wpisane
offline nie przepadły. Przykłady: aplikacja ankietowa pozwala głosować offline i
trzyma głosy w kolejce, by wysłać je później; aplikacja do zarządzania zadaniami
zapisuje dodane/edytowane zadania offline i synchronizuje z serwerem przy
najbliższej okazji. Implementując to, warto też wprowadzić limit ponawiania i
mechanizm backoff (np. jeśli wysyłanie się nie udaje, próbuj ponownie coraz rzadziej)
oraz zadbać o bezpieczeństwo – dane w kolejce też mogą być wrażliwe, więc powinny
być przechowywane bezpiecznie i przesyłane po odzyskaniu sieci w sposób
zabezpieczony (TLS).

 Fallback UI (interfejs awaryjny): Użytkownik powinien być informowany o stanie
offline i o tym, co aplikacja robi. Dobre praktyki to np. oznaczanie treści, które
pochodzą z cache (żeby było jasne, że mogą być nieaktualne), komunikat "Jesteś w
trybie offline – przeglądasz ostatnio pobrane dane". Jeśli użytkownik wykonał akcję
(np. wysłał wiadomość), można ją od razu pokazać w interfejsie (tzw. optymistyczna
aktualizacja UI), ale oznaczyć np. szarym kolorem lub ikonką zegara, że czeka na
wysłanie. W razie gdyby synchronizacja się nie powiodła, należy dać możliwość

ponownego wysłania lub poinformować o problemie. Obsługa błędów i mechanizmy
zapasowe są ważne: aplikacja może np. jeśli kolejka nie może się wysłać przez dłuższy
czas, powiadomić użytkownika "Twoje dane zostaną wysłane gdy tylko odzyskamy
połączenie" zamiast trzymać go w niepewności. Powinna też mieć plan awaryjny:
jeśli naprawdę nic nie możemy załadować (pierwsze uruchomienie offline, brak
cache) – wyświetlamy przyjazny komunikat lub ograniczoną funkcjonalność zamiast
zawieszenia. OWASP (oraz inne źródła) zalecają np. cache fallback – pokazywanie
"last known good state" danych, gdy nie można pobrać nowszych. Użytkownik wtedy
widzi przynajmniej coś, zamiast pustego ekranu. Ponadto informuj o stanie
synchronizacji – np. jak tylko sieć wróci, możesz pokazać toast "Połączenie
przywrócone – dane zostają zsynchronizowane". Gdy operacje się powiodą, usuń
oznaczenia oczekujących elementów. Taka transparentność zwiększa zaufanie
użytkownika do aplikacji.

Podsumowując, aplikacja offline-first wykorzystuje lokalną pamięć jako źródło prawdy, a sieć
służy do wymiany danych w tle. Wymaga to więcej pracy przy implementacji, ale znacząco
poprawia UX – aplikacja jest szybka (bo czyta lokalnie) i odporna na słaby internet.
Przykłady udanych wdrożeń to choćby mobilna aplikacja Trello, gdzie tablice i karty można
przeglądać i edytować offline, a zmiany zostaną zsynchronizowane automatycznie po
odzyskaniu sieci. W dobie roku 2025 użytkownicy wręcz oczekują pewnej dozy działania
offline, a narzędzia (np. biblioteki Redux Offline, WatermelonDB, Apollo Client z cache
persist, itp.) znacznie to ułatwiają.

Przykład: i18n, dostępność i cache w praktyce

Na koniec połączmy powyższe zagadnienia w mini demonstrację. Wyobraźmy sobie prosty
formularz logowania w aplikacji React Native, do którego dodamy obsługę wielu języków
(i18n) oraz ulepszenia dostępności, a także zaimplementujemy prosty mechanizm offline
dla listy danych.

1. Dodanie i18n do formularza: Załóżmy, że mamy formularz z polami "Email", "Hasło" i
przyciskiem "Zaloguj". Chcemy obsługiwać angielski i polski. Korzystamy z i18next:

Przygotowujemy pliki tłumaczeń en.json i pl.json:

// pl.json
{
 "login_title": "Logowanie",
 "email_label": "Email",
 "password_label": "Hasło",
 "login_button": "Zaloguj"
}
// en.json
{
 "login_title": "Login",
 "email_label": "Email",
 "password_label": "Password",
 "login_button": "Log In"
}

 Inicjalizujemy i18next z tymi zasobami (podobnie jak opisano wcześniej, używając
initReactI18next). Ustawiamy domyślny język na np. polski, ale też mechanizm
wykrywania (żeby np. dopasować do języka telefonu).

 W komponencie formularza korzystamy z hooka useTranslation(). Następnie zamiast na
sztywno wpisywać teksty, używamy t('email_label'), t('password_label') itp.:

import { useTranslation } from 'react-i18next';
...
const { t } = useTranslation();
return (
 <View>
 <Text style={styles.title}>{t('login_title')}</Text>
 <TextInput placeholder={t('email_label')} ... />
 <TextInput placeholder={t('password_label')} secureTextEntry ... />
 <Button title={t('login_button')} onPress={handleLogin} />
 </View>
);

 Teraz interfejs będzie w wybranym języku. Aby zmienić język, wystarczy wywołać
i18n.changeLanguage('en') – wszystkie komponenty korzystające z t zareagują i pokażą
teksty po angielsku. Dzięki i18n łatwo rozbudujemy aplikację o kolejne języki bez
modyfikacji kodu logiki.

2. Etykiety dostępności: Kontynuując nasz formularz – dodamy atrybuty ułatwiające życie
osobom używającym czytników ekranu:

 Label dla tekstu tytułowego: Jeśli "Logowanie" jest nagłówkiem ekranu, można
oznaczyć go rolą nagłówka. W RN moglibyśmy zrobić <Text accessibilityRole="header">....

 Pola formularza: element <TextInput> nie jest automatycznie odczytywany z etykietą
(placeholder bywa czytany, ale lepiej dać własną). Można podejść dwojako: albo użyć
komponentu <Label> związanego z polem (w natywnym iOS/Android można łączyć
etykiety z polami), albo w RN skorzystać z accessibilityLabel. Np.:

<TextInput
 placeholder={t('email_label')}
 accessibilityLabel={t('email_label')}
 ... />

W ten sposób VoiceOver przeczyta "Email, pole edycji tekstu". Podobnie dla hasła:

<TextInput
 placeholder={t('password_label')}
 accessibilityLabel={t('password_label')}
 secureTextEntry={true}
 accessibilityHint="Pole hasła. Tekst niewidoczny podczas pisania."
 ... />

Tutaj użyliśmy też accessibilityHint, aby dodać wskazówkę, że wpisywany tekst będzie
maskowany (czytnik mógłby i tak to wiedzieć, bo secureTextEntry ustawia rolę hasła).

 Przycisk logowania: Używając komponentu <Button> w RN, on sam przekazuje tekst
jako etykietę. Ale jeśli to byłby np. ikona zamiast tekstu, konieczne byłoby dodanie
accessibilityLabel={t('login_button')}. Upewniamy się też, że rola jest właściwa (Button
zwykle ma już role button).

 Grupowanie i kolejność: Sprawdzamy, czytnikiem ekranu, że fokus idzie kolejno:
tytuł "Logowanie" (nagłówek), pole Email, pole Hasło, przycisk Zaloguj. Jeśli np. UI
jest w kolumnie, to tak będzie. Gdyby kolejność była niepoprawna, moglibyśmy
owinąć pola w kontener z accessible={false} lub zastosować wspomniane atrybuty
kolejności (ale to raczej zbędne tutaj).

 Rozmiar przycisków i czytelność: Upewnimy się, że elementy dotykowe są
wystarczająco duże (min. 44x44pt według Apple – w RN łatwo osiągalne jeśli
używamy standardowych przycisków). Kolory tekstu i tła – np. biały tekst "Zaloguj" na
niebieskim przycisku – powinny mieć kontrast > 4.5:1. Jeśli tło jest jasne, tekst musi
być ciemny i vice versa.

3. Prosty cache offline dla listy: Teraz załóżmy, że po zalogowaniu aplikacja wyświetla listę
np. ostatnich wiadomości lub produktów. Chcemy zaimplementować mechanizm cache +
offline:

 Przechowywanie danych: Wybierzemy najprostszą metodę – AsyncStorage (w RN
jest to moduł zapewniający prosty asynchroniczny magazyn klucz-wartość). Gdy
pobieramy listę z API, po udanym pobraniu zapiszemy ją również w AsyncStorage.
Np.:

async function fetchData() {
 try {
 const response = await fetch(API_URL);
 const data = await response.json();
 setItems(data);
 await AsyncStorage.setItem('itemsCache', JSON.stringify(data));
 } catch (err) {
 console.error(err);
 }
}

Ta funkcja pobiera dane i zapisuje cache pod kluczem 'itemsCache'.

 Odczyt z cache przy braku internetu: Potrzebujemy wykryć stan offline. Możemy
skorzystać z biblioteki @react-native-community/netinfo – daje eventy o zmianie sieci. Jeśli
okaże się, że użytkownik jest offline (lub fetch zakończy się błędem sieci), to:

const cached = await AsyncStorage.getItem('itemsCache');
if(cached) {
 setItems(JSON.parse(cached));
} else {
 // Brak cache - pokaż komunikat o braku danych
}

Czyli wyświetlamy dane z cache (jeśli istnieją). Warto przy tym np. oznaczyć w UI, że
to dane offline (np. szary baner "Offline mode: showing cached data").

 Aktualizacja cache: Przy ponownym połączeniu, możemy automatycznie odświeżyć
dane. Jeśli używamy NetInfo, możemy nasłuchiwać kiedy isConnected zmienia się na
true i wtedy wykonać fetchData() ponownie. Po odświeżeniu lista pokazuje najnowsze
dane, a cache zostaje zaktualizowany.

 Kolejka zmian (prostota): Jeśli nasza lista pozwala np. usuwać elementy, a
użytkownik zrobi to offline – możemy zapisać taką akcję w kolejce (np.
AsyncStorage.setItem 'queuedDeletes', itp.). W ramach tego prostego przykładu
można założyć, że lista jest tylko do odczytu offline, a zmiany wymagają internetu (to
upraszcza sprawę). W bardziej rozbudowanej appce użylibyśmy np. biblioteki Redux
Offline albo napisali własny mechanizm kolejek jak opisano wcześniej.

 Fallback UI: W naszym przykładzie, gdy brak internetu i brak cache, powinniśmy
pokazać użytkownikowi np. ekran z komunikatem "Brak połączenia. Spróbuj
ponownie później." zamiast pustej listy. Gdy cache jest, pokażemy listę z cache + np.
ikonę offline. Dobrze jest też udostępnić przycisk "Spróbuj ponownie" do ręcznego
odświeżenia, który wymusi sprawdzenie połączenia.

 Bezpieczeństwo danych cache: Jeśli lista zawiera bardzo wrażliwe dane, należałoby
rozważyć szyfrowanie przed zapisem do AsyncStorage (bo AsyncStorage na
iOS/Android jest co prawda prywatne dla aplikacji, ale przechowywane w zwykłym
pliku). Dla naszych potrzeb demo, można pominąć.

Tak zaimplementowany prosty mechanizm zapewni, że użytkownik widzi ostatnie znane
dane nawet bez internetu, co znacząco poprawia doświadczenie. W realnej aplikacji można
pójść dalej – np. użyć biblioteki typu Realm lub WatermelonDB do przechowywania danych
lokalnie i mechanizmów sync. Ważne jednak, by już na etapie projektowania przewidzieć te
scenariusze offline.

Literatura:

1. https://owasp.org/www-project-mobile-top-10/ (Data dostępu: 1.10.2025)
2. https://reactnative.dev/docs/accessibility (Data dostępu: 1.10.2025)
3. https://www.i18next.com/overview/typescript (Data dostępu: 1.10.2025
4. https://developer.android.com/training/articles/keystore (Data dostępu:

1.10.2025)
5. https://developer.apple.com/documentation/security/keychain_services (Data

dostępu: 1.10.2025)

https://owasp.org/www-project-mobile-top-10/
https://reactnative.dev/docs/accessibility
https://www.i18next.com/overview/typescript
https://developer.android.com/training/articles/keystore
https://developer.apple.com/documentation/security/keychain_services

