Software Engineering — Behavioural design
patterns

Adam Krechowicz

1 Behavioural design patterns

Behavioural design patterns allows to solve problems with the behaviour of the
objects (of how they work).
Behavioural group consists of the following patterns:

e Chain of responsibility
e Command

e Interpreter

e Iterator

e Mediator

e Memento

e Observer

e State

e Strategy

e Template method

e Visitor

1.1 Chain of respounsibility
Is used when we want to:
e have possibility to execute tasks in different ways

e with strictly defined order of this executions



Client

AbstractHandler

- successor : Al
successor

ConcreteHandler
aid

1.2 Command

Is used when we want to:
e Encapsulate the request in form of an object
e Create queue of request
e Route requests to different receivers

e Log informations about executed tasks

Client

AbstractCommand

ConcreteCommand

1.3 Interpreter

Is used when we want to:
e Create the way to represent expressions

e that can be dynamically processed



Interpreter

AbstractEzpression
- expressions :

- expressions

BinaryExpression

AtomicExpression 4
expressions :

~expressions

1.4 Iterator

Is used when we want to:

e Create uniform access to aggregated objects

e no matter of its internal structure

«interface»
Abstractlterator

SpecialCollection

+ hasPreu() :

Concretelterator

1.5 Mediator

Is used when we want to:

e Create universal way of communications between objects
e Allows to create loosely coupled structure

e Decrease the relations between objects

«interface»
AbstractMediai

«interface»
AbstractSecond:

«interface»
Abstract Primi

ConcreteSecondaryPari

1
ConcreteMediator

ConcretePrimaryPart




1.6 Memento
Is used when we want to:
e allow to save the state of object

e to ensure that it can be reverted in the future

Memento Originator

- state : State - state : State

Caretaker
*

mementos : Lis
“mementos

State
i3

1.7 Observer

Is used when we want to:
e notify objects
e about some changes in other objects
e to minimize the need of pooling

e receivers can be dynamically changed

AbstractSubject

«interface» " observers : List
AbstractObsel

~observers

ConcreteQObserver -
ConcreteSubject
g

1.8 State
Is used when we want to:

e change the behaviour of object

e dynamically



e in such a way that it seems like object changed its class

Context AbstractState

- state : Abstrac

.

ConcreteState

+ Concretef
s

1.9 Strategy

Is used when we want to:
e Allows executing of one task in many different ways

e Concrete way can depend on many different things

Context AbstractStrategy

- strategy : Abs

r

ConcreteStrategy

+ Concretef
s

1.10 Template method

Is used when we want to:
e Define the abstract structure for some algorithm
e define the steps of algorithm

e Customize algorithm without changing code structure



Abstract Element

+ AbstractElement ()
-+ enterStage() : b

Element

~+ Element()

1.11 Visitor
Is used when we want to:
e Use operations that are executed on group of objects

e change behaviour of objects

AbstractElement «interface»

Abstract Visitor

ConcreteElement ConcreteVisitor

4 ConcreteE + ConcreteVisitor,
+ a + visit

2 Tasks to complete

1. Identify the place for behavioural design patter in the system
2. Describe the problem that justifies the need of design pattern
3. Describe the pattern its theory and its place in the system

4. Create class diagram for pattern

5. Create source code that implements pattern

6. Create test source code for pattern

Each member of the team should pick other pattern.
Results should be placed in appropriate article each patter for section (<sec-
tion class="pattern”>). The structure of the section is as follows:



h5 - pattern name

<p class="author”> — author of pattern

<div class="pattern-problem”> — pattern problem

<div class="pattern-description”> — pattern description

<p class="uml pattern-diagram”> — pattern class diagram

<pre class="pattern-code’><code class="lang-java”> — source code

<pre class="pattern-test-code”><code class="lang-java’> — test source
code



