Software Engineering — Structural design
patterns

Adam Krechowicz

1 Structural design patterns

Structural design pattern allows to solve problems that occurs during creating
class or object structure:
This group contains the following patterns:

e Adapter

e Bridge

e Composite
e Decorator

Facade

Flyweight
e Proxy

1.1 Adapter
Is used when we want to:
e Use two elements
e with incompatible interfaces

e Pattern allows to change the interface of class

Target |

+ Target()
+ specialM

+ Adapter()
+ myOwn!

1.2 Bridge

Is used when we want to:
e Separate interface from implementation

e so that we can freely extend both

AbstractInterface

AbstractImplementation

- impl : Abstractl:

Concretelnterface Concretelmplementation

g 5l

1.3 Composite

Is used when we want to:
e Create universal, hierarchical object structure
e to freely compose objects

e and treat them as one

* AbstractElement
~children

Composite

ConcreteElement

"~ children : List

1.4 Decorator

Is used when we want to:
e Dynamically add new responsibility to object
e Prevents class explosion

e Allows to create many class combinations

AbstractElement
element

Decorator

ConcreteElement
s

ConcreteDecorator

1.5 Facade

Is used when we want to:
e Create uniform interface for a set of subsystem

e Creates higher level interface

SpecialComponentl

- component1

- componentl : Speci
ponent1

- component

SpecialComponent2
o

1.6 Flyweight

Is used when we want to:
e Manage a very big set of objects
e by sharing resources

e Allows to save memory

FlyweightFactory |

~ flyweight : List Flyweight

SharedFlyweight UnsharedFlyweight
+ Share + Unshi

1.7 Proxy
Is used when we want to:
e Control access to the object

e in invisible way

«interface»
Element

B El it
RealElement roxyElement

- clement : RealEles
- RealFi - element

+ Pro

2 Tasks to complete

1. Identify the place for structural design patter in the system
2. Describe the problem that justifies the need of design pattern
. Describe the pattern its theory and its place in the system
Create class diagram for pattern

Create source code that implements pattern

> o B ow

Create test source code for pattern

Each member of the team should pick other pattern.
Results should be placed in appropriate article each patter for section (<sec-
tion class="pattern”>). The structure of the section is as follows:

e h5 — pattern name
e <p class="author”> — author of pattern

e <div class="pattern-problem”> — pattern problem

<div class="pattern-description”> — pattern description
<p class="uml pattern-diagram”> — pattern class diagram
<pre class="pattern-code’><code class="lang-java”> — source code

<pre class="pattern-test-code”><code class="lang-java’> — test source
code

