
1

Concurrent Programming

C#

2

Threads

When threads are useful?

When we want our program to react when some "heavy" task is
performed in the background

Various types of processes - servers. While waiting for data on
one thread, a program may be executing on another.

When we have a program that does a lot of calculations (e.g.
compression of multimedia files) and we want to parallel them in
some way. The effect will be felt when we physically have many
cores.

This number can be checked with Environment.ProcessorCount

3

Threads

When the threads can be harmful?

●When there are too many of them. The time for switching and
allocation will be too expensive,

●When a task performed by a thread will take less time than
starting a given thread.

●When we don't fully predict interactions between threads,
debugging is very cumbersome.

●When we use a lot of disk, we should not be creating multiple
threads, but rather one or two and scheduling read and write
jobs. (someone tried to copy several files from a CD / DVD at
once?)

4

Threads

● When we operate on threads, we need to add to the program

using System.Threading;

● Each program has at least one thread, called the main thread

● Each thread has its own separate stack so local variables are
modified independently.

● Global variables are shared by threads (synchronization often
required)

5

Threads
An example of the methods acting as threads.
static void OurThreadWithoutParameters()
{

Console.WriteLine("Thread without parameters");
}

static void OurThread()
{
 Console.WriteLine($"Overloaded method Thread without parameeter");
}

static void OurThread(object o)
{

string message = o as string;
Console.WriteLine($"Overloaded method Thread with parameeter got message:

{message}");
}

private void OurThreadWithParameter(object o)
{
 if (o == null)

{
 Console.WriteLine("I got null as a parameter");
 return;
 }
Console.WriteLine("Thread with parameter got message: " + (string)o);
}

6

Threads
Creating and starting threads without parameters

Thread thread1 = new Thread(new ThreadStart(OurThreadWithoutParameters));
Thread thread2 = new Thread(OurThreadWithoutParameters); //compilator adds
automaticly new(ThreadStart
Thread thread3 = new Thread(new ThreadStart(OurThread));
//Thread thread3 = new Thread(OurThread); //When we have overloaded methods (without
and with parameters, the compiler does not know whether to use ThreadStart or
ParameterizedThreadStart
thread1.Start();
thread2.Start();
thread3.Start();
//thread1.Start("This is a wrong parameter");//Invalid operation exception

7

Threads
Example of run threads with parameters

Thread thread4 = new Thread(new
ParameterizedThreadStart(OurThreadWithParameter));
Thread thread5 = new Thread(OurThreadWithParameter);
Thread thread6 = new Thread(new ParameterizedThreadStart(OurThread));

thread4.Start(); //Possible such a start, but there will be no parameters o
= null
thread5.Start("Message for thread 5");
thread6.Start("Message for thread 6");

8

Threads
An anonymous run example

static void OurThreadWithTypedParameter(string message)
{

Console.WriteLine("Thread with typed parameter got message: " + message);
}

string changingMessage;
changingMessage = "Message befor thread created";
Thread thread7 = new Thread(delegate ()
{ OurThreadWithTypedParameter(changingMessage); }); //using an anonymous
method, we do not have to specify the object parameter, but we can specify a
specific type, e.g. string
changingMessage = "Message after thread chreated";
Thread thread8 = new Thread(delegate()

{
 Console.WriteLine(changingMessage);
 });
thread7.Start();
thread8.Start();

9

Threads
Example of running with lambda

Thread thread9 = new Thread((parameter) =>
{ //thread code

 Console.WriteLine("Lambda thread show message: " + (parameter as
string));
 });
thread9.Start("Some message for lambda created thread");

Thread thread10 = new Thread((parameter) =>
 { //thread code
 OurThreadWithTypedParameter(parameter as string);
 });
thread10.Start("Some message for lambda created thread with method");

10

Threads
Example of running from an object

public class VariousThreads
 {
 public void thread1()
 {

MessageBox.Show("I'm thread 1");
}

 public void thread2()
 {

MessageBox.Show("I'm thread 2");
}

 }

VariousThreads varTh = new VariousThreads();
Thread th1 = new Thread(varTh.thread1);
Thread th2 = new Thread(varTh.thread2);
th1.Start();
th2.Start();

11

Threads
Naming Threads - Debugging Help

Thread thread11 = new Thread(() =>
Console.WriteLine($"Hello. I'm {Thread.CurrentThread.Name} thread.")
);
thread11.Name = "Eleven";
thread11.Start();

You can show threads debug window by selecting menu: Debug->Windows->Threads

On this window you will see all application threads with theirs names:

12

Threads
Foreground and background threads

Every thread has IsBackground property. Default it is false. When parent thread has finished
child threads are still running.

When IsBackground=true. Child Threads end with parent together.
The finally block is skipped. This is an undesirable situation, so we should wait for the end of
child threads.

Changing the work from background to foreground and vice versa does not affect priority.

13

Threads
Foreground and background threads

Thread parentThread = new Thread(() =>
 {

Console.WriteLine($"Thread {Thread.CurrentThread.Name} started");
 Thread childThread1 = new Thread(() =>
 {
 Console.WriteLine($"Thread {Thread.CurrentThread.Name} started");
 Thread.Sleep(5000);
 Console.WriteLine($"Thread {Thread.CurrentThread.Name} finished");
 })
 { Name = "ChildThread1"}; //backgroud = false as default
 //{ Name = "ChildThread1",IsBackground = true };
 Thread childThread2 = new Thread(() =>
 {
 Console.WriteLine($"Thread {Thread.CurrentThread.Name} started");
 Thread.Sleep(5000);
 Console.WriteLine($"Thread {Thread.CurrentThread.Name} finished");
 })
 { Name = "ChildThread2"};//backgroud = false as default
 //{ Name = "ChildThread2",IsBackground=true };

 childThread1.Start();
 childThread2.Start();
 Console.WriteLine($"Thread {Thread.CurrentThread.Name} finished");
 })
 { Name = "Parent" };
parentThread.Start();

14

Threads
Priority

enum ThreadPriority { Lowest, BelowNormal, Normal,
AboveNormal, Highest }

● Indicates how much processor time is allocated to a given thread in a thread
group of one process.

● Setting it to Highest does not mean that it will be a real-time thread. You would
also have to set a priority for the process.

Process.GetCurrentProcess().PriorityClass =
ProcessPriorityClass.High;

● Realtime priority is even higher, then our process will run continuously, but
when it enters the endless loop, we will not regain control over the system.

● If our application has a (especially complicated) graphical interface, we should
not raise the priority either, because refreshing will slow down the entire
system.

15

Process

static void Main(string[] args)
{

Process process = Process.Start("notepad.exe");
 Thread.Sleep(3000);
 process.Kill();

 var e = Process.Start(@"C:\Program Files (x86)\Microsoft\Edge\Application\
msedge.exe");

 var processes = Process.GetProcesses();
 foreach (var item in processes)
 {
 try

{
Console.WriteLine(item.ProcessName + item.MainModule.FileName);
}

catch (Exception ex)
 {
 Console.WriteLine(ex.Message);
 }

}
var edges = Process.GetProcessesByName("msedge");

 Thread.Sleep(3000);
 edges[0].Kill(true);
}

16

Threads
Exceptions

 Try
 {
 thread.Start();
 }
 catch

{
Console.WriteLine("Error during starting thread");
}

● Such a launch will only throw us an exception at startup, we will not catch an
exception "thrown" in the thread.

● Exceptions from threads can end the application and must be caught at the
thread level.

17

Synchronization
Blocking

● Processes blocked due to waiting for an event, e.g. Sleep, Join, lock,
Semaphore etc. Immediately resing CPU time, add WaitSleepJoin to
ThreadState property, and don't queue until unlocked

● Unblocking may occur for 4 reasons:

– The unlock condition has been met

– Timeout expired

– Has been interrupted by Thread.Interrupt

– Has been interrupted by Thread.Abort (.net<5.0 and not .core)

18

Synchronization
Waiting Sleep and SpinWait

Thread.Sleep(0); // resign of the assigned time quantum
Thread.Sleep(1000); // sleep for 1000 ms
Thread.Sleep(TimeSpan.FromHours(1)); // sleep for 1 hour
Thread.Sleep(Timeout.Infinite); // sleep forever until break.

In general, Sleep causes the thread to give up CPU time. Such thread is not queued
for the given time.

Thread.SpinWait (100); // do empty 100 processor cycles

The thread does not give up on the processor, but performs empty operations on it.
It is not in the WaitSleepJoin state and cannot be interrupted by Interrupt. It can be
used when we want to wait very shortly or simulate a load.
A thread behaves similarly during active wait.

19

Synchronization
Wait Join

Thread thread1 = new Thread(() =>
{

 Console.WriteLine("Thread started and going to sleep for 3 s...");
 Thread.Sleep(3000);
 Console.WriteLine("Thread woke up and finished");
 });
thread1.Start();
Console.WriteLine("Main thread has started child thread and going to
wait for it...");
thread1.Join();
Console.WriteLine("Main thread lived to see");

We are waiting for the thread to end. The mechanism of collecting messages is
not stopped, in the case of a window application, events would be queued

20

Critical section
● When to block

– Anywhere where multiple threads can access common variables

– Wherever we want to have the indivisibility of operations, e.g. checking a
condition and executing something

● what to beware of

– We shouldn't block too much because it's hard to analyze such code and
it's easy to cause DeadLock

– Too large pieces of code executed by a single process reduction
concurrency.

– When the granularity is too small, the synchronization time is high

21

Critical section
Several threads (n_threads) do the same task:

 for (int ii = 0; ii < 1000000; ii++)
 {
 {
 counter++;
 }
 }

Without protection, the result will be <= n_threads*1000000

22

Critical section
lock

private object locker = new object();

...

for (int ii = 0; ii < 1000000; ii++)
 {
 lock (locker)
 {
 counter++;
 }
 }

● Only one thread at a time may be in the protected area, others will be waiting in
the FIFO queue

● Waiting threads are in the state of WaitSleepJoin.

● Such threads can also be terminated by interrupt or abort

23

Critical section
Selection of the object that will be locker

● It must be a reference type

● Usually it is related to the facilities we operate on, e.g.

List <string> list = new List <string>();
void Test() {

lock (list) {
list.Add ("Item 1");

...

We should use objects that are private to avoid unintended interaction
from the outside

● For the same reason, we should not use e.g. lock (this){} or lock
(typeof (Widget)) { ... }

● Using an object to lock a snippet of code does not automatically lock that
object. It is possible to change the object outside the protected area.

24

Critical section
Nested locking

static object x = new object();
static void Main() {
lock (x) {

Console.WriteLine ("I locked");
Nest();
Console.WriteLine ("I unlocked");
}

//Completly unlocked
}

static void Nest() {
lock (x) {
…//double lock
}
//last unlock
}

The locking thread can block as much as it wants, but the blocked thread will wait
for the outermost one anyway.

25

Critical section
Monitor – explication lock

● lock it is actually a syntax shortcut for something like this:

Monitor.Enter(locker);
try

{
counter++;
}

finally
{
Monitor.Exit(locker);
}

● Call Monitor.Exit without earlier Monitor.Enter couses excemption throw

● The monitor also has a TryEnter method where we can specify a timeout if we
enter before the end of time, it will return true or false if a timout occurs

26

Critical section
Monitor – explication lock

Thread[] tharray3 = new Thread[100];
for (int ii = 0; ii < 100; ii++)

{
 tharray3[ii] = new Thread(ThreadWithMonitor);
 tharray3[ii].Name = "Thread " + ii.ToString();
 }
sw.Restart();
foreach (var th in tharray3)

{
 th.Start();
 }
foreach (var th in tharray3)

{
 th.Join();
 }
Console.WriteLine($"All Monitor threads finished in
{sw.ElapsedMilliseconds} ms counter = {counter}");

27

Critical section
Interlocked – atomic operations

 for (int ii = 0; ii < 1000000; ii++)
 {

Interlocked.Increment(ref counter);
 }

● Additionally, we have at our disposal

– Add Adding up to two numbers

– CompareExchange comparison and possible substitution

– Decrement

– Equals

– Exchange

– Read reading the number 64b

– ReferenceEquals comparison of two references

28

Critical section
Mutex

 static Mutex mutex = new Mutex(false, "tu.kielce.pl mutex");
 static void ThreadWithMutex(object o)
 {
 //it is very slow, there is 100 times less iterations
 for (int ii = 0; ii < countFor/100; ii++)
 {
 mutex.WaitOne();
 counter++;
 mutex.ReleaseMutex();
 }
 }

29

Critical section
Semaphore

 static Semaphore sem = new Semaphore(1, 1);
 static void ThreadWithSemaphore()
 {
 //it is very slow, there is 100 times less iterations
 for (int ii = 0; ii < countFor/100; ii++)
 {
 sem.WaitOne();
 counter++;
 sem.Release();
 }
 }

30

Critical section
SemaphoreSlim

 static SemaphoreSlim semSlim = new SemaphoreSlim(1, 1);
 static void ThreadWithSemaphoreSlim()
 { //Notice. It isn't so slow as Semaphore
 for (int ii = 0; ii < countFor; ii++)
 {
 semSlim.Wait();
 counter++;
 semSlim.Release();
 }
 }

● SemaphoreSlim is a lightweight alternative to Semaphore and can be used
only for synchronization within a single process boundary

● It doesn't support named system semaphores.

31

Critical section
SpinLock

 static SpinLock spinLock = new SpinLock();
 static void ThreadWithSpinLock()
 {
 bool lockTaken = false;
 for (int ii = 0; ii < countFor; ii++)
 {
 lockTaken = false;
 spinLock.Enter(ref lockTaken);
 {
 counter++;
 }
 spinLock.Exit(false);
 }
 }

● SpinLock - synchronization primitive that spins while it waits to acquire a lock.
● On multicore computers, when wait times are expected to be short

and when contention is minimal, SpinLock can perform better than other kinds of locks
● use SpinLock only when you determine by profiling that the System.Threading.Monitor

method or the Interlocked methods are significantly slowing
● Remember to use false in exit method to provides the best performance

true is used on IA64 architectures to use the memory fence, which flushes the buffers.

32

Critical section
● Synchronization by lock but data are chunked with bigger portions. Lock isn't

called so many times.

 static void ThreadWithLock2()
 {
 for (int ii = 0; ii < 1000; ii++)
 {
 lock (locker)
 {
 for (int jj = 0; jj < 1000; jj++)
 counter++;
 }
 }
 }

33

Critical section
● To sum up

We can see that rationally dividing the computation is the best

34

Context Bound Object

Only in .net framework. Automatic blocking of method calls
from one class instance.

using System.Runtime.Remoting.Contexts;

[Synchronization]
public class SafeClass : ContextBoundObject
{
}

The CLR (Common Language Runtime) ensures that only
one thread can call the code of the same object instance at
the same time. The trick is that when you create a
SafeClass object, it creates a proxy object through which
the calls to SafeClass methods pass.

35

Context Bound Object

[Synchronization]
 class SafeCounter : ContextBoundObject
 {
 public int Counter { get; }
 public SafeCounter()
 {
 Counter = 0;
 }

 public void CounterInc()
 {
 Counter++;
 }
 }

static SafeCounter sf = new SafeCounter();
static void ThreadWithoutProtection()

{
 //it is very slow
 for (int ii = 0; ii < 10000; ii++)

 {
 sf.CounterInc();
 }

}

36

Context Bound Object
static void Main(string[] args)

{
 Console.WriteLine("--------------- SafeCounter ContextBoundObject
thread increment -------------- ");
 Thread[] tharray = new Thread[100];
 for (int ii = 0; ii < 100; ii++)
 {
 tharray[ii] = new Thread(ThreadWithoutProtection);
 tharray[ii].Name = "Thread " + ii.ToString();
 }
Stopwatch sw = new Stopwatch();
sw.Start();
foreach (var th in tharray)

{
th.Start();

 }
foreach (var th in tharray)

{
 th.Join();
 }
Console.WriteLine($"All ContextBoundObject threads finished in
{sw.ElapsedMilliseconds} ms counter = {sf.Counter}");
 Console.ReadLine();
}

37

Context Bound Object

Automatic synchronization cannot be applied to protect static
fields or classes derived from ContextBoundObject, e.g.
Windows Form

You should also remember that it still doesn't solve the
problem when we call something like this for the collection:

 SafeClass sc = new SafeClass();

...

if (sc.Count > 0)
{
 sc.RemoveAt (0);
}

38

Context Bound Object
if another object is created from a secure object, it is automatically

also safe in the same context, unless we decide otherwise using
attributes.

[Synchronization (SynchronizationAttribute.REQUIRES_NEW)]

public class SomeClassB : ContextBoundObject { ...

NOT_SUPPORTED - equivalent to not using Synchronized

SUPPORTED - Indicates that the class to which this attribute is applied is not
dependent on whether the context has synchronization.

REQUIRED - (default) Indicates that the class to which this attribute is applied
must be created in a context that has synchronization.

REQUIRES_NEW - Indicates that the class to which this attribute is applied
must be created in a context with a new instance of the synchronization
property each time

39

Interrupting thread

● Thread.Interrupt – interrupts the current wait and causes it to quit

exception ThreadInterruptedException

 static void InfiniteThread()
 {
 try
 {
 Thread.Sleep(Timeout.Infinite);
 }
 catch (ThreadInterruptedException ex)
 {
 Console.WriteLine("InfiniteThread cought an exception: " + ex.Message);
 }
 Console.WriteLine("InfiniteThread ended normaly");
 }

● Keep in mind that interrupting in this way can be dangerous unless you know
exactly where you are and clean up.

40

Aborting thread

● This is old method and shouldn't be used. If you want end some code in abort
way you can run it in separate process and call Kill

● Thread.Abort – It is similar to Interrupt, except that it throws a
ThreadAbortException exception and the exception is thrown again at
the end of the catch block, unless Thread.ResetAbort(); is used in the
catch block;

● The operation is similar, but with Interrupt the thread is only interrupted
while waiting, Abort can do it anywhere in the execution, even in non our
code.

41

Thread states
● ThreadState – a bit combination of the three layers.

● Startup, lock, thread interruption (Unstarted, Running,
WaitSleepJoin, Stopped, AbortRequested)

● The foreground and background of the thread (Background,
Foreground)

● Progress in the suspend thread (SuspendRequested, Suspended)used
by deprecated methods

● The final state of the thread is determined by the bit sum of the three
"Layers". And yes, there may be a thread for example

Background, Unstarted
or

SuspendRequested, Background, WaitSleepJoin

42

Thread states
● Two states are also never used in ThreadState enumeration:

StopRequested i Aborted

● To make things even more complicated, Running has a value of 0 so
comparing x will get us nothing

if ((t.ThreadState & ThreadState.Running) > 0)...

will get us nothing

● You can help with IsAlive, but it only returns false before start and when it
ends. When a thread is locked it is also true.

● It's best to write your own method:

public static ThreadState SimpleThreadState (ThreadState ts)
{
return ts & (ThreadState.Aborted |

ThreadState.AbortRequested |
ThreadState.Stopped |
ThreadState.Unstarted |
ThreadState.WaitSleepJoin);

}

43

Thread states

Unstarted

WaitSleepJoin

Abort
Requested

Running

Stopped Aborted

Start

Thread is
locked

Thread is
unlocked

Abort

Ending thread
Ending thread

theoretically

ResetAbort

Abort

44

Thank You

	Slajd 1
	Slajd 2
	Slajd 3
	Slajd 4
	Slajd 5
	Slajd 6
	Slajd 7
	Slajd 8
	Slajd 9
	Slajd 10
	Slajd 11
	Slajd 12
	Slajd 13
	Slajd 14
	Slajd 15
	Slajd 16
	Slajd 17
	Slajd 18
	Slajd 19
	Slajd 20
	Slajd 21
	Slajd 22
	Slajd 23
	Slajd 24
	Slajd 25
	Slajd 26
	Slajd 27
	Slajd 28
	Slajd 29
	Slajd 30
	Slajd 31
	Slajd 32
	Slajd 33
	Slajd 34
	Slajd 35
	Slajd 36
	Slajd 37
	Slajd 38
	Slajd 39
	Slajd 40
	Slajd 41
	Slajd 42
	Slajd 43
	Slajd 44

