

Concurrent programming

IPC Inter-process communication
Semaphores

Semaphores

Semaphores are a primary concept in the problems of
synchronization. They are not used to exchange
information, but to synchronize access to resources

Semaphores

An example of a P(S) semaphore operation in pseudo
code:

for (;;)
{
if (Semaphor > 0){

Semaphor--;
break;}

}

Unfortunately, there is no guarantee of indivisibility here.
There is also active checking.

Semaphores

The kernel maintains some information structure for each
set of semaphores on the system (structure example).

#include <sys/types.h>
#include <sys/ipc.h> /* ipc_perm structure
definition*/
struct semid_ds

{
struct ipc_perm sem_perm;
struct sem *sem_base; /* pointer to the first

semaphore in the set */
ushort sem_nsems; /* number of semaphores */
time_t sem_otime; /* time of the last operation

*/
time_t sem_ctime; /* time of the last change */
};

Semaphores

sem is the internal data structure

struct sem {
ushort semval; /* non-negative semaphore value

*/
short sempid; /* the process id for the last

operation */
ushort semncnt /* number of pending semaphore

values> current value */
ushort semzcnt; /* number of waiting semaphore

values = 0 */

Semaphores
An example of the structure of a 2-element
semaphore

struct
sem_perm

sem_base

sem_nsems=2

sem_otime

sem_ctime

semval

sempid

semncnt

semzcnt

semval

sempid

semncnt

semzcnt

[0]

[1]

kernel

struct semid_ds

semid

Semaphores
Use a function to create or open a semaphore

int semget (key_t key, int nsems, int semflag);

● returns the semaphore id or –1
● nsem – how many semaphores are in the set, if we do

not create but open a given set of semaphores, you
can give 0 here

● the number of semaphores in the created set cannot
be changed

● semflag – is a combination of the following symbolic
constants:

Semaphores

Numerical value meaning
0400 SEM_R reading by the owner
0200 SEM_A change by owner
0040 SEM_R >> 3 reading by the group
0020 changing by group
0004 reading by others
0002 changing by others
1000 IPC_CREAT
2000 IPC_EXCL

symbolic
constant

SEM_A >> 3
SEM_R >> 6
SEM_A >> 6

Semaphores
The function semop is used to perform operations on semaphores

int semop(int semid, struct sembuf *opstr, unsigned int nops);

● returns 0 on success, or -1 on error

● semid – semaphore identifier
● nops – number of elements in the sembuf structure array

pointed to by opstr
● opstr - points to an array of the following structures:

struct sembuf {
ushort sem_num; /* semaphore number*/
short sem_op; /* ooperation on the semaphore

*/
short sem_flag; /* operation flag */

};

Semaphores
● each element of this array specifies an operation on the value of one

semaphore from the set of semaphores
● sem_num – determines which semaphore (counting from 0)
● sem_op

● >0 add this value to the current semaphore (release resources)
operation V(s)

● = 0 the calling process semop wants to wait until the semaphore
value becomes zero.

● <0 the calling process waits for the value of the semaphore to
become greater than (or equal to) the absolute value of this field.
Then they will be summed, i.e. resource allocation operation P
(s). Np. s=1+(-1). s=0 semaphore down.

● sem_flg – has several options, e.g. undoing changes made by the
process on this semaphore if the process "crashes"

● IPC_NOWAIT to sem_flg tells the system that we do not want
to wait for the operation to be completed.

Semaphores
The function is used for controlling operations on the semaphore

int semctl(int semid, int semnum, int cmd, union semun
arg);

● semun – is constructed as follows
union semun {
int val; /* only used for SETVAL */
struct semid_ds. *buff; /* used for IPC_STAT and IPC_SET
*/
ushort *array; /* used for GETVAL and SETVAL */
} arg;

● cmd – command
● IPC_RMID – removing a semaphore
● GETVAL – get the value of a semaphore, the function will return its

value
● SETVAL – setting the value to the semophore val in the semun union;

● semnum – which semaphore is concerned

Semaphores

Seizing resources using semaphores
● semaphores can be treated as a synchronization

mechanism
● suppose that the value of semaphore 1 will be the resource

busy and 0 the resource free
● this assumption is opposite to our semaphore logic but in

some systems it is impossible to initialize a semaphore
other than 0

Semaphores
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>
#define SEMKEY 123456L /* key value for the system function
semget() */
#define PERMS 0666

static struct sembuf op_lock[2] = {
0,0,0, /* wait until semaphore 0 becomes zero */
0,1,0 /* then increase that semaphore 1*/

};

static struct sembuf op_unlock[1] = {
0, -1, IPC_NOWAIT /* decrease semaphore 0 by 1 without

waiting because it is release resources */
};

int semid = -1; /* semaphore identifier */

Semaphores
my_lock()
{
if (semid <0)
 {

if ((semid = semget(SEMKEY, 1, IPC_CREAT| PERMS)) < 0)
perror(„error creating semaphore”);

}
if (semop(semid, &op_lock[0], 2) < 0)

perror(„error of seizing a semaphore”);
}

my_unlock()
{
if (semop (semid, &op_unlock[0], 1) < 0)

perror(„unlocking error”);
}

Semaphores

What if any of the processes "fails"?
● You can "arm" the process occupying the semaphore to

handle most signals that may come, and elegantly release
the semaphore on each call. Unfortunately, this does not
work for SIG_KILL

Semafory
● my_lock can determine the IPC_NOWAIT flag in the first

operation in the op_lock array. If the operation function
returns -1 and errno = EAGAIN, the process may call
semctl and examine the value of the sem_ctime field of the
semid_ds structure. for that sempore. If it turns out that a
predetermined time has elapsed (e.g. 10s) since the last
change, the process may take the resource, assuming that
another process no longer needs it, and has forgotten or
failed to release it

The disadvantage is that you have to constantly call additional
functions when the resource is busy and you have to accept a
TIMEOUT

Semaphores
● The third best solution is to notify the kernel when seizing a

resource that if the process terminates before the resource
is released, the kernel is to release it.

Semaphores
Semaphore Adjustment Value – for each semaphore value
in the system, you can specify a second associated value.

● When you specify the initial value of a semaphore, then
set the value to set that semaphore to 0.

● For each operation used in the call to the semop function
and with the SEM_UNDO flag set, if the value of a
semaphore is increased, the semaphore adjustment value
will also be decreased by the same amount.

● When the process finishes then the kernel will
automatically use all adjustment values for that process.
(will be summed with the value of the semaphore).

Semaphores
An example for the previous seizng:

static struct sembuf op_lock[2] = {
0,0,0,

/* wait until semaphore 0 becomes zero */
0,1,SEM_UNDO

/* then increase that semaphore 1*/
};

static struct sembuf op_unlock[1] = {
0, -1, IPC_NOWAIT | SEM_UNDO
/* decrease semaphore 0 by 1 without waiting because it

is freeing resources */
};

Also, remember that the last process using the semaphore
should remove it from the system

Shared Memory
Once again the program (client-server) that copies files

● The server reads a file, usually the kernel copies from disk
to some buffer

● from this buffer it goes to our server's buffer specified as
the second argument of the read function

● The server writes this data to a FIFO, unnamed link or
message queue, again it is copying from the user buffer to
the kernel

● The client reads data from the IPC channel, it requires a
copy from the kernel buffer to the client's buffer

● finally copies from client buffer to output buffer (write)
● and from the output buffer e.g. to the screen.

Shared Memory

client server

FIFO queue,
communication link,
or message queue

output file input file

Kernel

Shared Memory

● Shared memory avoids the inconvenience of too many
data copies by allowing two or more processes to use
the same memory segment.

● Sharing memory is similar to using a shared file.
Additional synchronization mechanisms, e.g.
semaphores, must be used.

Shared Memory
The algorithm of action will be as follows:

● The server accesses the shared memory segment
using a semaphore

● The server reads to shared memory
● After reading is complete, the server notifies the client

using a semaphore that the data is ready to be
retrieved from memory

● The client reads from shared memory and writes to the
result file (for example stdout)

Shared Memory

client server

output file input file

Kernel

shared memory

Shared Memory
for each shared memory segment, the system kernel
maintains the following information structurei:
struct shmid_ds {
struct ipc_perm shm_perm; / * structure of access
rights to operations */
int shm_segsz; /* segment size */
struct XXX shm_YYY; /* implementation dependent on
information */
ushort shm_lpid; /* the process id for the last
operation */
ushort shm_cpid; /* Process ID creator */
ushort shm_nattch; /* attached running number */
ushort shm_cnattch; /* attached number in internal
memory */
time_t shm_atime; /* time of last attachement */
time_t shm_dtime; /* time of last disattachement */
time_t shm_ctime; /* time of the last change */
};

Shared Memory
a function is used to create a shared memory
segment:

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>
int shmget (key_t key, int size , int
shmflag);

● returns the memory identifier or -1 on error
● key key created by ftok or invented by us
● size – memory size in bytes
● shmflag – combination of tags

Shared Memory

Numerical value meaning
0400 SHM_R reading by the owner
0200 SHM_A change by owner
0040 SHM_R >> 3 reading by the group
0020 changing by group
0004 reading by others
0002 changing by others
1000 IPC_CREAT
2000 IPC_EXCL

symbolic
constant

SHM_A >> 3
SHM_R >> 6
SHM_A >> 6

Attach a memory segment:

char *shmat(int shmid, char *shmaddr, int shmflag);

● passes the start address of the shared memory segment
● shmid – the memory id returned by shmget
● shmflag may have a flag (SHM_RDONLY)
● the address is determined according to the following

rules:

Shared Memory

● if shmaddr = 0, the system chooses the address itself (works
well in most of usage).

● if it is! = 0 then the forwarded address depends on whether
the flag SHM_RND is set

● if not set, the shared memory segment will be connected
from the address specified by the shmaddr argument

● if set, it will start with an address rounded down by the
value of the SHMLBA (Lower Boundary Address)
constant

Shared Memory

common memory disconnection is done with

int shmdt(char *shmaddr);

this function does not delete the memory segment!

Shared Memory

To delete a shared memory segment, use

int shmctl(int shmid, int cmd, struct shmid_ds *buf);

with an argument cmd as IPC_RMID

Shared Memory

	Slajd 1
	Slajd 2
	Slajd 3
	Slajd 4
	Slajd 5
	Slajd 6
	Slajd 7
	Slajd 8
	Slajd 9
	Slajd 10
	Slajd 11
	Slajd 12
	Slajd 13
	Slajd 14
	Slajd 15
	Slajd 16
	Slajd 17
	Slajd 18
	Slajd 19
	Slajd 20
	Slajd 21
	Slajd 22
	Slajd 23
	Slajd 24
	Slajd 25
	Slajd 26
	Slajd 27
	Slajd 28
	Slajd 29
	Slajd 30
	Slajd 31

