

Concurrent programming

Inter-process IPC communication

IPC

There are 3 types of inter-process communication in
system V.

● message queue
● semaphores
● shared memory

IPC
Message queue Semaphore

header file <sys/msg.h> <sys/sem.h> <sys/shm.h>

msgget semget shmget

msgctl semctl shmctl

transfer system functions msgsnd semop shmat
msgrcv shmdt

Shared
memory

create or open system
function
control operation system
function

IPC
The kernel holds information about each interprocess
communication channel in the structure:

#include <sys/ipc.h>
struct ipc_perm
{
ushort uid; /* owner user id */
ushort gid; /* owner group id */
ushort cuid; /* creator user id */
ushort cgid; /* creator group id */
ushort mode; /* access mode */
ushort seq; /* sequential number */
key_t key; /* key */
}

IPC
● Functions are used to get the value of this structure:

msgctl, semctl and shmctl

● All three functions for creating an IPC communication
channel msgget, semget, and shmget take the
key_t key and return the channel ID..

IPC
They all also have the flag argument which
● The least significant 9 bits specify the channel access mode
● the rest define whether a channel should be created or not, etc..

● if the key argument is IPC_PRIVATE, a private interprocess
communication channel will be created.

● There is no such combination of path and id that ftok would
generate IPC_PRIVATE

● IPC_CREAT in the flag argument will create a new element in the
kernel system table, if it is missing, it will be passed as a return
value if there is one.

● if the flag has IPC_CREAT + IPC_EXCL, the channel will be
created only if it was not there, if it was, the function will return an
error.

● IPC_EXCL has no effect without IPC_CREAT

 7

Are there
flags set

 IPC_CREAT and
 IPC_EXCL?

access rights are
guaranteed?

Is there
flag set to

IPC_CREATE?

Overflow
 arrays
system

Yes No Yes

OK
return ID

N
o

Y
es

START

N
o

Ok, create
new object
and return

it's ID
Return error

errno = ENOSPC

Y
es

N
o

Return error
errno = ENOENT

Y
es

Return error
errno = EEXIST

N
o

Return error
errno = EACCESS

Create new object Use existing object

Key==
IPC_PRIVATE?

Was the
object
existed
earlier?

Y
es

N
o

IPC
● during creation initializes the ipc_perm field the lowest 9 bits of

the flag argument
● cuid, cgid, uid and gid takes the valid user and group identifiers

for the calling process.
● channel creator IDs never change (cuid and cgid)
● Owner IDs can be changed by calling msgctl, semctl or shmctl

appropriately
● *ctl are also used to change access rights
● each operation on IPC channels (write, read) causes checking

similar to file system access rights checking

IPC
● Checking is based on the ipc_perm field

● The supervisor process is always granted access
rights

● if the uid or cuid and the appropriate access bit are
correct, the process is granted access.

● if the gid or cgid match the corresponding
permission bit, the process is granted permission

● if the above fails, the appropriate bit of access rights
for others must be set

IPC Message Queues
● all messages are stored in the kernel and assigned a

message queue identifier
● msqid – identifies a specific message queue
● processes read and write to any message queue
● One process is not required to wait for the message

before the other one starts writing
● the process may put the message on the queue and

exit.
● each message in the queue has the following

attributes
● type – a long integer
● length - data portion, it can be 0
● data - if the length is greater than 0

IPC Message Queues
For the message queue, the kernel maintains this structure

#include <sys/types.h>
#include <sys/ipc.h>
struct msqid_ds.
{
struct ipc_perms msg_perms; /* access rights structure for an
operation */
struct msg *msg_first; /* pointer to the first message in the queue
*/
struct msg *msg_last; /* pointer to the last message in the queue */
ushort msg cbytes; /* the current number of bytes in the queue */
ushort msg_gnum; /* the current number of messages in the queue */
ushort msg_gbytes; /* maximum number of bytes for the queue */
ushort msg_lspid; /* id of the process that last wrote to the queue
*/
ushort msg_lrpid; /* ID of the process that last called msgrcv */
time_t msg_strime; /* time of the last call to msgsnd */
time_t msg_rtime; /* time of the last call to msgrcv */
time_t msg_ctime /* time of the last call to msgctl which changed
the value of the above fields */
};

IPC Message Queues
Suppose we have three messages in the queue with a
length of 1,2,3 bytes of types 100,200,300 and in this
order it came:

struct
msg_perm

msg_first

msg_last

...

msg_ctime

pointer

msg_ctime

type = 100

length = 1

1 byte of data

pointer

type = 200

length = 2

2 bytes of data

pointer

type = 300

length = 3

3 bytes of data

IPC Message Queues

Msgget is used for creation

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgget (key_t key, int msgflag);

the function will return the queue id or –1 if it fails

IPC Message Queues

msgflag defines the access rights:

Numerical value symbolic constant meaning
0400 MSG_R reading for the owner
0200 MSG_W writing for the owner
0040 MSG_R >> 3 reading for the group
0020 MSG_W >> 3 writing for the group
0004 MSG_R >> 6 reading for others
0002 MSG_W >> 6 writing for others
1000 IPC_CREAT
2000 IPC_EXCL
4000 IPC_NOWAIT

IPC Message Queues
It is used to put a message on the queue:

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgsnd(int msqid, struct msgbuf *ptr, int
length, int flag);

● lenhgth specifies the length of the message in bytes it is the
number of user-defined data bytes, i.e. those after the long field, it
can also be 0.

● flag can take the symbolic constant IPC_NOWAIT or 0.
● if there is IPC_NOWAIT then if the queue is full or there are too

many messages across the system the function will return –1
immediately and errno = EAGAIN.

● when msgsnd is successful, we get 0 return.

IPC Message Queues
● ptr is a pointer to a structure with the following pattern

struct msgbuf
{
long mtype; /* message type */
char *mtext; /* message data */
}

● mtext is confusing because the data may be different
● by pattern we mean that ptr must point to an integer of long type which

contains the message type and precedes the message itself (if length>
0)

● the kernel does not interpret the message body
● you can define your own structure, e.g..

typedef struct my_msgbuf {
long mtype;
short mshort; /* enything */
char mchar[8]; /* whatever */

} Message;

IPC Message Queues
For pickup is used

int msgrcv(int msqid, struct msgbuf *ptr, int length, long
msgtype, int flag);

● ptr indicates where the message should be written
● length – ptr data size
● msgtype – specifies the message desired by the recipient

● 0 marks the first one to enter the queue (FIFO rule)
● >0 the first message of the same type
● <0 the first message of the smallest types that are not

greater than the absolute value of msgtype.

IPC Message Queues
For an exemplary queue with types 100L, 200L and 300L, we
have

0L 100L
100L 100L
200L 200L
300L 300L
-100L 100L
-200L 100L
-300L 100L

Argument
msgtype

The type of the
message passed

IPC Message Queues
● flag – specifies what to do when there are no messages in

the queue
● when IPC_NOWAIT is set then immediately return, the

function returns -1 and errno = ENOMSG
● if there is no IPC_NOWAIT, the process waits for one of 3

events to occur
● you will receive a message of the requested type
● the message queue is removed from the system.
● the process will catch the appropriate signal

● if flag has MSG_NOERROR then if we get more data than
indicated by length, the excess will be skipped and the
function will not fail

IPC Message Queues
It is used to control the message queue

int msgctl(int msqid, int cmd, struct msqid_ds.
*buff);

where cmd is:

IPC_RMID – 0 remove the queue
IPC_SET – 1 sets on base the buff
IPC_STAT – 2 gets to the buff

IPC Message Queues
Client – Server.

/* msgq.h */
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>
#include <sys/errno.h>

extern int errno;
#define MKEY1 1234L
#define MKEY2 2345L
#define PERMS 0666

IPC Message Queues
#include „msgq.h”

main() //for server
{
int readid, writeid;
if ((readid = msgget(MKEY1,PERMS|IPC_CEAT))<0)

perror(„server: I can't open the queue 1”);
if ((writeid = msgget(MKEY2, PERMS | IPC_CREAT)) <0)

perror(„server: I can't open the queue 2”);
server(readid, writeid);
exit(0);
}

IPC Message Queues
#include „msgq.h”

main()//for client
{
int readid, writeid;
if ((writeid = msgget(MKEY1,0))<0)

perror(„client: I can't open the queue 1”);
if ((readid = msgget(MKEY2,0)) < 0)

perror(„client: I can't open the queue 2”);
client(readid, writeid);
/* removing queue */
if (msgctl(readid, IPC_RMID,(struct msqid_ds*)0) <0)

perror(„client: I can't remove the queue 1”);
if (msgctl(writeid,IPC_RMID, NULL) < 0)

perror(„client: I can't remove the queue 2”);
exit(0);
}

IPC Message Queues
#include „mesgq.h”
void mesg_send(int id, Mesg *mesgptr)
{
if (msgsnd(id, (char*)&(mesgptr->mesg_type),

mesgptr->mesg_len,0) !=0)
perror(„error sending the message”);

}

int mesg_recv(int id, Mesg *mesgptr)
{int n;
n = msgrcv(id, (char*) &mesgptr->mesg_type),

MAXMESGDATA, mesgptr->mesg_type, 0);
if ((mesgptr->mesg_len = n) < 0)

perror(„receive error”);
return(n); /* if end of file is n = 0 */
}

IP
C

 m
essag e

 qu
e u

e

IPC Message Queues
Two-way communication can be achieved by using message

types

● type 2 means messages from server to client
● type 1 means messages from client to server

Client Server

Type = 1

Type = 2

Type = 2

Type = 1

Type = 2

IPC Message Queues
By using message types, two-way communication for the

server and multiple clients can be achieved.

● When sending a message, the client sets the type = 1 and
places its pid in the content

● The server receives all messages where type = 1
● Reads the sender's pid from the content
● It responds by putting a message into a queue where type =

pid
● The client reads all messages with a type like its pid.

IPC Message Queues

client 1
pid = 321

client 2
pid = 654

client 3
pid = 987

message queue

server

typ=1 typ=321 typ=1 typ=654 typ=1 typ=987

typ=1 typ=321,654 or 987

	Slajd 1
	Slajd 2
	Slajd 3
	Slajd 4
	Slajd 5
	Slajd 6
	Slajd 7
	Slajd 8
	Slajd 9
	Slajd 10
	Slajd 11
	Slajd 12
	Slajd 13
	Slajd 14
	Slajd 15
	Slajd 16
	Slajd 17
	Slajd 18
	Slajd 19
	Slajd 20
	Slajd 21
	Slajd 22
	Slajd 23
	Slajd 24
	Slajd 25
	Slajd 26
	Slajd 27

