

Concurrent Programing

In Linux/Unix

Communication

User process 1 User process 2

Kernel

Communication

User process 1 User process 2

Kernel Kernel

Communication

● the client gets the filename from stdin
● sends it to the server
● the server opens the file
● it is sent by the client (or info about the error)
● the client displays the content on stdout

client server file

file
name

file content or
error
message

stdin

stdout

file name

file content or
error

message

file
content

Communication
Channel

PIPE links

● Unnamed lines (PIPEs) allow data to flow in one direction
● we create it using functions

int pipe(int *filedes);

● filedes is a two-element array
● filedes[0] is the file descriptor open for reading
● filedes[1] is the file descriptor open for writing

PIPE links

We usually use communication links to communicate between two
processes, but the example below will be on the one

main()
{
int pipefd[2],n;
char buff[100];
if (pipe(pipefd) <0)
 perror("pipe error\n");
printf("read fd = %d, write fd = %d\n",pipefd[0],pipefd[1]);
if (write(pipefd[1],"hello world\n",12) !=12)
 perror("write error\n");
if ((n = read(pipefd[0],buff,sizeof(buff))) <=0)
 perror("read error\n");
write(1, buff, n); /* filedes=1 it is stdout */
exit(0);
}

PIPE links
it could be that "hello world" will come before "read fd = "... etc because
printf uses a buffer and it is flushed at the end of the program.

We created a link more or less like this:

kernel

link

user processwriteing reading

PIPE link
To create a link between two processes, we must follow the following algorithm

● the parent process creates the link
● then forks, this is where the descriptors are copied
● the parent process closes one writing or reading descriptor
● child process closes one reading or writing descriptor

(Notice. When parent close reading, child must close writeing and vice versa)

P1writeing reading

kernel

Pipe

P2writeing reading

fork()

PIPE link
these links are one-way, if we want communication in two directions, the
following steps must be performed

● create two links (link1, link2)
● call a fork
● ancestor closes link 1 for reading;
● ancestor closes link 2 for writing;
● child closes link 1 for writing;
● child closes link 2 for reading;

P1Writeing1 Reading2

Kernel

Pipe 2

P2Writeing2 Reading1

Pipe 1

PIPE link

standard I/O library contains functions creating a communication link and
initiating execution of a second process:

#include <stdio.h>
FILE *popen(char *command, char *type);

● command stands for command prompt
● type ”r” or ”w”
● returns input or output, or NULL on failure

the function to close the stream opened by popen is:

#include <stdio.h>
int pclose(FILE *stream);

PIPE link
#include <stdio.h>
#define MAXLINE 1024
main ()
{
char line[MAXLINE],command[MAXLINE+10];
int n;
FILE *fp;

/* get file name from stdandard input */
if (fgets(line, MAXLINE, stdin) == NULL)
 perror("client: file name read error\n");

sprintf(command, "cat %s",line);
if ((fp = popen(command, "r")) == NULL)
 perror("error popen\n");
/* get data from file end send it to standard output */
while ((fgets(line, MAXLINE,fp)) != NULL)
 {
 n = strlen(line);
 if (write(1, line, n) != n) /* fd 1 = stdout */

perror("client: write data error\n");
 }
if (ferror(fp)) /* checks the error flag for stream, return a non-zero value if
it is set */
 perror("blad fget\n");
pclose(fp);
exit(0);
}

PIPE link

The biggest disadvantage of PIPE links is that we can only create
them between related processes.

FIFO links

Other - named links.

● They are similar to communication links
● they allow unidirectional flow
● the first byte read from the fifo will be the first one written there.
● a FIFO queue, unlike an unnamed link, has a name
● thanks to this, unrelated processes can access the same link

FIFO links
To create a FIFO is used the function.

int mknod(char *pathname, int mode, int dev);

● pathname – normal unix path name
● mode – access mode word which will be logically summed with

the S_IFIFO tag from the file <sys/stat.h>
● dev – device, you can skip in case of FIFO queues

you can also use a command

/bin/mknod name p

once it is created, it must be opened for reading or writing, e.g. via open
or fopen, freopen.
You can set the appropriate O_NDELAY tag
The result of setting the O_NDELAY marker is in the table:

FIFO links
Situation O_NDELAY flag was not set O_NDELAY flag was set
Open a FIFO for reading
only, and no process has
opened that queue for
writing

Wait for the process to open the FIFO
for writing

return immediately without
error

open FIFO for writing
only. No process has
opened this queue for
reading

wait for the process to open the FIFO
queue for reading

return immediately, signal
error, put ENXIO constant
in errno

read from communication
link (or FIFO), there are
no data

wait until the data in the link (queue)
appears or it is not open for writing
for any process; pass zero as the
value of the function, if no process
has opened the link (queue) for
writing, otherwise pass the number of
data

return immediately, pass
zero as the function value

write, communication link
(or FIFO) full

wait until there is space, then write
data

return immediately, pass
zero as the function value

FIFO links
Rules:

● if the process requests to read a smaller amount of data than there is in
the link, it will read as much as it wants and the rest by the way

● if a process requests more data than it is, it will get as much data as is in
the link.

● if there is no data in the link and no process has opened it for writing, the
read value will be zero, signifying the end of the file.

● if the process writes a smaller portion of data than the capacity of the link
or FIFO (usually 4096B) then data integrity will be guaranteed

● if more than that, it is not guaranteed, because a second process writing
to the same link may interleave the data

● if the process calls write to a link that no other process has opened for
reading

● it will get a SIGPIPE
● write will return 0
● errno will have a value EPIPE
● if the process cannot handle the SIGPIPE signal it will be terminated

FIFO links
Imagine a daemon waiting for customer data on some link open for
reading, when the client finishes writing and ends by eg exit, the link
would have to be opened again and waited.

● the daemon should open the same link for both reading and
writing

● he will never use to write but thanks to that he will not get EOF
due to lack of a client to write.

FIFO links
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/errno.h>
extern int errno;
#define FIFO1 "/tmp/fifo.1"
#define FIFO2 "/tmp/fifo.2"
#define PERMS 0666

main()
{
int readfd, writefd;
/* open FIFO queues we assume that the server has already created them */
if ((writefd = open(FIFO1, 1)) < 0)
 perror("Client: can't open fifo1 for writeing");
if ((readfd = open(FIFO2, 0)) < 0)
 perror("Client: can't open fifo2 for reading");
client(readfd,writefd);
close(readfd);
close(writefd);
/* remove FIFO queue */
if (unlink(FIFO1) < 0)
 perror("Parent can't remove FIFO1 %s",FIFO1);
if (unlink(FIFO2) < 0)
 perror("Parent can't remove FIFO2 %s",FIFO2);
exit(0);
}

FIFO links
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/errno.h>
extern int errno;
#define FIFO1 "/tmp/fifo.1"
#define FIFO2 "/tmp/fifo.2"
#define PERMS 0666
main()
{
int readfd, writefd;
/* create FIFOs and then open them - one for reading */
/* the other for writing */
if ((mknod(FIFO1, S_IFIFO | PERMS, 0) < 0) && (errno !=EEXIST))
 perror("can't create fifo 1: %s\n", FIFO1);
if ((mknod(FIFO2, S_IFIFO | PERMS, 0) < 0) && (errno !=EEXIST))
 {
 unlink(FIFO1);
 perror("can't create fifo 2: %s\n", FIFO2);
 }
if ((readfd = open(FIFO1 ,0)) < 0)
 perror("Server: can't open fifo1 for reading");
if ((writefd = open(FIFO2,1)) < 0)
 perror("Server: can't open fifo2 for writeing");
server(readfd,writefd);
close(readfd);
close(writefd);
exit(0);
}

Data streams and messages
● In the examples so far, we have used the concept of data

stream
● there are no separate records or structures in it
● the system doesn't interprets what data it receives
● if we want to interpret, the reading and writing processes have

to establish a common way of communicating data
● the simplest structure is the lines ending with ‘\n’
● or you can come up with more complex structures
● Structure with message type and length. For further examples,

we will place this structure in the mesg.h file:

Data streams and messages

#define MAXMESGDATA (4096-16)
#define MESGHDRSIZE (sizeof(Mesg) – MAXMESGDATA)

typedef struct {
int mesg_len;
long mesg_type;
char mesg_data[MAXMESGDATA];

} Mesg;

Data streams and messages
#include ”mesg.h” /* there is our structure*/

/* send the message using the file descriptor, the
structure fields must be filled in first by the
calling process*/
void mesg_send(int fd, Mesg *mesgptr)
{
int n;
/* prepare header */
n = MESGHDRSIZE + mesgptr->mesg_len;
if (write(fd, (char*) mesgptr, n) !=n)

perror(„writeing message error\n”);
}

Data streams and messages
/* get the message, using the file descriptor fill in the
Mesg structure fields and return the value of the mesg_len
field */

int mesg_recv(int fd, Mesg *mesgptr)
{
int n;
/* we get the header and check how much is still to
download*/
/* if EOF then return 0 */
if ((n = read(fd, (char*)mesgptr, MESGHDRSIZE)) == 0)

return(0); /* end of file */
else if (n != MESGHDRSIZE)

perror(„error in reading the message header\n”);
if ((n = mesgptr->mesg_len) > 0)

if (read(fd, mesgptr->mesg_data, n) != n)
perror(„error reading message data\n”);

return(n);
}

Data streams and messages
Mesg mesg;
void client(int ipcreadfd, int ipcwritefd)
{
int n;
if (fgets(mesg.mesg_data, MAXMESGDATA, stdin) == NULL)
 perror("error reading the file name\n");
n = strlen(mesg.mesg_data);
if (mesg.mesg_data[n-1] == '\n')
 n--; /*omit the newline character picked up by fgets() */
mesg.mesg_len = n;
mesg.mesg_type = 1L;
mesg_send(ipcwritefd, &mesg);

while ((n = mesg_recv(ipcreadfd, &mesg)) > 0)
 if (write(1, mesg.mesg_data, n) != n)

perror("data write error\n");
if (n<0)
 perror("data read error\n");
}

Data streams and messages
extern int errno;

void server(int ipcreadfd, int ipcwritefd)
{
int n, filefd;
char errmesg[256];
mesg.mesg_type = 1L;
if ((n = mesg_recv(ipcreadfd,&mesgt)) <= 0)
 perror("server: error reading the file name\n");
mesg.mesg_data[n] = '\0';
if ((filefd = open(mesg.mesg_data, 0)) < 0)
 { /* prepare an error message */
 sprintf(errmesg,":can't open %s\n",
strerror(errno));
 strcat(mesg.mesg_data,errmesg);
 mesg.mesg_len = strlen(mesg.mesg_data);
 mesg_send(ipcwritefd,&mesg);

 }
else //...cdn

Data streams and messages
//...cd

 {
 while ((n = read(filefd, mesg.mesg_data, MAXMESGDATA)) > 0)

{
mesg.mesg_len = n;
mesg_send(ipcwritefd, &mesg);
}

 close(filefd);
 if (n < 0)

perror("server: reading error");
 }
/* send an empty message which means the processing is finished */
mesg.mesg_len = 0;
mesg_send(ipcwritefd,&mesg);
}

Namespaces
● links are unnamed but queues can be identified by Unix path

names.
● the set of possible names for a given type of interprocess

communication is called a namespace.
● all types of interprocess communication (except links) are

through names.
● On next slide. List of naming conventions for different types of

interprocess communication:

Namespaces

Namespace Identification
communication link (no name) file descriptor

FIFO path name file descriptor
message queue key key_t identifier
shared memory key key_t identifier

semaphore key key_t identifier
socket – Unixa domain path name file descriptor
socket – other domain (depends on domain) file descriptor

Type of inter-process
communication

Keys key_t
● these are identifiers typically 32b uniquely identifying message

queues, shared memory, or semaphores.
● You can create yourself, e.g. 1234L
● But in more serious applications, it is better to use:

#include <sys/types.h>
#include <sys/ipc.h>
key_t ftok(char *pathname, char proj);

● based on the path name and project number (proj is the
number 8b), it creates an almost unique key for us. (it is a 32-
bit number and is created on the basis of inode (32b) project
number (8b) and the so-called small file system device number
(8b))

Keys key_t

#include <sys/types.h>
#include <sys/ipc.h>

main()
{
key_t key;
key = ftok("/tmp/somename",4); //the file must
exist because if not, ftok will return -1
printf("ftok %d\n",key);
}

	Slajd 1
	Slajd 2
	Slajd 3
	Slajd 4
	Slajd 5
	Slajd 6
	Slajd 7
	Slajd 8
	Slajd 9
	Slajd 10
	Slajd 11
	Slajd 12
	Slajd 13
	Slajd 14
	Slajd 15
	Slajd 16
	Slajd 17
	Slajd 18
	Slajd 19
	Slajd 20
	Slajd 21
	Slajd 22
	Slajd 23
	Slajd 24
	Slajd 25
	Slajd 26
	Slajd 27
	Slajd 28
	Slajd 29
	Slajd 30

